Chiral Dynamics with Pions, Nucleons, and Deltas

Daniel Phillips Ohio University

Connecting lattice and laboratory

Picture credits: C. Davies, Jefferson Lab.

What is an Effective Field Theory?

- $\mathcal{M}=f(p/\Lambda)$ for p<< Λ
- QFT with $\mathcal{L}=\mathcal{L}(p/\Lambda)$ + loops as a function of p/Λ
- £ includes all possible terms at a given order
- Error estimates from size of omitted terms

Chiral perturbation theory

- • $\pounds = \pounds(\mathsf{N},\pi,\Delta)$
- •Ratio of scales is $(p,m_{\pi,M_{\Delta}}-M_{N})/\Lambda$, $\Lambda=4 \pi f_{\pi}$, m_o, M_N
- Consistent with QCD symmetries and pattern of their breaking

Outline

- Progress and opportunities in Goldstone-boson dynamics....very briefly
- Progress and opportunities in chiral dynamics of baryons
 - Compton scattering (including VCS)
 - Neutron-proton differences in γN (Griesshammer)
 - $-\pi$ photo- and electro-production near t/hold (Weller)
 - $-\pi N$ scattering->isospin violation (Weller)
 - $N->\Delta$ transition
 - $-\Delta$ magnetic dipole moment: Mainz experiment
 - Other resonances: Roper? $S_{11}(1535)$?

$\pi\pi$ scattering from full QCD

- Luescher method
- MILC lattices
- LHPC propagators
- Higher-order χPT corrections small

 χ PT predicts dependence on m_{π}, small momenta, lattice artefacts (partial quenching, finite volume)

Beane, Bedaque, Orginos, Savage (NPLQCD), PRD (2006)

A=0: summary and future

- Lattice calculations from full QCD for $\pi\pi$, π K
- χ PT a mature & precise theory: calculations to two loops=>relative error (m $_{\pi}/\Lambda$)⁴
- Attempts to go beyond perturbation theory: data + dispersion relations + chiral constraints. Sheds light on scalar mesons?

- •Standard model tests: K_{e3} decays and V_{us}
- •Basic understanding of QCD: PRIMEX

Chiral structure of the nucleon I

- Electric polarizability $\vec{d} = 4 \pi \alpha \vec{E}$
- Magnetic polarizability $\vec{\mu} = 4 \ \pi \ \beta \ \vec{B}$

Interplay of long-distance and short-distance effects

Picture credit: R. Miskimen

Polarizabilities on the lattice

Christensen, Wilcox, Lee, Zhou, PRD (2005)

From H=-2 $\pi \alpha E^2$ - 2 $\pi \beta B^2$

Quenched calculation

Low-energy manifestations of nucleon spin structure

Computation of volume and m_{π} dependence of α , β , γ 's

Detmold, Tiburzi, Walker-Loud, PRD (2006)

Chiral Dynamics below pion threshold

McGovern, PRC (2001)

- α, β, γ's predicted at O(e²P) in χPT
- $\alpha = 10 \beta = 12.5 \text{ x } 10^{-4} \text{ fm}^3$
- Proton=neutron
- Short-distance effects enter at O(e²P²)
- To measure α , β , γ 's need to go to ω >100 MeV

Extracting proton α , β , γ 's

Hildebrandt, Griesshammer, Hemmert, Pasquini, EPJA (2004)

- Δ(1232) included in Lagrangian, loops
- Fit up to ω =200 MeV
- Marked Δ influence on magnetic response
- α , β in dcs, γ 's in double-polarization observables

 α =(11.04 +/- 1.3 +/- 1.0) x 10⁻⁴ fm³ β =(2.76 -/+ 1.3 +/- 1.0) x 10⁻⁴ fm³

More data needed: polarized data for γ 's, but issues with α , β

Close to O(e²P) values!

Chiral dynamics in VCS

- VCS experiment at Bates
- Measured response functions P_{LL} - P_{TT}/ϵ , P_{LT}
- Using OOP spectrometer
- Extract $\alpha(q^2)$, $\beta(q^2)$
- O(e²P) χET predictions agree well with data within (admittedly large) error bars
- VCS future: smaller error bars? γ(q²)? Where?

Bourgeois et al., PRL (2006)

Compton scattering in the Δ region

Pascalutsa, D.P., PRC (2003)

$$= \frac{\Delta}{\Lambda_{\chi}}, \ \frac{m_{\pi}}{\Lambda_{\chi}} = \delta^{2}$$

$$= \begin{cases} p \text{ approx. } m_{\pi}, \quad 1/\Delta = O(1/\delta) \\ \frac{1}{p - \Delta} \end{cases}$$

$$p \text{ approx. } \Delta, \quad 1/(p - \Delta - \Sigma) = O(1/\delta^{3}) \end{cases}$$

 $m_{\pi} << \Delta << \Lambda_{\chi}$

 δ

$$\Sigma = + \dots = O(p^3) = O(\delta^3)$$

Courtesy V. Pascalutsa

N-> Δ transition

non-zero values for R_{EM} and R_{SM} : measure of non-spherical distribution of charges

Courtesy V. Pascalutsa

Lattice results for R_{EM} and R_{SM}

- Dependence on $m^{}_{\!\pi}$ calculable in χET
- NLO calculation in δ expansion
- Quenched lattice data

Lattice: C. Alexandrou et al., PRL (2005) χ ET: Pascalutsa and Vanderhaeghen, PRL (2005)

R_{EM} and R_{SM} with Q^2

MIT-Bates [Sparveris et al. (2005)]

MAMI :

[Beck et al.(2000), Pospischil et al. (2001), Elsner et al. (2005)] + new 2006 data

NLO χ ET (LECs fixed from observables)

Pascalutsa and Vanderhaeghen, PRL(2005)

Summary and Outlook

Significant progress over last five years

- What we need now:
 - More and better χET carried out to higher orders for more processes
 - More and better data
- What this will yield:
 - Input to few-nucleon calculations
 - •Better constraints on physics beyond-the-pion-cloud

When used together with improved lattice data: rigorous connection of that short-distance physics to QCD

Thanks to the DoE for financial support

Electroproduction observables

Compton scattering (contd.)

- NLO in δ expansion
- LEGS data on beam asymmetry
- Pion cloud + Delta interference

Pascalutsa & D.P. (2003)