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Summary 

Introduction 

Hadron spectrum

What are the low energy degrees of freedom of QCD

Hadronic structure  

Moments of structure functions

Form factors

Generalized Parton Distributions

Nucleon-Nucleon interactions

Scattering lengths  and phase shifts

Existence of 2 body bound states

Resources needed

Outlook



Lattice QCD

Lattice QCD: QCD on a discrete space time

QCD: The continuum limit of Lattice QCD

High energy regime: 

Asymptotic freedom: Weak coupling

Perturbative calculations

Low energy: Lattice QCD powerful tool for calculations

 Lots of very important physics can be explored theoretically 
Requires significant resources

Recent theoretical and computer technology advances together with 
investment in computer resources and personnel make lattice QCD a 
tool available to us today. 



Physics we can do

Hadronic spectrum and quark masses

Low energy constants for EFTs

Hadronic structure

Form factors and moments of GPDs

Hadronic interactions

Scattering lengths and phase shifts

Thermodynamics and finite density QCD

RHIC physics

Weak matrix elements and new physics

Aid experimental effort to discover new physics

Low energy phenomena

• Thermodynamics and Finite density QCD
RHIC physics

• Hadronic Spectrum

• Low energy constants for EFT
fπ, fK, gA ...

• Structure Functions,
Form factors,
Generalized Parton Distributions

• Nuclear Physics
NN interactions, nuclear force ...

• Weak Matrix elements
CKM matrix, new physics

Method: Lattice QCD
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Computation break up

Gauge field configuration generation:  The accelerator

Can be used by several collaborations

Correlation function calculation: The detector 

Used for specific calculations

〈O〉 =
1

Z

∫

∏

µ,x

dUµ(x) O[U, D(U)−1] det
(

D(U)†D(U)
)nf /2

e−Sg(U)



Realistic Calculations

Include the vacuum polarization effects

2 light (up down) 1 heavy (strange) 

Finite Volume
Compute in multiple and large volume

Continuum Limit
Compute with several lattice spacings 

Chiral Limit

Compute with several values for the quark masses

Study quark mass dependence of QCD

Need effective field theory for all the above

Light quark masses: mπ < 400MeV (?)



Past:      Ignore vacuum polarization -- Quenched approximation

Last 5 years:  Include vacuum polarization -- Dynamical  calculations

Future:  Light quark masses -- Systematics -- New calculations



Spectrum (past)

Computation of similar 
results with dynamical 
quarks is under way.

Meson spectrum

See J. Dudek

Heavy quarkonia 
spectrum (MILC, UKQCD 
HPQCD .... )

Hadron Mass Spectrum
from Quarks and Gluons

Hadrons are the constituents of atomic nuclei. The
computation of their mass spectrum from the
dynamics of more fundamental quarks and gluons
has been a principal subject of interest in particle
physics.

In this figure, the results from the CP-PACS and
from a previous computation are compared with
experiment. Experimental results are reproduced to
within about 5–10%. With the precise data from the
CP-PACS, we further clarify a limitation of the
widely adopted "quenched" approximation,
answering a long-standing question since 1981.

N = (u,d,d)

! = (u,d,s)

K = (d,s)
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fπ

fK

3MΞ − MN

2MBs − MΥ

ψ(1P − 1S)
Υ(1D − 1S)
Υ(2P − 1S)
Υ(3S − 1S)
Υ(1P − 1S)

LQCD/Exp’t (nf = 0)
1.110.9

LQCD/Exp’t (nf = 3)
1.110.9

MILC, HPQCD, UKQCD

Spectrum II
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• Fit the lower 3 points

• One loop χPT extrapolation:      133.7(9)(3.0)MeV

• χ2/d.o.f. ~ .5 



FK/Fπ 
calculations of the same quantity by MILC [1, 2]. In the subsequent sections we are going to

discuss the details of our calculation and present our result for the ratio of the kaon to pion

decay constants fK/fπ extrapolated to the physical point together with our best estimate

of systematic and statistical errors involved.

II. CHIRAL PERTURBATION THEORY

In SU(3) chiral perturbation theory (ChiPT) Gasser and Leutwyler [27–29] showed that

the ratio of the kaon to pion decay constants is

fK

fπ
= 1 +

5

4
lπ(µ)− 1

2
lK(µ)− 3

4
lη(µ) +

8

f 2

(
m2

K −m2
π

)
L5(µ) (1)

where f is the pseudoscalar decay constant at the chiral limit, mK the kaon mass, mπ the

pion mass, and

li(µ) =
1

16π2

m2
i

f 2
log

(
m2

i

µ2

)
, (2)

with the index i running over the pseudoscalar states (π,K and η), and µ being the ChiPT

cut off scale. Finally L5(µ) is a scale dependent Gasser - Leutwyler low energy constant.

In our lattice calculation we have not computed the mass of the η meson since it involves

hard to compute disconnected diagrams. For that reason we replace mη by the Gell-Mann-

Okubo formula

m2
η =

4

3
m2

K −
1

3
m2

π . (3)

This is valid to order of ChiPT at which we are working. In addition we shift the scale µ to

the value of the pion decay constant at the physical point. This amounts to a redefinition

of the low energy constant L5 according to

L5(f
phys
π ) = L5(µ)− 3

16

1

16π2
log

(
f 2

π,phys

µ2

)
, (4)

and modifications to the higher order corrections to Eq. 1.

Finally, we replace the ratios (mi/fπ,phys)2 by the lattice computed value (mi/fπ)2. Again,

this is consistent to the order of ChiPT at which we are working. Hence, the final expression

to which we fit our lattice data is

fK

fπ
= 1 +

5

4

1

16π2

m2
π

f 2
π

log

(
m2

π

f 2
π

)
− 1

2

1

16π2

m2
K

f 2
π

log

(
m2

K

f 2
π

)

− 3

4

1

16π2

4
3m

2
K − 1

3m
2
π

f 2
π

log

( 4
3m

2
K − 1

3m
2
π

f 2
π

)
+

3

f 2
π

(
m2

K −m2
π

)
L5(fπ,phys) (5)
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With these values we can evaluate the ratio of the decay constants at the physical point

using the physical values for the pseudoscalar masses and the pion decay constant [38],

fπ = 130.7 MeV

mπ = 137.273 MeV

mK = 495.663 MeV. (12)

The resulting value for the ratio is

fK

fπ
= 1.210(10)(05) (13)

where the first error is statistical and the second is an estimation of the systematic error

due to the ignored higher order terms in the chiral expansion. The above result has also

an additional systematic error due to the lattice spacing which we expect to be O(a2). In

principle one can reduce this error by fitting to the appropriate chiral perturbation theory

formulas that include the O(g2a2) effects due to flavor symmetry breaking in the sea quark

sector [21]. Our data though fit very well to the continuum ChiPT formulas hence we do

not expect that the use of the Bar el.al.results would significantly improve our calculation.

Our final result is almost identical with the MILC number [1]

fK

fπ

∣∣∣∣
MILC

= 1.210(4)(13) (14)

where the first error is statistical and the second is the total systematic error MILC esti-

mated. Since our valence quarks are domain wall fermions, as opposed to the Kogut-Susskind

used by MILC, the discretization error should be very different. Hence, the agreement we

get in our results is an indication that these systematic errors are rather small. They are

certainly smaller than our statistical errors. KNO: More recent MILC calculations [2] has

a number of 1.198(3)(+16)(-05). They used finer lattices and a second run with lighter

strange quark mass at a=0.125fm. We might want to comment on this latest results. Also

we might want to think and comment on how the miss-tuned strange quark mass affects our

result. The correct strange quark mass is somewhat lighter that 0.05 thus MILC started

new runs at strange mass 0.03. This might also be the reason we cannot get the physical

MK accurately from our data. We get it heavier...

It is also interesting to note that our result is in agreement with the experimental number,

fK

fπ

∣∣∣∣
exp.

= 1.223(12) , (15)
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Gasser-Leutwyler:

Result comparable with MILC
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Need much higher precision to see effects of Mixed  χPT Baer et.al.’05 
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fK/fπ in Full QCD with Domain Wall Valence Quarks

S.R. Beane,1, 2 P.F. Bedaque,3, 4 K. Orginos,5, 2 and M.J. Savage6

(NPLQCD Collaboration)
1Department of Physics, University of New Hampshire, Durham, NH 03824-3568

2Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606
3Department of Physics, University of Maryland, College Park, MD 20742-4111

4Lawrence-Berkeley Laboratory, Berkeley, CA 94720.
5Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795

6Department of Physics, University of Washington, Seattle, WA 98195-1560
(Dated: June 30, 2006)

Abstract
We compute the ratio of pseudoscalar decay constants fK/fπ using domain-wall valence quarks and
rooted improved Kogut-Susskind sea quarks. By employing continuum chiral perturbation theory,
we extract the Gasser-Leutwyler low-energy constant L5, and extrapolate fK/fπ to the physical

point. We find: fK/fπ = 1.218 ± 0.002 +0.011
−0.024 where the first error is statistical and the second

error is an estimate of the systematic due to chiral extrapolation and fitting procedures. This value

agrees within the uncertainties with the determination by the MILC collaboration, calculated using
Kogut-Susskind valence quarks, indicating that systematic errors arising from the choice of lattice
valence quark are small.

PACS numbers: 11.15.Ha, 11.30.Rd, 12.38.Aw, 12.38.-t 12.38.Gc
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FIG. 4: The partially-quenched proton mass differences (in MeV) calculated from the bml = 0.007
and 0.010 MILC lattices plotted vs the pion mass composed of sea quarks. Various data have been

displaced horizontally by small amounts for display purposes. A lattice spacing of b = 0.125 fm has
been used.

Extraction Mn − Mp|d−u (MeV) at mphys.
π

LO O(mq) 1.96 ± 0.92 ± 0.37

NLO O(m3/2
q ) 2.26 ± 0.57 ± 0.42

TABLE IV: The neutron-proton mass-splitting at the physical value of the pion mass, mphys.
π =

140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
in Table III. The lattice spacing used to convert between lattice units and physical units is b =

0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].

estimate how big the corrections should be. The lattice spacing is introduced into the
mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon

10

Quantity Mass (Difference) (l.u.) Mass (Difference) (MeV) Fitting Range

mπ(V1, V1;V1) 0.1864 ± 0.0011 294.2 ± 1.7 5 → 15

mπ(V1, V2;V1) 0.2066 ± 0.0010 326.2 ± 1.6 5 → 15

mπ(V2, V2;V1) 0.22473 ± 0.00091 354.4 ± 1.4 5 → 15

mπ(V1, V3;V1) 0.1929 ± 0.0012 304.5 ± 1.9 5 → 15

mπ(V3, V3;V1) 0.1996 ± 0.0011 315.1 ± 1.8 5 → 15

mπ(V1, V1;V2) 0.1844 ± 0.0013 291.0 ± 2.1 5 → 15

mπ(V1, V2;V2) 0.2050 ± 0.0012 323.7 ± 1.0 5 → 15

mπ(V2, V2;V2) 0.2236 ± 0.0011 352.9 ± 1.8 5 → 15

∆Mp(V1, V1, V2;V1) 0.0163 ± 0.0019 25.7 ± 3.0 5 → 12

∆Mp(V2, V2, V1;V1) 0.0209 ± 0.0029 32.9 ± 4.7 5 → 12

∆Mp(V2, V2, V2;V1) 0.0353 ± 0.0041 55.8 ± 6.5 5 → 12

∆Mp(V1, V1, V3;V1) 0.0049 ± 0.0010 7.7 ± 1.6 5 → 11

∆Mp(V3, V3, V1;V1) 0.0061 ± 0.0016 9.7 ± 2.5 5 → 11

∆Mp(V3, V3, V3;V1) 0.0109 ± 0.0024 17.2 ± 3.8 5 → 11

∆Mp(V1, V1, V1;V2) −0.0309 ± 0.0038 −48.8 ± 6.0 4 → 11

∆Mp(V1, V1, V2;V2) −0.0161 ± 0.0022 −25.5 ± 3.5 4 → 11

∆Mp(V2, V2, V1;V2) −0.0137 ± 0.0016 −21.6 ± 2.6 5 → 12

TABLE II: The pion masses and proton mass differences calculated on the bml = 0.007 and
bml = 0.010 MILC lattices. The notation of valence and sea quarks, V1,2,3, is defined in the text.

A lattice spacing of b = 0.125 fm has been used.

Extraction 1
3

(

2α − β
)

(l.u.) α + β (l.u.) g1 |g∆N | χ2/dof

LO O(mq) 0.198 ± 0.093 2.07 ± 0.08 −− −− 0.56

NLO O(m3/2
q ) 0.229 ± 0.058 3.4 ± 1.1 −0.10 ± 0.35 0.60 ± 0.66 0.21

TABLE III: Parameter Table. The values of the parameters in the partially-quenched chiral La-
grangian as determined by a χ2-minimization fit of the theoretical proton mass differences given

in Appendix A, to the lattice data given in Table II. The isospin-conserving combination of coun-
terterms, α + β, is renormalization-scale dependent. We have renormalized at µ = 1 GeV.

expansion. It is reassuring that the predicted neutron-proton mass difference is relatively
insensitive to the order in the chiral expansion, as shown in Table IV. Both the tree-level
and the one-loop extraction of the neutron-proton mass differences are consistent with the
“experimental” value of Mn − Mp|d−u = 2.05 ± 0.30 MeV.

An interesting observation can be made by comparing the proton mass differences on
the two different lattice sets, as shown in Table II and displayed in fig. 4. Within errors,
the magnitude of the mass differences are independent of the value of the sea-quark mass.
This is consistent with the leading order chiral expansions given eq. (1) and in Appendix A.
Higher order contributions to these mass differences in the chiral expansion, which give rise
to deviations from these equalities, will be become more visible with increased statistics.

There will be finite lattice spacing contributions to the parameters that we have extracted
in this work. The recent developments in the inclusion of finite-lattice spacing effects in
mixed-action theories in χPT allow us to determine where such corrections enter and to
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FIG. 4: The partially-quenched proton mass differences (in MeV) calculated from the bml = 0.007
and 0.010 MILC lattices plotted vs the pion mass composed of sea quarks. Various data have been

displaced horizontally by small amounts for display purposes. A lattice spacing of b = 0.125 fm has
been used.

Extraction Mn − Mp|d−u (MeV) at mphys.
π

LO O(mq) 1.96 ± 0.92 ± 0.37

NLO O(m3/2
q ) 2.26 ± 0.57 ± 0.42

TABLE IV: The neutron-proton mass-splitting at the physical value of the pion mass, mphys.
π =

140 MeV, extracted from this partially-quenched lattice calculation, using the parameters shown
in Table III. The lattice spacing used to convert between lattice units and physical units is b =

0.125 fm. The first error is statistical while the second error is due to the uncertainty in the ratio
of quark masses, mu/md, in the MILC calculation [1].

estimate how big the corrections should be. The lattice spacing is introduced into the
mixed-action theory by extending the SU(2)L ⊗ SU(2)R lie-algebra to a graded lie-algebra
that makes the distinction between sea and valence quarks explicit. The lattice spacing is
incorporated by a spurion field with the appropriate transformation properties under the
graded group, e.g. see Ref. [34–37]. There is a leading-order contribution at O(a2 m0

q) to
the nucleon mass (where we are assuming that the exponentially suppressed contribution
at O(a m0

q) from the finite L5 is numerically insignificant). However, such terms do not
contribute to the mass differences between the proton states that we have used to extract
the parameters. Finite lattice spacing contributions to the nucleon mass that depend upon
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as required. The expansion of the neutron mass can be recovered from the expansion of the
proton mass by interchanging the up and down quark masses, u ↔ d. At the order to which
we are working it is most convenient to replace the explicit quark masses in the expression
for the proton mass with the leading order expression for the pion mass to yield

Mp = M0 +
(

α + β + 2σ
)

m2
π −

1

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π

−
1

8πf 2

[

3

2
g2

Am3
π +

4g2
∆N

3π
Fπ

]

, (5)

where η = mu/md. The neutron mass is recovered by making the replacement η → 1/η, and
consequently

Mn − Mp|d−u =
2

3

(

2α − β
)

(

1 − η

1 + η

)

m2
π . (6)

The one-loop contributions at O(m3/2
q ) cancel in the mass-difference, as the pions are de-

generate up to O(m2
q). The analogous expressions for the partially-quenched proton masses

can be found in Appendix A.

III. DETAILS OF THE LATTICE CALCULATION AND ANALYSIS

Our computation uses the mixed-action lattice QCD scheme developed by LHPC [17, 18]
using domain-wall valence quarks from a smeared-source on Nf = 2+1 asqtad-improved [19,
20] MILC configurations generated with rooted 1 staggered sea quarks [26] that are HYP-
smeared [27–30]. In the generation of the MILC configurations, the strange-quark mass
was fixed near its physical value, bms = 0.050, (where b = 0.125 fm is the lattice spacing)
determined by the mass of hadrons containing strange quarks. The two light quarks in
the configurations are degenerate (isospin-symmetric). The domain-wall height is m = 1.7
and the extent of the extra dimension is L5 = 16. The MILC lattices were “chopped”
using a Dirichlet boundary condition from 64 to 32 time-slices to save time in propagator
generation. In order to extract the terms in the mass expansion, we computed a number
of sets of propagators corresponding to different valence quark masses, as shown in Table I.
On 468 bml = 0.007 (denoted by V1) lattices we have computed three sets corresponding
to the QCD point with a valence-quark mass of bmdwf = 0.0081 (V1), three sets on 367
bml = 0.007 lattices with a valence quark mass of bmdwf = 0.0138 (denoted by V2), and two
sets with a valence quark mass bmdwf = 0.0100 (denoted by V3). On 658 of the bml = 0.010
(V2) lattices we have computed three sets at the QCD point with a valence-quark mass of
bmdwf = 0.0138 (V2) and one set with a valence quark mass of bmdwf = 0.0081 (V1). The
parameters used to generate the QCD-point light-quark propagators have been “matched”
to those used to generate the MILC configurations so that the mass of the pion computed
with the domain-wall propagators is equal (to few-percent precision) to that of the lightest
staggered pion computed with the same parameters as the gauge configurations [26]. The
lattice calculations were performed with the Chroma software suite [31, 32] on the high-
performance computing systems at the Jefferson Laboratory (JLab).

1 For recent discussions of the “legality” of the mixed-action and rooting procedures, see Ref. [21–25].

4

MILC: η =mu/md= 0.43(1)(8)

Beane, KO, Savage hep-lat/0605015 

Exp. value: Mn - Mp = 1.2933317(5) MeV Mn - Mp = 2.05(30) MeV
minus EM part
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γ5 Ẽ(x, ξ, t)
]

u(p′, s′)

〈P, s| O5T (x)
∣∣P ′, s′

〉
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= ū(p, s)

[
/n H(x, ξ, t) +

nµ∆ν

2m
iσµν E(x, ξ, t)

]
u(p′, s′)

〈P, s| O "nγ5(x)
∣∣P ′, s′

〉
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γ5 Ẽ(x, ξ, t)
]

u(p′, s′)

〈P, s| O5T (x)
∣∣P ′, s′

〉
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= ū(p, s)

[
nµσµkγ5

(
HT (x, ξ, t)− t

2m2
H̃T

)
+

εµναβ∆αγβ

2m

(
ET (x, ξ, t) + 2H̃T (x, ξ, t)

)

+
nµ∆[µσν]αγ5∆α

2m2
H̃T (x, ξ, t) +

εµναβPαγβ

m
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Moments of GPDs

Generalized form factors: Ank(t) Bnk(t) Cnk(t) 

Moments of GPDs are polynomials in ξ with coefficients the 
generalized form factors.

Operator Product Expansion 

Unpolarized (F1/F2):

Oq
{µ1µ2···µn} = q

[(
i

2

)n−1
γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

Polarized (g1/g2):

Oq
{µ1µ2···µn} = q

[(
i

2

)n−1
γ5γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

• Broken Lorentz symmetry =⇒

higher moment operators mix with lower dimensional op-
erators. Operators belonging in irreducible representations
of O(4) transform reducibly under the lattice Hyper-cubic
group.

On the lattice we can measure: 〈x〉q, 〈x2〉q, 〈x3〉q
〈1〉∆q (gA), 〈x〉∆q, 〈x2〉∆q

21

Unpolarized (F1/F2):

Oq
{µ1µ2···µn} = q

[(
i

2

)n−1
γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

Polarized (g1/g2):

O5q
{µ1µ2···µn} = q

[(
i

2

)n−1
γ5γµ1

↔
Dµ2 · · ·

↔
Dµn −trace

]

q

• Broken Lorentz symmetry =⇒

higher moment operators mix with lower dimensional op-
erators. Operators belonging in irreducible representations
of O(4) transform reducibly under the lattice Hyper-cubic
group.

On the lattice we can measure: 〈x〉q, 〈x2〉q, 〈x3〉q
〈1〉∆q (gA), 〈x〉∆q, 〈x2〉∆q

21

Transversity (h1):

〈P, S|Oσq
ρν{µ1µ2···µn}|P, S〉 =

2

mN
〈xn〉δq[(SρPν−SνPρ)Pµ1Pµ2···Pµn+···−traces]

Oσq
ρνµ1µ2···µn = q[

(
i

2

)n
γ5σρν

↔
Dµ1 · · ·

↔
Dµn −traces]q

On the lattice we can measure: 〈1〉δq and 〈x〉δq.

• Only 〈1〉δq can be measured with &P = 0

16

Polarized

Unpolarized

Transversity

∫
dxHT (x, ξ, t) = gT (t) (9)

〈P, S|O|P, S〉 (10)

〈P, S|O|P ′, S ′〉 (11)Off forward Matrix elements of local operators



The Axial coupling 

Accurately known (neutron beta decay)

Lattice calculations had trouble computing it

Charge symmetry breaking effects not taken into account

ChiPT results:

Finite volume:         [Bean, Savage ‘04]  

Small Scale expansion: [T. R. Hemmert, M. Procura, and W. Weise ‘03] 

Partial NNLO: [Bernard, Veronique and Meissner’ 06]

gA/gV = 1.2695(29)   [PDG2006]



Axial Coupling (past)

Horsley LAT02



Large volumes 

 Lighter pion masses

gA(mπ=140MeV) =  1.23(8)

Axial Coupling (present)

omitted for clarity, as are data at masses beyond the range
of the graph.) The discrepancy in the vicinity of m2

! !
0:35 GeV2 is of the order of magnitude of the finite volume
effects in Fig. 1.

Conclusions.—In summary, we have calculated gA in
full QCD in the chiral regime. The hybrid combination of
improved staggered sea quarks and domain wall valence
quarks enabled us to extend calculations to the lightest
mass, 354 MeV, and largest box size, 3.5 fm, yet attained,
and to obtain statistical accuracy of 5% with negligible
error from volume dependence. Chiral perturbation theory
implies mild dependence on the pion mass, and a three
parameter constrained fit yields an excellent fit to the data
and generates an error band of size 7% at the physical pion
mass which overlaps experiment. Thus, this calculation
represents a significant milestone in the quest to calculate
hadron structure from first principles.

The fact that gA is so accurately measured and amenable
to lattice calculations offers significant opportunities for
further refining and testing the precision of lattice calcu-
lations. Extending the range of pion masses to include 300
and 250 MeV and decreasing error bars to 3% offers the
prospect of reducing the present statistical error by a factor
of 2, and the feasibility of this with existing MILC con-
figurations is being explored. Additional opportunities in-
clude calculation on MILC lattices with lattice spacings
a " 0:09 and 0.06 fm to determine finite lattice spacing
dependence, and using partially quenched hybrid "PT [27]
to account for differences in valence and sea quarks in
extrapolating to the continuum limit.

We are grateful for helpful discussions with Will
Detmold, Martin Savage, Tony Thomas, Wolfram Weise,
and Ross Young, and to Tony Thomas and Ross Young for
pointing out an error in conventions used in defining chiral

constants in an earlier version of this manuscript. This
work was supported by the DOE Office of Nuclear
Physics under Contracts No. DE-FC02-94ER40818,
No. DE-FG02-92ER40676, and No. DE-AC05-
84ER40150, the EU I3HP under Contract No. RII3-CT-
2004-506078 and by the DFG under Contract No. FOR
465. Computations were performed on clusters at Jefferson
Laboratory and at ORNL using time awarded under the
SciDAC initiative. We are indebted to members of the
MILC and SESAM Collaborations for providing the dy-
namical quark configurations which made our full QCD
calculations possible.
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FIG. 2 (color online). Comparison of all full QCD calculations
of gA, as described in the text. The solid line and error band
denote the infinite volume "PT fit of Fig. 1, and its continuation
to higher masses is indicated by the dotted line. Two of our data
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symbol width for clarity.
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Axial Coupling (future)

Continuum extrapolation

Lighter pion masses

Study the behavior of chiral extrapolation and reduce systematics from 
the extrapolation

Include charge symmetry breaking effects

Future: Expect few percent accuracy both statistical and systematic



Proton ElectroMagnetic 
Form Factors

Rosenbluth separation 
disagrees with Polarization 
transfer

Two photon effects

What does the lattice predict 
for the ratio?

PDF’s, GPD’s and Hadron Structure
Summary of LHPC hadron structure program

Final and preliminary results

Proton Electromagnetic Form Factors

C. Perdrisat (W&M), JLab Users
Group Meeting, June, 2005.

! LT separation disagrees with
polarization transfer:

Gp
E

Gp
M

= −
ε + ε′

2M

 
PT

PL

!
tan

θ

2

! Data taking at
Q2 = 9 GeV2 running.

! Will Lattice QCD predict
the vanishing of Gp

E (Q2)
around Q2 = 8 GeV2 ?

George T. Fleming Nucleon Elastic Form Factors

Perdristat: Jlab Users Meeting 2005



Vector Isovector form factor
[LHPC]

Light pion masses: Lattice approaches experiment
Chiral fit using leading order ChiPT [Leinweber et.al. ‘01 ]

Nucleon size grows as quarks become lighter
[G. T. Fleming]

PDF’s, GPD’s and Hadron Structure
Summary of LHPC hadron structure program

Final and preliminary results

Nucleon Isovector F1 (or A10) Form Factor on the Lattice

0 0.2 0.4 0.6

m
2

!
  (GeV)

2

0

0.2

0.4

0.6

0.8

sq
rt

["
r2
# chp
$

  
"r

2
# chn

] 
 (

fm
)

expt

m
!
 = 359 MeV

m
!
 = 498 MeV

m
!
 = 605 MeV

m
!
 = 696 MeV

m
!
 = 775 MeV

Dirac isovector charge radius

Preliminary

! For Q2 ! 1 GeV2, fitting lattice data to
dipole ansatz gives the Dirac charge
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.

! Chiral extrapolation using leading analytic
and non-analytic terms and finite range
regulator (PRL 86 5011).
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! Best fit: Λ ≈ 740 MeV.
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Nucleon Isovector F1 (or A10) Form Factor on the Lattice
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Vector Isovector form factor ratio
[LHPC]

Lattice results approach experiment as quark mass is lowered

Lattice06 7-25-06       J. W. Negele   20

Form factor ratio:    F2 / F1 
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Axial Isovector Form Factor

[G. T. Fleming]

PDF’s, GPD’s and Hadron Structure
Summary of LHPC hadron structure program

Final and preliminary results

Nucleon Isovector Ratio GP/GA

Preliminary

George T. Fleming Nucleon Elastic Form Factors



Electromagnetic Structure of Octet 
Baryons

Magnetic moments and charge radii of the octet baryons  in the 
quenched approximation  [Boinepalli et. al. ‘06] 

Magnetic moments of baryon octet and decuplet using the background 
field method  in the quenched approximation [Lee et. al. ‘05].



Strange Form Factors

Leinweber et al.: PRL 94, 212001 (2005)
                             PRL 97, 022001 (2006)

Slide contributed by A. Thomas (Young et.al. Phys.Rev.Lett. 97, ‘06)



Form Factors (future)

Understand continuum and chiral extrapolations

Low Q2 : Comparison with experiment provides a benchmark

Predict the High Q2   behavior

Computation of flavor singlet form factors (proton and neutron)

This requires the next generation of computational resources

Exploratory studies can be done now

New algorithmic developments could provide further aid

From factors of resonances (Decouplet baryons, Ropper etc.)

Transition form factors

N- Delta already done in quenched and heavy dynamical quarks 
[Alexandrou et.al]



LHPC-SESAM:
diamonds - quenched,
squares - dynamical

QCDSF:
quenched - triangles

[hep-lat/0201021]

〈x〉u−d ∼ a1

[
1−

(3g2
A + 1)m2

π

(4πfπ)2
ln

( m2
π

m2
π + µ2

)]
+b1m

2
π.

Where µ = 550MeV

The log coefficient is valid for full QCD

[Detmold et.al. Phys.Rev.D87 2001]
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Unpolarized moments of Structure Functions
(year 2002)



First Moments of Structure 
functions (present) [LHPC]

Hint of curvature just below 400MeV

Isovector moments only 

Fit to leading ChiPT keeping the mass dependence  of gA 

Purturbative renormalization [Bistrovic ‘05 (thesis)]

Domain Wall Valence, Staggered Sea (MILC)

[Renner Lattice ‘06]

∫
dxHT (x, ξ, t) = gT (t) (9)

〈P, S|O|P, S〉 (10)

〈P, S|O|P ′, S ′〉 (11)

Hn=1(ξ, t) = A10(t) (12)

Hn=2(ξ, t) = A20(t) − (2ξ)2C20(t)
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Extrapolated 
Experimental 



Moments of Structure functions 
Experiment vs LQCD
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0.9

1

1.1

1.2

[Renner Lattice ‘06]Need to include the Delta in the fits [Arndt and Savage, ‘02]



Moments of Structure functions 
(future)

Study systematics from chiral extrapolations

Continuum Limit

Currently one lattice spacing (a=0.125fm)

Plan to do in the next few years two more (a=0.09fm and a=0.06fm)

Compute flavor singlet moments.

Next generation of resources (Cost: ~ 10 Tflop-years)

Exploratory studies near future

New ideas

Go beyond the first few moments [Detmold and Lin ‘05]

Cost: ~ 5-6 Tflop-years



Moments of Generalized Parton 
Distributions [LHPC 2003]

Heavy dynamical quarks

Slope at small t decreases as we go to higher moments

Higher moments dominated by higher x

3
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FIG. 1: Normalized lattice results for generalized form factors
An0 and Ãn0 as a function of momentum transfer squared, −t,
for n=1 (circles), 2 (triangles), and 3 (squares).

Figure 1 presents our principal results, showing the
generalized form factors An0(t) and Ãn0(t) for the low-
est three moments: n = 1, 2, and 3. The form factors
have been normalized to unity at t = 0 to make the de-
pendence of the shape on n more obvious. Note that
A1,0, A3,0, and Ã2,0 depend on the difference between
the quark and antiquark distributions whereas Ã1,0, Ã3,0,

and A2,0 depend on the sum. Hence only moments dif-
fering by two compare the same physical quantity with
different weighting in x. To facilitate determination of
the slope of the form factors and to guide the eye, the
data have been fit using a dipole form factor

Adipole
n0 =

A
(

1 − t
m2

d

)2 . (9)

The solid line denotes the least-squares fit and the shaded
error band shows the error arising from the statistical
error in the fit mass, ∆md. Although the dipole fit is
purely phenomenological, we note that it is consistent
with the lattice data. For reference, the normalization
factors An0 and dipole masses are tabulated in Table I.

The top panel in Fig. 1 shows the flavor non-singlet
case Au −Ad, for which the connected diagrams we have
calculated yield the complete answer. It is calculated at
the heaviest quark mass we have considered, correspond-
ing to mπ = 897 MeV. Note that the form factors are
statistically very well separated, and differ dramatically
for the three moments. Indeed, the slope at the origin
decreases by more than a factor of 2 between n = 1 and
n = 3, indicating that the transverse size decreases by
more than a factor of 2. The second panel shows analo-
gous results for lighter quarks, mπ = 744 MeV, where we
observe the same qualitative behavior but slightly weaker
dependence on the moment. The third panel shows the
flavor singlet combination Au+Ad, for which we have had
to omit the disconnected diagram because of its signifi-
cantly greater computational cost. Comparing this figure
with the top panel calculated at the same quark mass, we
observe that while the connected contributions to Au±Ad

are qualitatively similar, there is significant quark flavor
dependence that can be used to explore the nucleon wave
function. It is useful to note our results for the u and d
GFFs are consistent with the n=2 moments calculated
in Ref. [11]. The bottom panel shows the spin-dependent
flavor non-singlet form factors Ãu − Ãd at the heaviest
quark mass. Thus, comparing the top and bottom fig-
ures displays the difference between the spin averaged
and spin dependent densities. We observe a striking dif-
ference, in that the change between the n = 1 and n = 3
form factors for q(x,!b⊥)↑ − q(x,!b⊥)↓ is roughly 6 times

smaller than for 1
2 (q(x,!b⊥)↑ + q(x,!b⊥)↓).

Finally, it is useful to use the slope of the form factors
at t = 0 to determine the transverse rms radius,

〈r2
⊥〉(n) =

∫

d2b⊥b2
⊥

∫

dxxn−1q(x,!b⊥)
∫

d2b⊥
∫

dxxn−1q(x,!b⊥)
. (10)

Transverse rms radii calculated in this way are tabulated
in Table I. To set the scale, the transverse charge ra-
dius at this mass is 〈r2

⊥〉charge = 0.48 fm, which is two-
thirds the experimental transverse size 0.72 fm, reflecting
the absence of a significant pion cloud. For the heaviest



Transverse Structure

The generalized form factors have simple 
interpretation

x              1   ρ is a delta function
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Fig. 1. Impact parameter dependent parton distribution u(x, b⊥) for the simple model (31).

where either the nucleon or quark helicity (or both) flip, which makes it much
more difficult to develop a probabilistic interpretation. Therefore, we focus here
on E(x, 0, t), which appears in amplitudes where the nucleon helicity flips and the
quark helicity does not flip

∫

dx−

4π
eip+x−x

〈

P + ∆, ↑
∣

∣q̄ (0) γ+q
(

x−)
∣

∣P, ↓
〉

= −∆x − i∆y

2M
E(x, 0,−∆2

⊥).(32)

For a probabilistic interpretation, it is necessary to consider amplitudes where the
initial and final states are the same. Since E(x, 0, t) does not contribute when the
initial and final state have the same helicity, we will now consider a state that is a
superposition of (transversely localized) nucleon states with opposite helicities. For
brevity, we will denote this state as |X〉, i.e.

|X〉 ≡ 1√
2

(
∣

∣p+,R⊥ = 0⊥, ↑
〉

+
∣

∣p+,R⊥ = 0⊥, ↓
〉)

. (33)

It is tempting to interpret this state as a state that is polarized in the x direction
and if we were dealing with a nonrelativistic system this would certainly be the
case. However, for relativistic systems, spins are not invariant under boosts and
one has to be careful here with such an interpretation. Nevertheless, let us proceed
here and study the (unpolarized) impact parameter dependent PDF in this state

qX(x,b⊥) ≡ 〈X | Ôq(x,b⊥) |X〉 (34)

=

∫

d2∆⊥

(2π)2
e−i∆⊥·b⊥

[

Hq(x, 0,−∆2
⊥) + i

∆y

2M
Eq(x, 0,−∆2

⊥)

]

[Burkardt hep-ph/0207047]

ξ=0 limit

Gi(Q
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a1

1 +
∑

k
bkτk

(14)

τ =
Q2

4M2
p

(15)

Gn
E(Q2) =

A

1 + Bτ
GD(Q2) (16)

GD(Q2) =
1

1 + Q2/Λ2
(17)

Λ2 = .71GeV2

∫
d2∆T

(2π)2
e−i∆T ·b (18)

Gi(Q
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bkτk

(14)
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4M2
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Gn
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1 + Q2/Λ2
(17)

Λ2 = .71GeV2

∫
d2∆T

(2π)2
e−i∆T ·b (18)

ρ(x, b)

Oµν = q̄γ{µ
↔
Dν} q = Tµν (22)

H(x, 0, t)



Moments of Generalized Parton 
Distributions (present)

Lighter pion masses are attainable 

Green band is a phenomenological parameterization  using Form factor 
data, CTEQ patron distributions, and Regge Anzatz as input [Deihl et.al.]
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Comparison with Phenomenology
GPD parameterization: Diehl, Feldmann, Jakob, Kroll EPJC 2005
nucleon form factors, CTEQ parton distributions, Regge, Ansatz

A20 =
∫

dxxH(x, 0, t) A30 =
∫

dxx2 H(x, 0, t)



The Proton Spin

What is the contribution of the quark spin to the spin of the proton?

EMC (1988)  Q2 = 10 GeV2 ΔΣ = 0.00(24)

SMC (1998)  Q2 =  5 GeV2 ΔΣ = 0.13(17)

Quarks contribute nothing to the spin of the proton!

Spin crisis

ΔΣ = Δu + Δd +  Δs



The Proton Spin

The quark  angular momentum can be computed on the lattice

                                                                                         [Ji,’98]

A and B are the generalized form factors of  
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ΔΣ = Δu + Δd +  Δs
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2
[A20(0) + B20(0)] (21)

Oµν = q̄γ{µ
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Dν} q = Tµν (22)

[LHPC: Hagler et. al. ‘03] [QCDSF: Hagler et. al. ‘03][Mathur et. al. ‘00]



Proton SPIN  

Quark orbital angular momentum almost zero  due to cancelation of 
the up and down contributions

Disconnected diagrams are missing

 μ = 2 GeV
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Nucleon spin decomposition
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Nucleon spin decomposition
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GPDs (future)

Study systematics from chiral extrapolations

Continuum Limit

Currently one lattice spacing (a=0.125fm)

Plan to do in the next few years two more (a=0.09fm and a=0.06fm)

Compute flavor singlet moments.

Next generation of resources (Cost: ~ 10 Tflop-years)

Exploratory studies near future

New ideas

Go beyond the first few moments [Detmold and Lin ‘05]

Cost: ~ 5-6 Tflop-years



Hadronic Interactions

• Effective field theory description of few nucleon systems

• Use lattice QCD to extract the low energy constants needed

•   Decay constants:  fπ, fK 

• Axial couplings: gA, gNΔ, gΣΣ, gΞΞ, gΣΛ, ...                                                     

•  Scattering lengths: NPLQCD

• Lattice Nuclear physics [Lee et al., Borasoy et al.]

• Lattice offers flexibility!

• Study quark mass dependence

• Compute experimentally inaccessible quantities (Hyperons) 



Hadronic Interactions

• Scattering processes from Lattice QCD are not straight forward

• Miani-Testa no-go theorem (‘90)  [and C. Michael ‘89]

• Infinite Volume:                                                                     

Euclidean                                  Minkowski 

• Finite volume:    discrete spectrum

• Avoids Miani-Testa no-go theorem [M. Luscher]



Luscher Formula

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.

3

Expansion at p~0 :  

a is the scattering length 

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.
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of the two-particle system in a finite volume. For two particles of identical mass, m, in
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the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]
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domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
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This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]
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presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by
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pn cot δ(pn) =
1

a
+ · · ·

c1 and c2 are universal constants

1

a
=

1

πL
S

(

p2
0L

2

4π2

)

+ · · ·



I=2 Pion Scattering

0 1 2 3 4
m
π
 / f

π

-0.5

-0.4

-0.3

-0.2

-0.1

0

m
π a

2

Experiment
CP-PACS
tree level χPT

1.5 2 2.5 3 3.5
mπ / fπ

-4

-2

0

2

l ππ

• mπ a2 = -0.0422(3)(18) 

• Experiment:  mπ a2 = -0.0454(31) 
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statistical and the second is an estimate of the systematic error. Thus this scale set-
ting procedure is remarkably robust and consistent. One may wonder about the rel-
evance of the chiral logarithm. Repeating the fitting procedure with f l.u.

π (mπ/fπ) =

bfit fphy
π

[
1 + 1/8π2

[
(mπ/fπ)2 −

(
mphy

π /fphy
π

)2
]
Lfit

]
yields bfit = 0.1330 ± 0.0001 ±

0.0001 fm and Lfit = 1.407±0.010±0.009, which are not consistent with MILC scale setting

or the experimental value of l
phy
4 , respectively. It would appear that the chiral logarithm is

resolved by our data at this order in the chiral expansion.

B. The Scattering Length

With small quark masses and momenta, ππ scattering can be reliably computed in χ-PT.
The leading-order result (equivalent to current algebra) was computed in Ref. [54], and the
one-loop ππ amplitude was computed in Ref. [52]. While this amplitude is now known at
the two-loop level [55, 56], given our current lattice data, we choose to analyze our lattice
results at one-loop level. The one-loop expression for the I = 2 ππ scattering length is

mπa2 = − m2
π

8πf 2
π

[

1 +
3m2

π

16π2f 2
π

(

log
m2

π

µ2
+ lππ(µ)

)]

, (15)

where lππ(µ) is a linear combination of scale-dependent low-energy constants that appear
in the O(p4) chiral lagrangian [52] (see Appendix A). We define lππ ≡ lππ(µ = 4πfπ),
and therefore we can simply use the ratio mπ/fπ computed on the lattice to determine the
scattering length using eq. (15). The difference between using the lattice fπ and a fixed fπ

in the argument of the logarithm modifies the scattering length only at higher orders in the
chiral expansion.

The lowest-lying energy eigenvalues in the lattice volume, shown in Table II, allow us to
determine the I = 2 ππ scattering lengths at the different light-quark masses via eq. (4). Our
results for the scattering lengths, and other parameters are presented in the summary table,
Table II. The location of the first excited state in the lattice volume allows, in general, for a
determination of the phase-shift at non-zero values of the pion momentum via eq. (1). For
the lattice parameters in these calculations we were able to extract the I = 2 ππ phase-shift
at one (large) momentum at the largest quark mass, which is shown in Table II. For the two
lighter quark masses, the first excited state is very near the four-pion inelastic threshold,
and a simple extraction of the ππ phase-shift is not possible.

The results of our calculation of the product mπa2 are shown as a function of mπ/fπ in
Fig. (2). In addition, we have shown the lowest pion mass datum from the dynamical calcu-
lations of the CP-PACS collaboration [22] 7. The uncertainty in the CP-PACS measurement
is significantly smaller than that of our calculation and the agreement is very encouraging.
In order to extrapolate mπa2 to the physical value of mπ/fπ, we performed a weighted fit of
eq. (15) to the three data points in Table II and extracted a value of the counterterm lππ.
As both quantities, mπa2 and mπ/fπ, are dimensionless there is no systematic uncertainty
arising from the scale setting (l4). We determined that lππ = 3.3± 0.6± 0.3, where the first

7 We have shown the CP-PACS data point at the lightest pion mass, and at the smallest lattice spacing,
β = 2.10, and have not attempted to extrapolate their result to the continuum. This lattice spacing is
comparable to the one used in this work.
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Kaon Pion Scattering Lengths

Upcoming experiments on Kaon - pion molecules (DIRAC collab.) 

Continuum extrapolation still needed
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FIG. 5: Error ellipses for the four fits (A,B,C,D) at 95% confidence level. (Note that these results
are derived from lattice data on a single lattice spacing of b = 0.125 fm.). The star corresponds to

the current-algebra predictions (χPT p2) from Ref. [10]. We also display 1-σ error ellipses from a
χPT analysis at NLO [6] (denoted χPT p4) and from a fit using the Roy-Steiner equations [5].

Given how well our lattice data fit the NLO continuum χPT formulas, it would seem
that the O(b2) discretization errors are comparable or smaller than the systematic error due
to omitted O(m3

q) effects in the chiral expansion. However, one should keep in mind that
our determinations of, for instance, the low-energy constants L5 and LπK are subject to
O(b2) shifts. In contrast with the π+π+ and K+K+ scattering lengths, the mixed-action
quantity ∆Mix makes an explicit contribution to the K+π+ scattering length [38, 39]. While
this adds an additional unknown contribution to this process, a mixed-action χPT analysis
of πK scattering, including lattice data from the fine MILC lattices (b ∼ 0.09 fm), will be
able to address this source of systematic error quantitatively. We continue to search for the
computational resources to accomplish this task.

V. CONCLUSIONS

In this paper we have computed the π+K+ scattering length in fully-dynamical lattice QCD
at pion masses ranging between mπ ∼ 290 MeV and 600 MeV. We have used the continuum
expressions for the scattering lengths in SU(3) chiral perturbation theory, together with
lattice data for fK/fπ, to predict the physical I = 3/2 and I = 1/2 πK scattering lengths
with unprecedented accuracy. Naively one would expect that π+K+ scattering would give
information about I = 3/2 scattering only. However, the lattice data, when combined
with chiral perturbation theory, implies a constraint on I = 1/2 scattering as well. We
anticipate that with improved statistics, together with calculations on lattices with smaller
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Nucleon-Nucleon

3

mπ (MeV ) a(1S0) (fm) a(3S1) (fm)

353.7 ± 2.1 0.63 ± 0.50 (5-10) 0.63 ± 0.74 (5-9)

492.5 ± 1.1 0.65 ± 0.18 (6-9) 0.41 ± 0.28 (6-9)

593.0 ± 1.6 0.0 ± 0.5 (7-12) −0.2 ± 1.3 (7-12)

TABLE I: Scattering lengths in the 1S0 channel and in the
3S1 −

3D1 coupled channels. The uncertainty is statistical and
the fitting ranges are in parentheses. There is a systematic
error of ∼ 0.1 fm on each scattering length associated with the
truncation of the effective range expansion; i.e. the numbers
exhibited are for −1/p cot δ at the measured energy-splitting.

lengths at the heaviest pion mass are not inconsistent
with the lightest-mass quenched values of Ref. [1]. How-
ever, one should keep in mind the effects of quenching on
the infrared properties of the theory [21].

The lowest pion mass at which we have calculated is
at the upper limit of where we expect the EFT describ-
ing NN interactions to be valid [22, 23, 24, 25, 26, 27].
While some controversy remains regarding the details
of the NN EFT, in our present analysis, we have con-
strained the chiral extrapolation using BBSvK power-
counting [27] (≡KSW power-counting [25, 26]) and W
power-counting [22, 23, 24] in the 1S0-channel and BB-
SvK power-counting in the 3S1 −3D1 coupled channels.
The recent lattice QCD determinations of the light-quark
axial-matrix element in the nucleon by LHPC [28] and
its physical value are used to constrain the chiral expan-
sion of gA. Our lattice calculations of the nucleon mass
and pion decay constant [20] —as well as their physi-
cal values— are used to constrain their respective chi-
ral expansions. In addition to the quark-mass depen-
dence these three quantities contribute to the NN sys-
tems, there is dependence on the quark masses at next-
to-leading order (NLO) from pion exchange, and from
local four-nucleon operators that involve a single inser-
tion of the light-quark mass matrix, described by the
“D2” coefficients [6, 7, 8]. The results of this lattice
QCD calculation constrain the range of allowed values
for the D2’s, and consequently the scattering lengths in
the region between mπ ∼ 350 MeV and the chiral limit,
as shown in fig. 3 and fig. 4. With only one lattice point
at the edge of the regime of applicability of the EFT, a
prediction for the scattering lengths at the physical pion
mass is not possible: the experimental values of the scat-
tering lengths are still required for an extrapolation to
the chiral limit and naive dimensional analysis (NDA)
is still required to select only those operator coefficients
that are consistent with perturbation theory. The regions
plotted in the figures correspond to values of C0 – the
coefficient of the leading-order quark-mass independent
local operator – and D2 that fit the lattice datum and
the physical value, and are consistent with NDA; indeed
we have D2(Λ)m2

π/C0(Λ) ∼ ±0.10 in both channels (at

physical mπ), at a renormalization scale Λ ∼ 350 MeV.
In both channels the lightest lattice datum constrains the
chiral extrapolation to two distinct bands which are sen-
sitive to both the quark mass dependence of gA and the
sign of the D2 coefficient. As the lattice point used to
constrain the EFT is at the upper limits of applicabil-
ity of the EFT, we expect non-negligible corrections to
these regions from higher orders in the EFT expansion.
It is clear from fig. 3 and fig. 4 that even a qualitative
understanding of the chiral limit will require lattice cal-
culations at lighter quark masses.

FIG. 3: Allowed regions for the scattering length in the 1S0

channel as a function of the pion mass. The experimental
value of the scattering length and NDA have been used to
constrain the extrapolation in both BBSvK [25, 26, 27] and
W [22, 23, 24] power-countings at NLO.

FIG. 4: Allowed regions for the scattering length in the
3S1 −

3D1 coupled-channels as a function of the pion mass.
The experimental value of the scattering length and NDA
have been used to constrain the extrapolation in BBSvK [27]
power-counting at NLO. (W counting gives essentially iden-
tical results.)

Without the resources to perform similar lattice QCD
calculations in different volumes, and observing that
most energy-splitting are positive, we have assumed that
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Nucleon-Hyperon
corrections to the Lüscher formula can be computed in chiral perturbation theory, as shown
in the ππ case in [41] and for two nucleons in [42]. These effects are particularly small in
the NΛ system, as the long-range part of the interaction is dominated by two-pion exchange
and one-kaon exchange, and not one-pion exchange.
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FIG. 5: Comparison of the lowest-pion-mass lattice results in each channel with a recently developed
YN EFT [20] (squares), and several potential models: Nijmegen [11] (triangles) and Jülich [15]

(diamonds). The dark error bars on the lattice data are statistical and the light error bars are
statistical and systematic errors added in quadrature.

D. Discussion

We have presented results of the first fully-dynamical lattice QCD calculation of YN inter-
actions. The scattering amplitudes for s-wave nΛ and nΣ−, in both the 1S0-channel and the
3S1−3D1 coupled-channels, have been determined at one value of momentum for pion masses
of ∼ 350 MeV, ∼ 490 MeV and 590 MeV. Unfortunately, the lightest pion mass at which
we have been able to extract a signal is at the upper limits of the regime of applicability
of the effective field theories that have been constructed, thus precluding a chiral extrap-
olation. However, this work does provide new rigorous theoretical constraints on effective
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Hadronic interactions (Future)

• These calculations are the beginning of the beginning!

• Need lighter pion masses, multiple volume sizes, and lattice spacings

• Determine if we see scattering states

• Meson baryon channels: (K-n, K-Σ ...) ----- Neutron stars

• Hyperon-Hyperon and Hyperon-Nucleon channels [NPLQCD: hep-lat/0612026]

• Hyper-nuclear physics and Neutron stars

• Need to make lattices designed for this project

• Higher statistics:          (JLAB spectrum program -- INCITE recent award)
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Conclusions

Lattice QCD is a mature field

Direct comparison with experiment is now possible for several 
observables

Predictions are now emerging   

Extraction of GPDs:  Synergy between experiment, Lattice and 
phenomenology  

Petaflop computing is around the corner

Will allow us to perform precision calculations for spectrum, form 
factors and GPDs

Will takes us long ways in understanding the nuclear force



Polarizabilities

Compute the response of the hadron in external electric or magnetic 
field

Use the external field method 

Electric polarizabilities of neutral hadrons [Christensen,  Wilcox,  Lee ‘04 ]

Magnetic polarizabilities of hadrons  [Lee, Zhou,   Wilcox,  Christensen ‘05 ]

Spin polarizabilities  and electric polarizabilities of charged particles 
proposed to be measured [Detmold, Tiburzi, Walker-Loud ‘06]


