<u>Scientific Opportunities in pA & dA Collisions</u> Mike Leitch - LANL (*leitch@lanl.gov*)

Rutgers NP Town Meeting - 12 January 2007

- gluon saturation & shadowing
 small-x suppression
 cold nuclear matter (CNM) effects
 - on J/ψ & heavy quarks
 - parton energy loss
- baseline for AA collisions
- RHIC-II rates & reach
- contrasting with LHC

Cold Nuclear Matter (CNM) Effects Gluon Shadowing and Saturation

Phenomenological fit to DIS & Drell-Yan data
e.g. "EKS", Nucl. Phys. A696, 729 (2001).
Leading twist gluon shadowing
e.g. "FGS", Eur. Phys. J A5, 293 (1999)
Coherence approach and many others
Amount of gluon shadowing differs by up to a factor of three between diff models!

Saturation or Color Glass Condensate (CGC)

- At low-x there are so many gluons that $2 \rightarrow 1$ diagrams become important and deplete low-x region
- Nuclear amplification: $x_A G(x_A) =$

 $A^{1/3}x_pG(x_p)$, i.e. gluon density is ~6x higher in Gold than the nucleon

Hadrons at forward rapidity (small-x)

- Increasing suppression at forward rapidity w.r.t. binary scaling
- limiting fragmentation seen in comparison to lower energy measurements
- many physics issues to consider shadowing, gluon saturation, initialstate parton energy loss, Sudakov suppression?

But do forward π⁰'s really probe small x? Guzey, Strikman, and Vogelsang, PL B603, 173 (2004)

However, they also show that if one measures two forward hadrons ($\pi^{0's}$) then one CAN pin down x_2 to small values

Mono-jets from the CGC picture

1/12/2007

π^{0} + h[±] Correlations in dAu Collisions

 $\pi^{0} < \eta > = 4$ and h[±] p_T>0.5 GeV/c "S" is area of the coincident peak

The back-to-back correlation peak is smaller in dAu compared to pp, qualitatively consistent with the mono-jet picture from the CGC or coherent scattering (Vitev, Qiu) models. But is the reduction really significant given the large background?

Cold Nuclear Matter Effects for J/ψ Absorption & Energy Loss

 J/ψ suppression is a puzzle with possible contributions from shadowing & from:

FNAL E906 (120 GeV) or JPARC (50 GeV) quark energy loss in nuclei

For Drell-Yan only initial state interactions are important—*no final state strong interactions*.

At 800 GeV, the nuclear dependence of Drell-Yan on nuclear targets could not unambiguously separate shadowing and dE/dx effects at low x

E866 data are consistent with no energy loss (using EKS shadowing)
or with Kopeliovich shadowing, Johnson et al. find 2.2 GeV/fm from the same data

for 120 or 50 GeV p-A Drell-Yan x > 0.1 & only quark dE/dx remains (no shadowing)
also stronger, dE/dx ~ 1/s
Important for understanding of RHIC data 1/12/2007

Heavy quarks at forward rapidity & small-x

- J/ ψ suppression does not scale like shadowing with x_2
- Apparent scaling with x_F is similar to limiting fragmentation in hadron production

 but other models involving Sudakov suppression (energy conservation) Kopeliovich et al, hep-ph/0501260 (2005)
 or (large) initial-state gluon energy loss could also explain this x_F scaling

Prompt muons from open charm & beauty also suppressed at forward rapidity

J/ψ suppression in AA collisions & CNM baseline (CNM = Cold Nuclear Matter)

Cold nuclear matter baseline poorly constrained by present d+Au J/ ψ data so far – an example of the importance of d+Au for A+A studies

Detector Upgrades - enabling our physics goals

Contrasting small-x physics at RHIC-II and the LHC

At RHIC/RHIC-II measurements explore the onset of shadowing or saturation, while at the LHC most measurements will be deep into the saturation region • exploring the onset at RHIC-II will be key to understanding saturation and complimentary to those at the LHC • quarkonia annual rates similar at RHIC-II

 quarkonia annual rates similar at RHIC-II and LHC

From the LHC pA Workshop (May 2005):

- p+A at the LHC is still officially an upgrade
- First year that LHC might run p+Pb: 2010
- Possible "target" luminosity: 10²⁹ cm⁻²s⁻¹ (RHIC-II: 2x10³⁰ cm⁻²s⁻¹ avg)
- N-N CM not at lab y=0 (Δ y=-0.46 for 8.8 TeV p+A)
- Has to share 1-month/yr with HI running difficult to build a systematic program

Goals for the Future

Accurate data from multiple probes to allow quantitative analysis & isolation of gluon saturation from other effects (parton energy loss, coherence effects causing shadowing, Sudakov suppression)

Quarkonia:

- higher luminosity (RHIC-II) to enable precision for rare probes $(J/\psi, \psi', \Upsilon)$
- · lower backgrounds via detached vertices (vertex detector upgrades)
- better onia mass resolution to isolate states (J/ ψ from ψ '; Υ family)
- · ψ^\prime where there is no feed down the physics is cleaner
- Υ where x probed is larger than J/ψ (x ~ m_Q/\sqrt{s})
- and $\chi_c \rightarrow J/\psi \gamma$ (forward calorimeters)

Goals for the Future continued

Open-heavy:

- explicit identification of open heavy semi-leptonic decays via detached vertices
 - lower backgrounds, smaller systematic uncertainties
- explicit isolation of beauty via $B \to J/\psi~X$
- explicit $D \rightarrow K \pi$ (at central rapidity with STAR upgrades, but don't know about forward??)
- $\boldsymbol{\cdot}$ high precision comparison of open and hidden heavy to isolate physics

Goals for the Future continued

Lepton pairs (Drell-Yan) with reduced π ,K decay & open charm backgrounds (vertex upgrades)

 π^0 & γ at large rapidity to probe saturation at small x (forward calorimeters)

2-particle correlations and search for mono-jets (forward calorimeters)

Summary - p+A and d+A Opportunities

Extra Slides

A few rates for RHIC-II

Substantial increase in rates of rare processes at RHIC-II $\cdot J/\psi$ yields still smaller than the 1.5M at FNAL E866/NuSea but quite good for a collider!

								p _T >10 GeV/c	
	J/ψ	ψ'	Υ	χc	$B\to J/\psi \; X$	D	В	π ⁰	direct y
Run-3	~900								
RHIC-I	13k	230	40	1.4k	350	38M	440k	8.2k	1k
RHIC-II	200k	3.6k	650	22k	5.5k	600M	7M	130k	17k

- Est. yields in one PHENIX forward spectrometer in a 10-week d+Au run
- use RHIC-II at 62 nb⁻¹/week; RHIC-I at 3.9 nb-1/week luminosities
- compared to ~0.27 nb⁻¹/week in Run-3
- with the PHENIX Forward Vertex and Nose Cone Calorimeter upgrades

Rates for STAR FMS double $\pi^{\rm 0}$ coincidence ~100k in 10-week RHIC-II d+Au run

Cold Nuclear Matter Effects Gluon Shadowing

- Phenomenological fit to Deep-Inelastic Scattering & Drell-Yan data
- Leading twist gluon shadowing

• Coherence approach, and many others Amount of gluon shadowing differs by up to a factor of three between diff models!

Cold Nuclear Matter Effects Gluon Saturation & the Color Glass Condensate (CGC)

Cold Nuclear Matter for J/ψ Transverse Momentum Broadening

Initial-state gluon multiple scattering causes \mathbf{p}_{T} broadening (or Cronin effect)

Alternative picture for forward charm suppression in dAu Vitev, Goldman, Johnson, Qiu - hep-ph/0605200

cg & cq dominate inclusive D production

final-state coherence effects

 \cdot simultaneous interaction with more than one nucleon (x_N < 1/2r_0m_N)

equivalent to shift in effective x

initial-state inelastic radiative energy loss necessary to reproduce data

large dE/dx - average parton loses
10% of its energy!

- Do we have Glauber matter distribution + perfect liquid, or Color Glass Condensate distribution + viscous matter?
- Understanding the initial state is crucial to understand what we are seeing in the final state

Double parton correlations

CDF, PRL 79, 584

PRL 88, 031801

Measuring Double-Parton Distributions in Nucleons at Proton-Nucleus Colliders

M. Strikman*

Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802

D. Treleani[†]

Università di Trieste, Dipartimento di Fisica Teorica, Strada Costiera 11, Miramare-Grignano, and INFN, Sezione di Trieste, I-34014 Trieste, Italy (Received 11 June 2001; published 2 January 2002)

We predict a strong enhancement of multijet production in proton-nucleus collisions at collider energies, as compared to a naive expectation of a cross section $\propto A$. The study of the process would allow one to measure, for the first time, the double-parton distribution functions in a nucleon in a modelindependent way and hence to study both the longitudinal and the transverse correlations of partons.

A-dependence of 4-jet yields in p+A collisions can be used to measure $x_1 - x_2$ momentum correlations within the proton.

This would require pA, not dA collisions!

Annual yields at RHIC II & LHC are similar

RHIC-II: • AuAu 12 weeks LHC HI: • PbPb 10⁶ sec (500 µb⁻¹)

from RHIC-II White Paper. RHIC-II & LHC rate comparisons (RHIC: 12 weeks of AuAu; LHC: 1 month of PbPb). From RHIC-II White paper,

		RHIC	-II		LHC Heavy Ions					
Signal	PHENIX	lηl	STAR	lηl	ALICE	lηl	CMS	lηl	ATLAS	lηl
$J/\psi ightarrow$ ee	55k	<0.35	220k	<1	9.5k	<0.9				
$J/\psi \rightarrow \mu\mu$	470k	1.2-2.4			740k	2.5-4	24k	×2.4	8-100k	×2.5
$\psi' \rightarrow ee$	990	<0.35	4k	<1	190	<0.9				
$\psi' \rightarrow \mu \mu$	8.5k	1.2-2.4			14k	2.5-4	440	<2.4	1.4k- 1.8k	<2.5
χ _C →eeγ	3.6k	<0.35								
$\chi_{C} \rightarrow \mu \mu \gamma$	139k	1.2-2.4								
$\Upsilon \rightarrow ee$	200	<0.35	11.2k	<1	2.6k	<0.9				
$\chi \to h h$	500	1.2-2.4			8.4k	2.5-4	26k	×2.4	15k	<2
$B \rightarrow J/\psi \rightarrow ee$	300	<0.35	2.5k	<1						
$B \rightarrow J/\psi \rightarrow \mu\mu$	3k	1.2-2.4								
Ъ→Кπ	?		30k	<1	8k	<0.9				

Proton Structure: By What Process Is the Sea Created?

• Meson Cloud in the nucleon Sullivan process in DIS $|p > = |p_0> + \alpha |N\pi> + \beta |\Delta\pi> + ...$

Chiral Models

Interaction between Goldstone Bosons and valence quarks $|u\rangle \rightarrow |d\pi^+\rangle$ and $|d\rangle \rightarrow |u\pi^-\rangle$

