Quarks and Gluons

Challenges for Lattice QCD at High Temperature and Density

Frithjof Karsch Brookhaven National Laboratory

Critical point?

Hadrons

Deconfinement & chiral transition

RHIC & LHC

verse

Neutron stars

Color Superconductor?

F. Karsch – p.1/20

Phase diagram of strongly interacting matter

RHIC I/II & LHC \Leftrightarrow LGT at vanishing chemical potential RHIC at low energy \Leftrightarrow LGT at non zero chemical potential

QCD Thermodynamics 2007-2012: What do we want to know?

I. T_c , ϵ_c , EoS:

basic input to hydrodynamic modeling of heavy ion collisions; confront models with lattice calculations (resonance gas, quasi-particle gas, high-T pert. theory, HTL-resummation, AdS/CFT ...) test universal aspects of deconfinement and chiral symmetry restoration in 2, (2 + 1)-flavor QCD

II. search for the critical point at $\mu > 0$:

chiral critical point: does it exist?; location of the chiral critical point; direct evidence for 1st order regime; location of the transition line for $\mu > 0$; density fluctuations; $T_c(\mu) \equiv T_{\text{freeze}}$?

III. In-medium properties of hadrons

- quarkonium spectroscopy and heavy quark diffusion
- light quark bound states and thermal dilepton/photon rates

QCD Thermodynamics 2007-2012: What do we want to know?

I. T_c , ϵ_c , EoS:

basic input to hydrodynamic modeling of heavy ion collisions; confront models with lattice calculations (resonance gas, quasi-particle gas, high-T pert. theory, HTL-resummation, AdS/CFT ...) test universal aspects of deconfinement and chiral symmetry restoration in 2, (2 + 1)-flavor QCD

Isentropic Equation of State: p/ϵ

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D73 (2006) 054506

 p/ϵ vs. ϵ shows almost no dependence on S/N_B

softest point: $p/\epsilon \simeq 0.075$

phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

$$rac{p}{\epsilon} = rac{1}{3} \left(1 - rac{1.2}{1+0.5 \; \epsilon \; \mathrm{fm}^3/\mathrm{GeV}}
ight)$$

Isentropic Equation of State: p/ϵ

S. Ejiri, F. Karsch, E. Laermann and C. Schmidt, Phys. Rev. D73 (2006) 054506

 p/ϵ vs. ϵ shows almost no dependence on S/N_B

softest point: $p/\epsilon \simeq 0.075$

phenomenological EoS for $T_0 \lesssim T \lesssim 2T_0$

so far analyzed only
for
$$m_{\pi} \simeq 770 \text{ MeV}$$
 $\frac{p}{\epsilon} = \frac{1}{3} \left(1 - \frac{1.2}{1 + 0.5 \ \epsilon \ \mathrm{fm}^3/\mathrm{GeV}} \right)$

awaits confirmation in (2+1)-flavor QCD with light quarks

Transition Temperature; QCD Equation of State

N. H. Christ et al. (RBC-Bielefeld collaboration), Phys. Rev. D74, 054507 (2006) F. Karsch, for RBC-Bielefeld collaboration, presented at Quark Matter 2006 MILC, hep-lat/0611031

- equation of state with almost physical light and strange quark masses
- extrapolation to chiral and continuum limit

$(\epsilon-3p)/T^4$ on LCP

- requires good control over T > 0 observables (action differences, chiral condensates) as well as an
- accurate determination of T = 0 scales AND β -functions

 $T < T_c$ make contact to hadron gas phenomenology

- $T < 2T_c$ analyze large deviation from conformal limit
- $T > 2T_c$ make contact to (resummed) perturbation theory

p4 vs. asqtad: overall good agreement

Note:

T-scale is not dependent on T_c determination

```
asqtad data:
C. Bernard et al., hep-lat/0611031
```

extrapolations to physical point

- RBC-Bielefeld (p4fat3 (p4)) vs. Wuppertal (stout (stand. staggered))
- **P** results for $N_{ au} = 4, 6$ differ by 15% but show similar cut-off dependence
- **stout** results for different observables no longer consistent with each other for $N_{ au} = 8, 10$

extrapolations to physical point

- RBC-Bielefeld (p4fat3 (p4)) vs. Wuppertal (stout (stand. staggered))
- **P** results for $N_{ au} = 4, 6$ differ by 15% but show similar cut-off dependence
- stout results for different observables no longer consistent with each other for $N_{ au} = 8, 10$

Drastic changes closer to the continuum limit?

 widely different crossover temperatures should also be reflected in the EoS

- current EoS at
$$T \simeq 150$$
 MeV:
 $\epsilon \simeq 65$ MeV/fm³ $\simeq \epsilon_0$

($\epsilon_0 \equiv \epsilon$ in uncompressed nuclear matter)

⇒ need to confirm results on EoS
 closer to the continuum limit

overall scale set with

$$r_0=0.469~{
m fm}$$

New projects on BlueGene/L

- 360TFLops at LLNL; 100TFlops at BNL -

Modeling the QCD equation of state closer to the continuum limit joint project: BNL-RIKEN-Columbia, LANL, LLNL and MILC collaboration on the Livermore BlueGene/L

• T_c , EoS on $N_{\tau} = 8$ lattices with light dynamical quarks: (2+1)-flavor QCD, close to physical m_{π}/m_K ratio; exploring the continuum limit: $N_{\tau} = 4, 6, 8$ analyzing the thermodynamic limit: $V \simeq 500 \text{ fm}^3$

EoS on $32^3 \times 8$ lattices; CPU-time: ~ (20-40) TFlops-years

● FUTURE: test universal properties, details of χ -symmetry restoration ⇒ bulk thermodynamics with chiral fermions requires $\mathcal{O}(50)$ more computing resources ⇒ PETAFLOPS computing

QCD Thermodynamics 2007-2012: What do we want to know?

II. search for the critical point at $\mu > 0$:

Chiral critical point: does it exist?; location of the chiral critical point; direct evidence for 1st order regime; location of the transition line for $\mu > 0$; density fluctuations; $T_c(\mu) \equiv T_{\text{freeze}}$?

Extending the phase diagram to non-vanishing chemical potential

non-zero baryon number density: $\mu > 0$

$$Z(V, T, \mu) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_E(V, T, \mu)}$$
$$= \int \mathcal{D}\mathcal{A}\mathcal{D} det M(\mu) e^{-S_E(V, T)}$$
$$\uparrow \text{complex fermion determinant;}$$

long standing problem

- \Rightarrow three (partial) solutions for large T, small μ
- exact evaluation of *detM*: works well on small lattices; requires reweighting
 Z. Fodor, S.D. Katz, JHEP 0203 (2002) 014
- Taylor expansion around $\mu = 0$: works well for small μ ; requires reweighting C. R. Allton et al. (Bielefeld-Swansea), Phys. Rev. D66 (2002) 074507
- imaginary chemical potential: works well for small μ ; requires analytic continuation Ph. deForcrand, O. Philipsen, Nucl. Phys. B642 (2002) 290

Extending the phase diagram to non-vanishing chemical potential

non-zero baryon number density: $\mu > 0$

$$Z(V, T, \mu) = \int \mathcal{D}\mathcal{A}\mathcal{D}\psi \mathcal{D}\bar{\psi} e^{-S_{E}(V, T, \mu)}$$

= $\int \mathcal{D}\mathcal{A}\mathcal{D} det M(\mu) e^{-S_{E}(V, T)}$
$$\int_{0}^{T_{T_{0}}} \int_{0}^{T_{T_{0}}} \int_{0}^{F_{K2004}} \int_{0}^{F_{K2004}} \int_{0}^{F_{K2004}} \int_{0}^{F_{K2004}} \int_{0}^{F_{K2004}} \int_{0}^{T_{C}(\mu)} (\mu_{T_{0}})^{2} = (1 - 0.0056(4)(\mu_{B}/T)^{2})^{2}$$

deForcrand, Philipsen (imag. μ)
 $1 - 0.0078(38)(\mu_{B}/T)^{2}$
Bielefeld-Swansea
 $(\mathcal{O}(\mu^{2}) \text{ reweighting})$
Search for critical point

Fluctuations of the baryon number density ($\mu \ge 0$)

baryon number density fluctuations: (Bielefeld-Swansea, PRD68 (2003) 014507)

 $\mu \geq 0, n_f = 2$

$$egin{aligned} &\chi_q \ &T^3 = \left(rac{\mathrm{d}^2}{\mathrm{d}(\mu/T)^2}rac{p}{T^4}
ight)_{T \,\mathrm{fixed}} \ &= rac{9}{V}rac{T}{V}\left(\langle N_B^2
angle - \langle N_B
angle^2
ight) \end{aligned}$$

susceptibilities

to be studied in event-by-event fluctuations

recent papers:

V. Koch, E.M. Majumder, J. Randrup, nucl-th/0505052 S. Ejiri, FK, K. Redlich, hep-ph/05090521 R.V. Gavai, S. Gupta, hep-lat/0510044

Fluctuations of the baryon number density ($\mu \ge 0$)

QCD Thermodynamics 2007-2012: What do we want to know?

III. In-medium properties of hadrons

- quarkonium spectroscopy and heavy quark diffusion
- light quark bound states and thermal dilepton/photon rates

Analyzing the (quasi-particle) structure of HG and QGP phases

Response and correlation functions:

$T \leq T_c$: chiral symmetry restoration

hadronic resonance gas;
MEM analysis of thermal masses and widths, π, ρ, \dots

(baryon) density fluctuations, strangeness fluctuations, ...

$T > T_c$: deconfinement

- free energies, potentials and screening masses, running coupling at short and large distances,...
- MEM analysis of heavy and light quark bound states, quark and gluon propagators, dilepton and photon rates,
 - transport coefficients: heavy quark diffusion,...

Analyzing the (quasi-particle) structure of HG and QGP phases

Response and correlation functions:

$T ~\leq~ T_c:~ { m chiral~symmetry~restoration}$

- hadronic resonance gas;
 MEM analysis of thermal masses and widths, π , ρ , ...
 - (baryon) density fluctuations, strangeness fluctuations, ...

$T > T_c$: deconfinement

- free energies, potentials and screening masses, running coupling at short and large distances,...
- MEM analysis of heavy and light quark bound states, quark and gluon propagators, dilepton and photon rates,
 - transport coefficients: heavy quark diffusion,...

thermodynamics with chiral fermions (DWF, overlap, ...)

requires light

dynamical quarks

 \Rightarrow PETAFLOPs era

meaningful already in quenched QCD \Rightarrow TERAFLOPs era F. Karsch - p.14/20

Dilepton rate: HTL and lattice calculations

thermal dilepton rate

$\mathrm{d}W$ _	$5\alpha^2$	$\sigma_V(\omega,ec{p},T)$
${\rm d}\omega{\rm d}^3p$ -	$\overline{27\pi^2}$	$\overline{\omega^2(\mathrm{e}^{\omega/T}-1)}$

HTL and lattice disagree for $\omega/T \lesssim (3-4)$

● infra-red sensitivity of HTL-calculations ⇔ "massless gluon" cut in HTL-propagator

ullet infra-red sensitivity of lattice calculations \Leftrightarrow thermodynamic limit, $V
ightarrow \infty$

• $VT^3 = (N_\sigma/N_\tau)^3 < \infty \Rightarrow$ momentum cut-off: $p/T > 2\pi N_\tau/N_\sigma$

need large lattices to analyze infra-red regime

in future also thermal photon rates

need $N_ au \sim \mathcal{O}(30)$ AND $N_\sigma \sim 6 \; N_ au$

reconstructed spectral functions using the Maximum Entropy Method

reconstructed spectral functions using the Maximum Entropy Method

Want to get access to transport properties

low energy \Leftrightarrow large distances

need to get better control over low energy regime

reconstructed spectral functions using the Maximum Entropy Method

 so far finite-T quarkonium spectroscopy has been analyzed in quenched QCD; except for a few exploratory studies with dynamical staggered fermions

FUTURE:

spectroscopy with dynamical chiral fermions at finite temperature

- need large lattices $\sim 120^3 imes 40$
- need light, dynamical quarks with good chiral properties (DWF, overlap,..)

 $\Rightarrow \text{ thermal properties of } \rho \text{-meson}$ $\Rightarrow \text{ low energy part of spectral functions}$ T > 0 spectroscopy on PETAFLOPS computers

Progress in lattice calculations depends on...

- stable funding for a QCD thermodynamics group that guarantees continuity of know-how...
- access to dedicated computer hardware

Outlook: projects on future machines...

...towards thermodynamics on Petaflops computers (extension of (exploratory) studies on current Teraflops computers)

Thermodynamics of QCD with chiral fermion formulations

In-medium properties of light quark bound states: QCD with light, dynamical quarks on fine lattices become possible; mass shifts and modification of widths below T_c

finite density QCD:

aim at definite answer on the existence and location of a critical point; try to reach lower temperatures around $T\sim 0.5~T_c$

transport properties:

calculation of "gluonic correlator" (energy momentum tensor) should become possible; spectral functions in the $\omega \rightarrow 0$ limit may become accessible (dilepton rates; heavy quark diffusion coefficient,..)

LGT needs open access to large scale computing

360TFlops BlueGene/L at Livermore EoS and T_c for $N_{\tau} = 8$ ~ 40 TFlop-years

20TFlops QCDOC at BNL $\mu_q \ge 0, N_{ au} = 4, 6$ ~ 5 TFlop-years

LGT needs open access to large scale computing

360TFlops BlueGene/L at Livermore EoS and T_c for $N_{ au} = 8$ ~ 40 TFlop-years

E Karse

p.20/20

finite-T LGT: 1981 \Rightarrow 2006 from 800 KFlops to 20 TFlops 2007-2012: need factor $2^5 = 32$ speedup buys: staggered $\Rightarrow \chi$ -fermions; details of spectral functions;...

20TFlops QCDOC at BNL $\mu_q \ge 0, N_{ au} = 4, 6$ ~ 5 TFlop-years