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Symanzik’s Effective Field Theory

Near continuum a ! Λ−1

QCD, lattice action described by a

continuum effective field theory

Symanzik Action: SSymanzik = S0 + aS1 + a2 S2 + . . .

Operators in EFT respect symmetries of lattice action
e.g. gauge invariance, hypercubic invariance

S0 is the QCD action: S0 = ψ(D/ + m)ψ

Discretization effects enter as higher dimension

operators, e.g., OH4 = cH4 ψDµDµDµγµψ ∈ S2

Hidden log 1/a-dependence: ci = ci(g2)

O(a
n) inχPT – p.3
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Fermion Discretization

Lattice discretization (short range) in χPT?

Naive discretization G−1
o (m = 0) = iγµ

1

a sin(pµa)

Solutions to fermion doubling generally lead to chiral
symmetry breaking at finite a, with m = 0

Build χPT for the Symanzik action
Sharpe and Singleton ’98, Lee and Sharpe ’99

Goldstone mode propagation sensitive to explicit χSB

Each lattice fermion has differing χEFT
Wilson, Twisted mass Wilson, Staggered,
Ginsparg-Wilson (Domain Wall), Hybrid (Mixed Action)
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χSB with Wilson Quarks

Wilson solves the doubling radically with second

derivative G−1
o (m = 0) = iγµ

1

a sin(pµa) + 2

a sin2(pµa/2)

Chiral symmetry recovered only in the continuum limit

Leading Symanzik action contains the Pauli term

S1 = a cSW ψσµνGµνψ

Non-perturbative O(a) improvement renders cSW = 0
(Perturbative improvement schemes deplete size of ci’s)

For unimproved actions must deal with O(a) errors,
instructive to construct χPT.

χSB from Pauli term has the same form as the quark
mass term.

O(a
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Calculation of fπ, fK

• Compare with
experiment.

Chiral Dynamics, Sept. 19, 2006 – p.16

Decay constants fK , fπ

from C.BernardStaggered Fermions

Domain Wall valence

light mπfast,unquenched,
but 4 “tastes” for each flavor, 
issue:

lots of parameters in ChPT

MILC

Preliminary Results: Decay Constants

fπ = 128.6 ± 0.4 ± 3.0 MeV [129.5 ± 0.9 ± 3.5 MeV]

fK = 155.3 ± 0.4 ± 3.1 MeV [156.6 ± 1.0 ± 3.6 MeV]

fK/fπ = 1.208(2)(+ 7
−14) [1.210(4)(13)]

Old results in red are from MILC, PRD 70 (2004) 114501.

• Experimental rate for π→µν + Vud from (superallowed)
nuclear beta decays⇒ fπ = 130.7 ± 0.1 ± 0.4 MeV.

• Result for fK/fπ, plus Vud and K→µν (expt), gives |Vus|.
Following Marciano, PRL 93 (2004) 231803, get

|Vus| = 0.2223(+26
−14) [0.2219(26)]

• PDG (2006), from K→πµν (expt) and (non-lattice) theory,
gives Vus =0.2257(21).

• Could improve Vus determination, even on current data set,
by setting scale with fπ ⇒ scale error eliminated.
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nuclear beta-decay gives

NPLQCD (‘06)

fits F and G which are the same as fit E except the argument of the log2 contribution is
chosen to be M = mπ and M = mK , respectively. These choices lead to a larger variation
in L̃5 and consequently in fK/fπ.

C. Discussion

To determine fK/fπ at the physical point and its associated uncertainty we synthesize the
results of the NLO and NNLO fits. Fitting the lowest two mass points at NLO gives fK/fπ =
1.215 ± 0.002, while fitting the three data points with pion masses below mπ ∼ 500 MeV
gives fK/fπ = 1.218± 0.002. The difference between them is within statistical errors (1.5σ)
but there appears to be a systematic trend in the data which can be attributed to higher
orders in the chiral expansion. As we are unable to fit the full NNLO expression to our
small data set we can estimate the systematic uncertainty in this calculation by looking at
the range of values of fK/fπ that result from the two types of NNLO extrapolation, both
with and without the log2 contribution, including variation in the argument of the NNLO
logarithm and including statistical errors. The range of variation in the NNLO estimate is
an order of magnitude larger than the statistical error found at NLO. We take this NNLO
uncertainty, ∆(fK/fπ) =+0.011

−0.022, to be an estimate of the systematic error in our calculation
due to the truncation of the chiral expansion. We also assign a systematic error due to
fitting procedures, obtained by varying the fitting ranges displayed in fig. 1, which gives
∆(fK/fπ) =+0.000

−0.010. Therefore, our final number is:

fK

fπ
= 1.218 ± 0.002 +0.011

−0.024 , (17)

where the first error is statistical and the second error is systematic, with the extrapolation
error and fitting error added in quadrature. The error in this lattice QCD determination of
fK/fπ is clearly dominated by the systematics.

Using a similar procedure, we arrive at a value for L5:

L5(f
phy
π ) = 5.65 ± 0.02 +0.18

−0.54 × 10−3 , (18)

where the first error is statistical and the second is an estimate of the systematic error
due to omitted higher orders in the chiral expansion. This then scales to give L5(mphy

η ) =
2.22 ± 0.02 +0.18

−0.54 × 10−3 at the η-mass and L5(mphy
ρ ) = 1.42 ± 0.02 +0.18

−0.54 × 10−3 at the
ρ-mass. As stated previously, this is an effective L5 as it includes the higher order strange
quark contribution.

The results for fK/fπ have an additional systematic error due to the non-zero lattice
spacing which we expect to be O((ms − mu)b2). In principle one can reduce this error
by fitting to the appropriate χPT formulas that include the O(g2b2) effects due to flavor-
symmetry breaking in the sea-quark sector [24]. However, our data fit well to the continuum
χPT formulas and hence we do not expect that use of the extended χPT formulas of Ref. [24]
would significantly improve our results at this stage. Our final result is consistent with the
MILC number [1]

fK

fπ
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∣

∣

MILC

= 1.210 ± 0.004 ± 0.013 , (19)

where the first error is statistical and the second is the total systematic error estimated
by MILC. Since our valence quarks are domain-wall fermions, in contrast with the KS
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Preliminary Results: Low Energy Constants

• Also get (in units of 10−3, at chiral scale mη):

2L6 − L4 = 0.5(1)(2) [0.5(2)(4)]

2L8 − L5 = −0.1(1)(1) [−0.2(1)(2)]

L4 = 0.1(2)(3) [0.2(3)(3)]

L5 = 2.0(3)(2) [1.9(3)(3)]

where errors are statistical & systematic.

• Also look at various chiral limit quantities:

• Define fχ,2 as decay constant in the two-flavor chiral

limit: mu, md → 0; ms fixed at physical value.

• Similarly fχ,3 is decay constant in the three-flavor chiral

limit: mu, md, ms → 0.

• fχ,3 is more poorly determined since it requires longer

extrapolation m′

s → 0.
Chiral Dynamics, Sept. 19, 2006 – p.21
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Nucleon axial charge gA 
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FIG. 1: Nucleon axial charge gA as a function of the pion
mass. Lattice data are denoted by squares (smaller volume)
and a triangle (larger volume), the lowest smaller volume
point is displaced slightly to the right for clarity, and ex-
periment is denoted by the circle. The heavy solid line and
shaded error band show the χPT fit to the finite volume data
evaluated in the infinite volume limit, and the lines below it
show the behavior of this chiral fit in boxes of finite volume
L3, as L is reduced to 3.5, 2.5, and 1.6 fm respectively.

tween two nucleons, two Deltas, or a nucleon and Delta,
respectively), and a counterterm C.

Figure 1 shows the lattice data and our fit to it using
finite volume χPT. The χPT function was fit to each
data point at the corresponding mass and finite volume,
and the parameters of the fit were then used to determine
the infinite volume axial charge. In the absence of lattice
calculations of gA at still lower pion masses, it is not
presently possible to do a complete extrapolation from
lattice measurements alone. Hence, following Ref. [20],
we performed a constrained fit and the heavy solid curve
is determined by setting fπ, m∆ −mN , and gN∆ to their
physical values[20] and performing a least squares fit for
gA, g∆∆, and C. The error band arising from this three
parameter fit is shown in Fig. 1 and the resulting value
for the axial charge at the physical pion mass is gA(mπ =
140 MeV) = 1.212±0.084. Given the smooth behavior of
the chiral fit and the small magnitude of the chiral logs,
it is clear that the extrapolation for the axial charge is
quite benign, and that the lattice data is extrapolating
convincingly towards experiment.

Although there has been concern that gA is particu-
larly sensitive to finite volume effects[6, 7, 22], Fig. 1
shows these effects are well under control and introduce
negligible errors for our volumes. The light curves show
the behavior expected from χPT in volumes L3 with L of
3.5, 2.5, and 1.6 fm. Note that at the lightest mass, our
3.5 and 2.5 fm results are statistically indistinguishable,
consistent with the χPT change of less than 1 %, and
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FIG. 2: Comparison of all full QCD calculations of gA, as
described in the text. The solid line and error band denote
the infinite volume χPT fit of Fig. 1 and its continuation to
higher masses is indicated by the dotted line.

that the corrections applied in correcting our data from
2.5 or 3.5 fm to infinity in the χPT fit are quite small. At
heavier masses, although the truncated χPT expansion is
not quantitatively reliable, the finite volume effects are
physically suppressed. The order of magnitude of the
corrections from 1.6 to 2.5 fm is also consistent with the
fact that quenched calculations[6] have shown that in-
creasing the box length from 1.2 fm to 2.4 fm increases
gA by the order of 10% for pion masses ranging from 550
to 870 MeV, and unquenched calculations for 770 MeV
pions[7] have shown that increasing L from 1.1 to 2.2 fm
increases gA by 20%.

In addition to the statistical error arising from fitting
the parameters gA, g∆∆, and C, several systematic errors
may be estimated. The three constrained parameters can
be calculated directly on the lattice and the linear re-
sponse of our chiral fit to varying each of of them shows
very weak dependence. Calculation of fπ on our lattices
yields 92.4 MeV ± 3%, corresponding to an error in gA

of 0.10%, and a rough calculation of m∆ − mN , (which
can be improved) with 18% uncertainty corresponds to
an error of 0.29%. Although we have not yet calculated
gN∆, it should be calculable to 20%, corresponding to
an error in gA of 0.13 %. Thus the total error from the
constrained parameters is much less than a percent. The
error in the lattice scale, which can shift all masses by 2%,
will induce a negligible effect since the curve in Fig. 1 is so
flat. An alternative lattice renormalzation method based
on calculating the ratio of the axial and vector charges,
which should have the same renormalization constant in
the chiral limit, yields discrepancies less than 2% for the
heaviest masses and statistically indistinguishable results
at lighter masses, suggesting that the renormalization er-

LHPC ‘05

Staggered Sea quarks
Domain Wall valence

Beane & Savage, ‘04 Detmold & Lin, ‘05

sector.
In this paper we compute the leading finite-volume dependence of the axial-vector charge

of the nucleon in heavy-baryon χPT (HBχPT), including the ∆-resonance as an explicit
degree of freedom. The finite-volume corrections to the axial-vector charge of the nucleon
depend on the ∆-nucleon mass splitting and on the chiral-limit values of the nucleon, ∆-
nucleon and ∆ axial-vector charges. Traditionally, the nucleon and ∆ axial couplings have
been estimated using the spin-flavor SU(4) symmetry of the quark model, and in recent
work [34] the authors have conjectured the chiral-limit values of these couplings. We point
out that lattice QCD measurements of finite-volume effects in the axial-vector charge (and
mass) of the nucleon will provide a clean determination of the nucleon and ∆-resonance
axial-vector couplings.

II. THE NUCLEON AXIAL CHARGE IN A FINITE VOLUME

At one-loop level, the matrix elements of the axial-vector current between nucleons of
flavor “a” and “b” may be written as

〈Nb| jµ,5 |Na〉 = [ Γab + cab ] 2U bSµUa , (1)

where cab represents a counterterm with a single insertion of the light-quark mass matrix.
The leading-order Lagrange density describing the interactions between the pions and the
low-lying baryons is

L = 2gA NSµAµN + g∆N

[

T
abc,ν

Ad
a,ν Nb εcd + h.c.

]

+ 2g∆∆ T
ν
SµAµTν . (2)

This Lagrange density gives rise to the diagrams in Fig. 1, which are the leading one-loop
contributions to the axial-current matrix elements. In the isospin limit one finds [35]

ΓNN = gA − i
4

3f 2

[

4g3
A J1(mπ, 0, µ) + 4

(

g2
∆NgA +

25

81
g2
∆Ng∆∆

)

J1(mπ, ∆, µ)

+
3

2
gA R1(mπ, µ) −

32

9
g2
∆NgA N1(mπ, ∆, µ)

]

(3)

where J1(m, ∆, µ), R1(m, µ) and N1(m, ∆, µ) are loop integrals defined in the Appendix and
∆ is the ∆-nucleon mass splitting. All Γ[ε] poles have been subtracted. They —and their
associated counterterm cNN— need not concern us here as the finite-volume corrections do
not depend on the ultraviolet behavior of the theory at leading one-loop order. All of the
couplings (including f) in eq. (3) take their chiral-limit values.

Using the notation δL (ϑ) ≡ ϑ(L) − ϑ(∞) to denote the finite-volume corrections to the
quantity ϑ, and the results obtained in the Appendix, the finite-volume corrections to ΓNN

are

δL (ΓNN) ≡ δgA =
m2

π

3π2f 2

[

g3
AF1 +

(

g2
∆NgA +

25

81
g2
∆Ng∆∆

)

F2 + gAF3 + g2
∆NgAF4

]

,(4)

where

F1(m, L) =
∑

n!=0

[

K0(mL|n|) −
K1(mL|n|)

mL|n|

]

;

3
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FIG. 1: One-loop graphs that contribute to the matrix elements of the axial current in the nucleon.
A solid, thick-solid and dashed line denote a nucleon, a ∆-resonance, and a pion, respectively. The
solid-squares denote an axial coupling given in eq.(2), while the crossed circle denotes an insertion

of the axial-vector current operator. Diagrams (a) to (e) are vertex corrections, while diagrams (f)
and (g) give rise to wavefunction renormalization.

F2(m, ∆, L) = −
∑

n!=0

[

K1(mL|n|)
mL|n|

+
∆2 − m2

m2
K0(mL|n|)

−
∆

m2

∫ ∞

m
dβ

2β K0(βL|n|) + (∆2 − m2)L|n| K1(βL|n|)√
β2 + ∆2 − m2

]

;

F3(m, L) = −
3

2

∑

n!=0

K1(mL|n|)
mL|n|

;

F4(m, ∆, L) =
8

9

∑

n!=0

[

K1(mL|n|)
mL|n|

−
πe−mL|n|

2∆L|n|
−

∆2 − m2

m2∆

∫ ∞

m
dβ

β K0(βL|n|)√
β2 + ∆2 − m2

]

,(5)

and Kα(z) is a modified Bessel function of the second kind. The extension of this result to
PQQCD, including strong isospin violation, is straightforward to extract from Ref. [36] using
the results of this paper. We do not give an asymptotic expression for δgA as we do not find
it useful for L < 10 fm for the pion masses of interest, however, it may be found by taking
the appropriate asymptotic limits of eq. (5) using technology developed in Ref. [26, 33]. One
sees in eq. (5) that, as mπL → 0, the Fi diverge, signaling the transition to the ε-regime
and the necessity of a non-perturbative resummation.
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solid-squares denote an axial coupling given in eq.(2), while the crossed circle denotes an insertion

of the axial-vector current operator. Diagrams (a) to (e) are vertex corrections, while diagrams (f)
and (g) give rise to wavefunction renormalization.
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−
∆

m2

∫ ∞

m
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β K0(βL|n|)√
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and Kα(z) is a modified Bessel function of the second kind. The extension of this result to
PQQCD, including strong isospin violation, is straightforward to extract from Ref. [36] using
the results of this paper. We do not give an asymptotic expression for δgA as we do not find
it useful for L < 10 fm for the pion masses of interest, however, it may be found by taking
the appropriate asymptotic limits of eq. (5) using technology developed in Ref. [26, 33]. One
sees in eq. (5) that, as mπL → 0, the Fi diverge, signaling the transition to the ε-regime
and the necessity of a non-perturbative resummation.
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sector.
In this paper we compute the leading finite-volume dependence of the axial-vector charge

of the nucleon in heavy-baryon χPT (HBχPT), including the ∆-resonance as an explicit
degree of freedom. The finite-volume corrections to the axial-vector charge of the nucleon
depend on the ∆-nucleon mass splitting and on the chiral-limit values of the nucleon, ∆-
nucleon and ∆ axial-vector charges. Traditionally, the nucleon and ∆ axial couplings have
been estimated using the spin-flavor SU(4) symmetry of the quark model, and in recent
work [34] the authors have conjectured the chiral-limit values of these couplings. We point
out that lattice QCD measurements of finite-volume effects in the axial-vector charge (and
mass) of the nucleon will provide a clean determination of the nucleon and ∆-resonance
axial-vector couplings.

II. THE NUCLEON AXIAL CHARGE IN A FINITE VOLUME

At one-loop level, the matrix elements of the axial-vector current between nucleons of
flavor “a” and “b” may be written as

〈Nb| jµ,5 |Na〉 = [ Γab + cab ] 2U bSµUa , (1)

where cab represents a counterterm with a single insertion of the light-quark mass matrix.
The leading-order Lagrange density describing the interactions between the pions and the
low-lying baryons is

L = 2gA NSµAµN + g∆N

[

T
abc,ν

Ad
a,ν Nb εcd + h.c.

]

+ 2g∆∆ T
ν
SµAµTν . (2)

This Lagrange density gives rise to the diagrams in Fig. 1, which are the leading one-loop
contributions to the axial-current matrix elements. In the isospin limit one finds [35]

ΓNN = gA − i
4

3f 2

[

4g3
A J1(mπ, 0, µ) + 4

(

g2
∆NgA +

25

81
g2
∆Ng∆∆

)

J1(mπ, ∆, µ)

+
3

2
gA R1(mπ, µ) −

32

9
g2
∆NgA N1(mπ, ∆, µ)

]

(3)

where J1(m, ∆, µ), R1(m, µ) and N1(m, ∆, µ) are loop integrals defined in the Appendix and
∆ is the ∆-nucleon mass splitting. All Γ[ε] poles have been subtracted. They —and their
associated counterterm cNN— need not concern us here as the finite-volume corrections do
not depend on the ultraviolet behavior of the theory at leading one-loop order. All of the
couplings (including f) in eq. (3) take their chiral-limit values.

Using the notation δL (ϑ) ≡ ϑ(L) − ϑ(∞) to denote the finite-volume corrections to the
quantity ϑ, and the results obtained in the Appendix, the finite-volume corrections to ΓNN

are

δL (ΓNN) ≡ δgA =
m2

π

3π2f 2

[

g3
AF1 +

(

g2
∆NgA +

25

81
g2
∆Ng∆∆

)

F2 + gAF3 + g2
∆NgAF4

]

,(4)

where

F1(m, L) =
∑

n!=0

[

K0(mL|n|) −
K1(mL|n|)

mL|n|

]

;

3

+

L

L =∞

•expt.(see talks by Negele, Orginos) 
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VII. NRQCD

e+e− → positronium (NRQED)

pe− → Hydrogen (NRQED)

bb̄, cc̄ → Υ, J/Ψ (NRQCD)

tt̄ → e+e− → tt̄ (NRQCD)

NN → deuteron (few nucleon EFT)

(66)

ψ(x) =
∑

p

eip·xψp(x) (67)

i∂µψp(x) ∼ (mv2)ψp(x)

LNRQCD = Lultrasoft + Lpotential + Lsoft (68)

VIII. SCET

Process Non-Pert. functions Utility

B̄0 → D+π−, . . . ξ(w), φπ study QCD

B̄0 → D0π0, . . . S(k+
j ), φπ study QCD

B → Xendpt
s γ f(k+) new physics, measure f

B → Xendpt
u 'ν f(k+) measure |Vub|

B → π'ν, . . . φB(k+), φπ(x), ζπ(E) measure |Vub|, study QCD

B → γ'ν, γ'+'− φB measure φB, new physics

B → ππ, Kπ, . . . φB, φπ , ζπ(E) new physics, CP violation,

φK̄ , ζK(E) study QCD

B → K∗γ, ργ φB, φK , ζ⊥K∗(E) measure |Vtd/Vts|
φρ, ζ⊥ρ (E)

B → Xs'+'− f(k+) new physics

e−p → e−X fi/p(ξ), fg/p(ξ) study QCD , measure p.d.f’s

pp̄ → X'+'− fi/p(ξ), fg/p(ξ) study QCD

e−γ → e−π0 φπ measure φπ

γ∗M → M ′ φM , φM ′ study QCD

e+e− → jets study universality

e+e− → J/ΨX study QCD
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Basic Building Blocks in SCET are collinear “parton” fields

Q 〈
p
∣∣∣(ξ̄nW )n̄/δ(w−−P̂−)(W †ξn)

∣∣∣p
〉

= fq(ω−/p−)

matrix elements of these building blocks probe properties of hadrons

eg. Fourier Transform of standard twist-2 quark p.d.f
}

χn }

χn,ω−
parton field with 
momentum 

(can be derived starting from QCD and removing hard fluctuations)

ω−

ω−

forward m.elt.

〈
p
∣∣∣tr B⊥µ B

µ
⊥,ω

∣∣∣p
〉

= fg(ω−/p−)gluon p.d.f.

twist-2 pion
distribution

twist-2 proton
distribution

〈
π(pπ)

∣∣∣χ̄n n̄/γ5 χn,ω

∣∣∣0
〉

= φπ

(ω−

p−π

)n
µ

!

••

•
hard interaction
 creates a pion

or proton

〈
p
∣∣∣χ̄i

n,ωχ̄j
n,ω′ χ̄k

nΓijk
∣∣∣0

〉
= φp

(ω−

p−
,
ω′−

p−

)

get GPD from:
〈
p
∣∣∣χ̄n,ωn̄/χn,ω′

∣∣∣p′
〉



At  leading order SCET  reproduces well known 
factorization theorems.  

Systematically improvable.  So we can attack power
corrections in a whole host of processes.  

L = L(0) + L(1) + L(2) + . . .

Soft

ΛQCD

Qnµ + O(ΛQCD)

A field theory for
& Collinear

interactions



Fπ(Q2) = f2
π

Q2

∫ 1
0dxdy H(x, y) φπ(x)φπ(y) F p

1 (Q2) =
f2

p

Q2

∫
dxidyj H(xi, yj) φp(xi)φp(yj)
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Figure 6: The JLab 6 GeV data on the ratio of proton form factors, F p
2 /F p

1 , and the projected
measurements at 12 GeV. Perturbative QCD implies that F p

2 /F p
1  1/Q2 for Q2  ∞ . The graph

illustrates the potential of form factor measurements at 12 GeV to discriminate between GPD
models. Shown are the predictions of a Regge–based GPD model [Gu04] and a model based on soft
Gaussian nucleon wavefunctions modified by a short–range interaction [St03d].

could be measured up to 14 GeV2, probing the proton’s structure at distances as small as 0.1 fm.
Knowledge of neutron form factors at high Q2 is equally important. With the 12 GeV Upgrade,
the neutron magnetic form factor could be measured up to about 14 GeV2, and its electric form
factor up to 8 GeV2.

The 12 GeV form factor measurements will provide crucial constraints on the first moments of
the GPD’s and their t–dependence. Fig. 6 demonstrates the power of form factor measurements to
discriminate between GPD models. An equally important consideration is that form factors can be
measured up to high |t| (= Q2 for elastic scattering), while direct measurements of the GPD’s in
exclusive processes are restricted to |t| ≤ 1 GeV2. Thus, form factor measurements will continue to
provide our only source of information about the quark distributions at small transverse distance
scales.

GPD’s in deeply–virtual Compton scattering. GPD’s can be measured in certain ex-
clusive processes in eN scattering, namely Deeply Virtual Compton Scattering (DVCS) and Deeply
Virtual Meson Production (DVMP). At large Q2 and scattering energy, these processes are dom-
inated by the scattering from a single quark or antiquark, whose emission and absorption by the
nucleon is described by the GPD’s, see Fig. 7. The amplitude of the “hard” scattering process at
the quark level can be calculated in perturbative QCD (factorization). The measured cross sec-
tions and spin asymmetries can then be used to extract the “soft” information about the nucleon
contained in the GPD’s.

In the reaction eN  eN  at JLab energies, photons are produced not only via DVCS from the
nucleon, but also (and even more copiously) via the electromagnetic Bethe-Heitler (BH) process.
The two processes interfere, and the BH term, which is completely determined by the well-known

12

Q2F p
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Figure 11: Projected measurements of the pion electromagnetic form factor, Fπ(Q2), made possible
by the proposed 12 GeV Upgrade. Also shown are various model predictions for its behavior in the
region Q2  few GeV2. Perturbative QCD predicts Fπ  1/Q2 for Q2  ∞ .

Valence quark structure. One of the most fundamental properties of the nucleon is the struc-
ture of its valence quark distributions. Valence quarks are the irreducible kernel of each hadron,
responsible for its charge, baryon number and other macroscopic quantum numbers. In deep–
inelastic scattering at average values of x, the valence quarks are “dressed” by quark-antiquark
pairs produced by non-perturbative effects at large distance scales (  1 fm), as well as by gluon
bremsstrahlung at short distances. At higher x values these qq̄ contributions drop away, and the
physics of the valence quarks is cleanly exposed [Is99].

While deep inelastic scattering and other experiments have provided a detailed map of the
nucleon’s quark distributions at average (  0.3) and small values of x, there has never been an
experimental facility capable of accurately measuring the cross sections throughout the “deep va-
lence region” (x > 0.5) where the three basic valence quarks of the proton and neutron dominate
the wavefunction. This represents a glaring gap in our knowledge of nucleon structure, especially
since there are qualitatively different predictions for the quark spin and flavor distributions in the
x  1 limit. The 12 GeV Upgrade will for the first time provide the necessary combination of high
beam intensity and reach in Q2 to allow us to map out the valence quark distributions at large
x with high precision. These measurements will have a profound impact on our understanding of
the structure of the proton and neutron. They will also provide crucial input for calculating cross
sections for hard processes in high–energy hadron–hadron colliders such as the LHC, in searches
for the Higgs boson or for physics beyond the Standard Model.

Valence quark spin distributions at large x. The 12 GeV Upgrade will allow for mea-
surements of inclusive spin structure functions at large x with unprecedented precision. As an
example, Fig. 12 shows the neutron polarization asymmetry, An

1 , which is determined by a ratio
of spin-dependent to spin-averaged quark distributions. Most dynamical models predict that in
the limit where a single valence up or down quark carries all of the nucleon’s momentum (x  1),
it will also carry all of the spin polarization (i.e., An

1  1 as x  1). Existing data on An
1 end

before reaching the region of valence quark dominance, and show no sign of making the predicted

17

pion
proton

+ . . . + . . .

SCET can be used to 
systematically compute these 
(+...) power corrections

As we learned, so far Q^2  was not big enough, but with 12 
GeV upgrade these corrections become quite interesting



Endpoint Singularites

which make them ill-defined, even in dimensional regularization. In previous computa-

tions, it has been argued that these pinch singularities should be dropped in evaluating

box graphs at any order in v [9, 11, 12]. Pinch singularities are also a problem for the

method of regions [13]. A direct application of the method of regions for d4k leads

to ill-defined integrals, so it should only be applied to NRQCD after first doing the

energy integrals. The zero-bin subtraction modifies the soft box graphs so that pinch

singularities are absent, and the graphs are well defined.

2. The zero-bin subtraction automatically implements the previously studied pullup

mechanism in NRQCD [14, 15], which was shown to be a necessary part of the defini-

tion of this type of theory with multiple overlapping low energy modes. Through the

pullup, infrared (IR) divergences in soft diagrams are converted to ultraviolet (UV)

divergences and contribute to anomalous dimensions.

3. There is a similar pullup mechanism at work in SCET for collinear diagrams. The

anomalous dimensions of the SCET currents for endpoint B → Xsγ and B → Xu"ν̄

were computed in Ref. [1, 2] from the 1/ε and 1/ε2 terms. Some of these terms in the

collinear graphs are actually infrared divergences. The zero-bin subtraction converts

these infrared divergences to ultraviolet divergences so that IR-logs in QCD can be

resummed as UV-logs in the effective theory. This formally justifies the results used

for anomalous dimensions in these computations, and in subsequent work for other

processes with similar anomalous dimensions eg. [16, 17, 18, 19, 20, 21].

4. In high energy inclusive production such as γ∗ → qq̄g, there is a potential double

counting at the corners of the Dalitz plot in SCET, which is resolved by properly

taking into account the zero-bin in both fully differential and partially integrated

cross sections.

5. In high energy exclusive production, such as γ∗ → πρ or γ∗ → ππ, there are un-

physical singularities in convolution integrals of some hard kernels with the light-cone

wavefunctions φπ(x). For example

∫ 1

0

dx
φπ(x)

x2
,

(2)

which is divergent at x → 0 if φπ(x) vanishes linearly as x → 0. The same is true for

exclusive light meson form factors at large Q2, as well as processes like B → π"ν̄ and

B → ππ for Eπ " ΛQCD. The zero-bin subtraction implies that these kernels must be

treated as a distribution we call ø, and have a finite convolution with φπ(x):

∫ 1

0

dx
φπ(x)

x2
→

∫ 1

0

dx
φπ(x)

(x2)ø
=

∫ 1

0

dx
φπ(x) − φπ(0) − xφ′

π(x)

x2
< ∞ . (3)

4

=
∫

0

dx

x
=?

At subleading order one often 
encounters endpoint singularities

3

where the argument on the left-hand side indicates the
momentum being averaged. Averaging over k 2 does not
yield independent information.

Using the twist-3 and -4 amplitudes, we can write the
F2(Q2) form factor in the following factorized form,

F2(Q2) =
 

[dx][dy]
 

x3  4(x1, x2, x3)T  ({x}, {y}) (7)

+ x1  4(x2, x1, x3)T  ({x}, {y})
 
 3(y1, y2, y3) ,

where {x} = (x1, x2, x3). Let us see how to extract the
hard part, T , in Fig. 1.

We use the nomenclature and strategy of Ref. [11] by
calling the top quark line 1, the middle 2, etc., without
committing them to a specific flavor. Given the spin-
isospin structure of the initial and final state nucleon
wave functions, we assume that the first and third quarks
have spin up and the second one spin down. Call the
amplitudes Ti when the electromagnetic current acts on
particle i. Clearly because of symmetry, T3 can be ob-
tained from T1 by a suitable exchange of variables (see
below). Using the S U (6) wave function and the quark
charge weighting, we find the flavor structure of the hard
part for the proton,

T p({x}, {y}) =
2eu

3
T1 +

eu + ed

3
(T2 + T3)

+
eu

3
(T  

1 + T  
3) +

ed

3
T  

2 . (8)

where we have omitted the argument of Ti on the right-
hand side, and T  

i has y1 and y3 interchanged. For the
neutron, u  d.

According to the above convention, we find the contri-
bution to T1 from Fig. 1,

T fig.1
1  ({x}, {y}) = −

M 2C2
B

Q6 (4π  s)2 1
x̄2

1x3ȳ1y2
3

,

T fig.1
1  ({x}, {y}) = −

M 2C2
B

Q6 (4π  s)2 1
x̄1x2

3ȳ1y2
3

, (9)

where here and everywhere x̄  1 − x. CB = 2 /3
is a color factor and the contribution from the twist-4
wave functions of the final-state nucleon has also been in-
cluded. The corresponding contribution to T3 can be ob-
tained by interchanging the labels, T fig.1

3  = T fig.1
1  (1  3),

T fig.1
3  = T fig.1

1  (1  3). This in fact is a general feature.
To find a complete expression for the hard part, we

must calculate perturbative diagrams displayed in Fig.
2. A straightforward evaluation yields,

T1  ({x}, {y}) =
M 2C2

B

Q6 (4π  s)2 x3(G11 − G12) , (10)

T1  ({x}, {y}) =
M 2C2

B

Q6 (4π  s)2 [−x1G11 − x̄1G12] ,

T2  ({x}, {y}) =
M 2C2

B

Q6 (4π  s)2

× [x3(G22 −  G21 −  G22) − x̄3G21] ,

FIG. 2: Perturbative diagrams contributing to the hard part
of F2 . Mirror symmetric graphs have to added.

and T2  = T2  (1  3), T3  = T1  (1  3), and T3  =
T1  (1  3). The functions Gij are defined as

G11 =
1

x1x2x2
3y2y2

3 ȳ3
,

G12 =
1

x2
3x̄2

1y3ȳ2
1

+
1

x2x3x̄2
1y2ȳ2

1

+
1

x̄2
1x2

3ȳ1y2
3

−
1

x2x2
3x̄1y2y3ȳ3

,

G21 =
1

x2
1x3x̄3y2

1 y3ȳ1
,

G22 =
1

x1x2
3x̄2y2

3 ȳ2
+

1
x2

1x2
3y1y3ȳ1

, (11)

and  G21 = G21(1  3),  G22 = G22(1  3).
To determine the normalization for F2(Q2), we need to

know the light-cone distribution amplitudes  3,  4 and
 4, which can only be obtained by solving QCD nonper-
turbatively. However, the scale evolution of these ampli-
tudes selects at the asymptotically large Q2 the leading
component with a fixed small-xi behavior. For example,
the asymptotic form of  3 is x1x2x3 [11], whereas that of
 4 is x1x2. In Ref. [29] a set of phenomenological ampli-

tudes satisfying these asymptotic constraints have been
proposed on a basis of conformal expansion.

With the above wave functions, the integrals over mo-
mentum fractions xi and yi have logarithmic singulari-
ties, indicating that the factorization breaks down when
one of the quarks in the wave function becomes soft
[19, 20]. It has been suggested that the higher-order
PQCD resummation, or the Sudakov form factor, sup-
presses the contribution at small-x and provides an ef-
fective cut-o  for the integrals at x   2 /Q2, where
 is a soft scale related to the size of the nucleon

[21, 22, 23, 31, 32]. The outcome is that the xi integra-
tions contribute an extra Q2-dependent factor ln2 Q2 /  2,
compared to F1(Q2). Physically, the end-point diver-
gencies indicate that quarks with di  erent rapidity con-
tribute equally to the hard scattering. Since the con-
tribution from quarks with very large rapidity (small-

Is this a breakdown of factorization?

Resolution: need rapidity,      , dependent distribution functions
φπ(x, ζ)

ζ
Manohar, I.S. (‘06)

similar thing is known to happen for k⊥ dependent p.d.f ’s
fq(x, k⊥, ζ) for a review see Collins  (hep-ph/0304122)

4

x) is suppressed by the Sudakov form factor, this Q2-
dependence reflects simply the kinematic broadening of
the quark (and gluon) rapidity range with increasing nu-
cleon momentum.

For an estimate, we use asymptotic wave functions [29],

 3 = 120 x1x2x3fN ,  4 = 12 x1x2(fN +  1) ,
 4 = 12 x1x3(fN −  1) , (12)

with fN = 5.3 · 10 − 3 GeV2 and  1 = −2.7 · 10 − 2 GeV2.
With a choice of  = (0.3 GeV)2, Q6F p

2 (Q2) is roughly
0.6 GeV6 for Q2 = (5 − 20) GeV2, about 1 /3 of the
Je  erson Lab data at Q2 = 5 GeV2 [3]. Of course, to
get a more realistic PQCD prediction in this regime, one
must have the quark distribution amplitudes appropriate
at this scale. However, from the comparison between the
data and PQCD predictions for F1(Q2) [8], we believe
that asymptotic PQCD is unlikely to be the dominant
contribution to F2(Q2) at Q2 = 3 − 5 GeV2: one must
take into account higher-order corrections and higher-
twist e  ects.
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FIG. 3: JLab data plotted in terms of the leading PQCD
scaling. The low, middle, and upper data points correspond
to  = 200, 300, 400, respectively.

Coming back to the scaling behavior of the ratio
F2(Q2) /F1(Q2) for which the Je  erson Lab data has
stimulated much discussion in the literature. PQCD
predicts the power-law scaling 1 /Q2. With the new
result for F2(Q2), we can determine its scaling up to
logarithmic accuracy. The strong coupling constant in
the ratio simply cancels. The wave function evolution
yields a factor of  32 / (9  )

s (Q2) for F1(Q2) and  8 / (3  )
s (Q2)

for F2(Q2) from the leading non-vanishing contribution,
where  = 11 − 2nf /3. Thus PQCD predicts that
(Q2 / ln2 + 8 / (9  ) Q2 /  2)(F2(Q2) /F1(Q2)) scales as a con-
stant at large Q2, 8 / (9  )  1. Surprisingly, the Je  erson
Lab data plotted this way (ignoring the small 8 / (9  ))
exhibits little Q2 variation for a range of choices of  
as shown in Fig. 3. Since we do not expect the asymp-
totic predictions for F1,2(Q2) to work at these Q2, the

observed consistency might be a sign of precocious scal-
ing as a consequence of delicate cancellations in the ratio.
A more detailed discussion on this issue along with more
thorough phenomenological analyses will be given in a
separate publication.
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Test SCET in B-Physics where Q is a bit bigger 
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Figure 3: The kinematic coverage in momentum transfer, Q2, as a function of the mass of (M)
and energy transferred to ( ) the target by the electron. This plot conveniently identifies the deep
inelastic scattering regime as a triangle bounded on the right by the beam energy. The fraction of
the proton’s momentum carried by the struck quark (given by the Bjorken variable, x) appears as
radial lines on the plot. From this figure we can infer the range of x and Q2 accessible to deep–
inelastic eN scattering with the 12 GeV Upgrade of CEBAF and the large enhancement relative
to the original CEBAF energy of 4 GeV.

QCD degrees-of-freedom become visible. Kinematically this regime has been accessible before, for
example at SLAC. An essential feature of the Upgrade is that it provides not only the energy but
also the luminosity and polarization required to study low–rate processes such as deep–inelastic
scattering at large x, exclusive and semi-inclusive reactions, and measurements of polarization
asymmetries. As an example of the new reach afforded by the Upgrade, Fig. 3 shows the kinematic
coverage for measurements in the deep–inelastic region. The accelerator design will be comple-
mented by a set of detectors specifically designed to cover this kinematic region. Together, they
will support a broad range of inclusive, semi-inclusive and exclusive measurements that will pro-
duce a comprehensive picture of the quark and gluon structure of the nucleon. No other facility
presently available or planned offers comparable capabilities for carrying out the envisaged research
program.

3D quark/gluon imaging of the nucleon. It has long been known that the form factors
of elastic eN scattering at low Q2 can be represented as the Fourier transform of the spatial
electric charge and current density in the Breit frame. Recently it was realized that this idea
can be extended to much more general distributions of quarks and gluons in QCD. These are the
so-called generalized parton distributions (GPD’s), which unite the concept of the elastic form
factor with that of the quark and antiquark distributions measured in inclusive eN scattering at
large Q2 [Co97, Ji97, Ra97]; see Refs. [Di03, Be05] for recent reviews. The GPD’s describe the
amplitudes for a fast–moving nucleon to emit and absorb a quark (or antiquark). They depend on
the longitudinal momentum fractions of the quark, as well as on the invariant momentum transfer
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Figure 13: Projected measurement of the ratio of d– and u–quark momentum distributions,
d(x)/u(x), at large x, made possible by the 12 GeV Upgrade. The shaded band represents the
uncertainty in existing measurements due to nuclear Fermi motion effects.

Collaboration, most of the experiments so far have focused on measuring the total quark and
gluon contribution to the nucleon spin in inclusive deep–inelastic scattering, initiating numerous
theoretical investigations of the role of gluon topology and the U(1) axial anomaly in hadron
structure [Ba02, An95]. Following on these results, in recent years the focus has been moving to
the investigation of specific aspects of the nucleon spin, such as the flavor asymmetries of sea quark
distributions and quark transverse spin (transversity) distributions.

Properties such as these are of particular interest, as they are free of contributions involving
the axial anomaly, which affect the flavor–singlet quark spin distributions. They can therefore be
related more directly to conventional models of nucleon structure. For example, the non-relativistic
quark model, the meson cloud model, and the chiral quark–soliton model, make very different pre-
dictions for the flavor asymmetry of the polarized sea quark distributions. The difference between
transversely and longitudinally polarized quark distribution (transversity and helicity) is a measure
of the relativistic nature of the motion of quarks in the nucleon – see Ref. [Ba01] for a review. The
quark transversity distributions are also intimately related to the chiral properties of QCD, being
entirely due to chirally odd (helicity–flipping) effective interactions induced by the spontaneous
breaking of chiral symmetry in QCD.

The mapping of the flavor dependence of polarized valence and sea quark distributions and
the determination of the quark transversity distributions require semi-inclusive measurements, in
which the detected final–state hadron reveals information about the spin, flavor, and charge of
the “struck” quark participating in the deep–inelastic process. The 12 GeV Upgrade will provide
a unique opportunity to perform semi-inclusive measurements with high precision over a wide
kinematic range, producing a detailed picture of the spin structure of the nucleon. Furthermore,
semi-inclusive scattering allows us to probe the transverse momentum distribution of quarks in
the nucleon via the azimuthal distribution of final–state hadrons. The study of these effects has
made significant progress lately [Co93, Br02, Co02, Bu02a, Po03a] and is one of the frontiers of
present research in QCD. Finally, the wide kinematic coverage of JLab at 12 GeV provides a
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DIS  for large x

m2
X =

Q2(1− x)
x

+ m2
p

For x ∼ O(1), m2
X ∼ Q2, standard DIS

For x ∼ 1− Λ/Q, Λ2 # m2
X # Q2, endpoint DIS

For x ∼ 1− Λ2/Q2, Λ2 ∼ m2
X , not deep inelastic

Jlab at 12 GeV may well probe this region,
will there be surprises?

a Jet!
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Recent work in SCET

Factorization theorem clarified 
(role of nonperturbative effects)

•

• Resum large logs, αs ln(1− x), directly in momentum space.
(No Landau pole problem.)



The END


