J/ψ at JLab 12 GeV

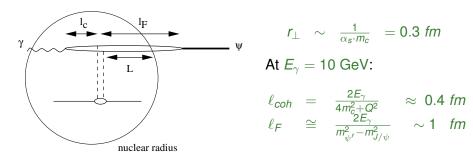
E.Chudakov¹

¹JLab

EIC Workshop, Rutgers March 2010

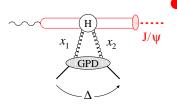
E.Chudakov EIC, Rutgers March 2010 J/ψ at JLab 12 GeV

J/ψ photoproduction at 12 GeV

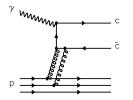

Charmed particles have been studied extensively since 1974

What is special about J/ψ photoproduction at 12 GeV? Can we use J/ψ as a probe for the nucleon/nucleus?

- Photoproduction of close to threshold (gluon GPD at high *x*)
- Double-spin asymmetry (polarized gluon GPD at high x)
- Interaction of $J/\psi(1S)$ a "long living" particle with matter


J/ψ photoproduction at 10 GeV: Scales

- No coherent production on heavy nucleus: $\ell_{coh} \ll R_A$
- No shadowing effects: $\ell_{coh}, \ell_F < R_A$
- VMD not applicable: $\ell_{coh} < 1 \text{ fm}$



J/ψ photoproduction at 10 GeV: Dynamical models

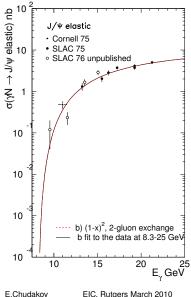
Partonic soft mechanism Frankfurt..2002..

- Well tested at high energies
- 2-gluon formfactor: $\frac{d\sigma_{\gamma P \to J/\psi p}}{dt} \propto (1 - t/1.0 GeV^2)^{-4}$
- 10 GeV: gluons $x_1 \neq x_2 \sim 1$ $|t_{min}| > 0.4$ GeV/c

- Hard scattering mechanism Brodsky..., 2001
 - 10 GeV: Quark counting rules
 - 2-gluon exchange $\propto (1 x)^2$
 - 3-gluon exchange $\propto (1-x)^0$

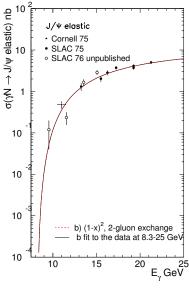
Unique probe of small-size gluon configurations in proton

E.Chudakov


EIC, Rutgers March 2010

 J/ψ at JLab 12 GeV

J/ψ photoproduction at 10 GeV: Dynamical models


Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

Brodsky 2001: 3-gluon exchange alone does not fit the data

J/ψ photoproduction at 10 GeV: Dynamical models

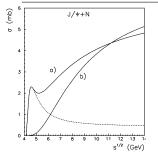
Both models fit the data at 11-25 GeV:

- Frankfurt 2003
- Brodsky 2001: 2-gluon exchange (red curve)

Subthreshold experiment E-03-008

No J/ ψ observed Spectral functions $\otimes \sigma$ not large

ψ N Interaction: Physics


- Small size color dipole r_⊥ ~ 1/α_s·m_c = 0.3 fm interaction ∝ color dipole moment ∝ r_{cc̄} (small)
 ⇔ color transparency, σ^{ψN}_{tot} ≪σ^{πN}_{tot} ≈30 mb
- Low energy: attractive potential (Luke,Manohar,Savage,1992) similar to Van der Waals, *E_{binding}* ~ 8 *MeV*

• Absorption: breakup to \overline{DD} , $\psi + N \rightarrow \Lambda_c^+ \overline{D}$

ψ N Interaction: $\sigma^{\psi N}$ Theoretical Calculations

Various models:	VMD, exchange meson currents, etc.				
authors	model	\sqrt{s} , GeV	$\sigma^{\psi N}$, mb		
Brodsky,Miller,1997	Van-der-Waals potential	small	7		
Kopeliovich,1994	GVMD, wave functions	10–400	3–10		
Gerland, 1998	VMD, data for VM	>7	3.6		
Sibirtsev, 2001	boson exchange	>4	2.2		
	Lattice				

Sibirtsev et al, 2001

- a) FF calculations, $\psi + N \rightarrow \Lambda_c^+ \overline{D} D\overline{D}$
- b) short distance QCD

ψ N Interaction: Experimental Access

 Calculated from photoproduction on nucleons using VMD/GVMD

 γN >20 GeV $\sigma_{tot}^{\psi N}$ ~ 2.8 - 4.1 mb model dependent

2 Nuclear absorption: from A-dependence, Glauber model

 $\gamma \textit{\textbf{A}} \qquad 20 \; \text{GeV} \quad \sigma_{\rm abs}^{\psi\textit{N}} {=} 3.5 \pm 0.9 \; \text{mb} \quad \begin{array}{c} \text{clean interpretation} \\ \text{poor accuracy} \end{array}$

$$pA > 100 \text{ GeV}$$
 $\sigma_{abs}^{\psi N} = 4.2 \pm 0.4 \text{ mb}$ not ψN :
 $\ell_{coh}, \ell_F \gg R_A$
contamination $\chi_c, \psi I$

We use arguments from Farrar et al., 1990, Kharzeev et al, 2007

E.Chudakov

EIC, Rutgers March 2010

 J/ψ at JLab 12 GeV

Experiment in Hall C

PR12-07-106 for Hall C: conditionally approved by PAC32. Objectives:

- Accurate measurement of J/ ψ -nucleon cross-section at $\sqrt{s} = 5 \text{ GeV}$
 - Test theoretical ideas (color dipole model, Van-der-Waals force)
 - Benchmark for future calculations
 - Interest for heavy ion physics.
- 2 Measurement of J/ψ photoproduction cross section $\frac{d\sigma}{dt}(E_{\gamma})$ at $E_{\gamma} \sim 8.8 11$ GeV
 - Input for (1).
 - Probes large-x gluon GPD / small-size gluon configurations in proton.

Experiment: Rates on Nuclear Targets

- Acceptance $\epsilon \approx 0.03\%$
- Internal Bremsstrahlung 1.6%
- No nuclear absorption is assumed for the moment

	¹ H	² H	Be	С	Al	Cu	Ag	Au
A	1	2	9	12	27	63.5	108	197
Z	1	1	4	6	13	29	47	79
T/T_{RL}	0.022	0.027	0.10	0.10	0.10	0.10	0.10	0.10
J/ψ per h	170	340	560	370	208	112	78	55
Time*, h	24	12	7	11	19	36	51	72

* - in order to detect 4000 events per target

• 200 hours on nuclear targets

Experiment: Expected Results on $\sigma^{\psi N}$

Total error per target \sim 3%

- beam flux $\sim 1\%$
- target thickness < 1.5%
- Fermi correction < 1.%

- statistics $\sim 1.5\%$
- acceptance: nearly cancels
- other $\sim 0.5\%$

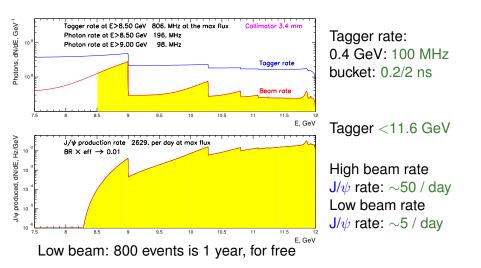
Glauber model used to extract $\sigma^{\psi N}$ Expected transparencies $T_N(A) = \sigma_A / A \sigma_N$

	$\sigma^{\psi N}$	A						$\delta(\sigma^{\psi N})$
	mb	9	12	27	63	108	197	mb
	1.0	0.982	0.980	0.974	0.963	0.952	0.931	0.29
T	3.5	0.938	0.931	0.908	0.870	0.833	0.760	0.25
	7.0	0.876	0.863	0.816	0.740	0.665	0.519	0.18

$\sigma^{\psi N} \approx (3.5) \pm 0.12 \pm 0.20 \text{ mb}$ at $\sqrt{s} \sim 5 \text{ GeV}$ SLAC: 0.80 ± 0.60

Hall D Potential for Heavy Quark Physics

Obvious advantages to Hall C


- Large uniform acceptance for all particles, including the recoil: potentially a good measurement of $\frac{d\sigma}{d\Omega}(E, t, \cos \theta)$
- 2 Separation "elastic"/"inelastic" $\gamma p \rightarrow \psi p$ vs $\gamma p \rightarrow \psi N \pi$
- Tagged photon beam of the highest flux usable
- Possibility to run in parallel with the main program
- Fast DAQ no need for a special trigger

Disadvantages to Hall C

- Lower beam photon flux
- Worse mass/energy resolution
- Linear polarization is useless at 8.4-9 GeV

Hall D J/ ψ rate, standard collimation

Double Spin Asymmetry

Longituninally polarized beam, target:

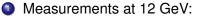
 $egin{aligned} & \mathcal{A}_{LL} \sim rac{\mathcal{H}(x,\xi,t)}{\mathcal{H}(x,\xi,t)} \ & ilde{\mathcal{H}}(x,\xi
ightarrow 0,t
ightarrow 0)
ightarrow x \Delta g(x) \end{aligned}$

Pre-LOI by M.Osipenko et al for Hall B

- Luminocity 10^{35} cm⁻²s⁻¹: 100 nA, 3 cm target
- 2 Polarized target: ammonia < 100 nA, dilution \sim 0.2
- 3 Asymmetry $\sim 0.05 \Rightarrow >1$ M events needed
- Large acceptence (? need a number)
- About 10⁶ events in 6 months
- Muon detector needed

SoLID (Hall A) may run at 10^{37} cm⁻²s⁻¹

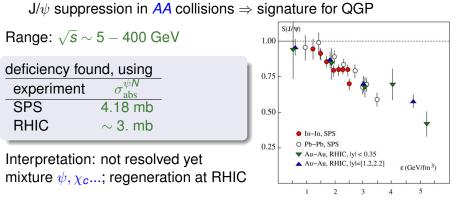
mEIC Outlook


Unpolarized production measured at HERA at $x \sim 0.0001$ mEIC potential:

- *x* ~ 0.01
- Better accuracy

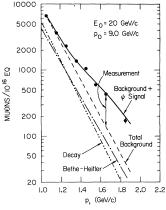
Polarized production: 12 GeV? ($x \sim 0.4$) mEIC potential:

- *x* ~ 0.01
- No dilution: FOM ×25
- Luminocity 10³⁴ OK
- Better accuracy


Summary for J/ψ Physics

- $\frac{d\sigma}{d\Omega}(E, t, \cos\theta)$ for 9.5 < E_{beam} < 11.4 GeV
- The cross section for ψN
- ? Double-spin asymmetries
- Potential mEIC:
 - $\frac{d\sigma}{d\Omega}(E, t, \cos\theta)$ for $x \sim 0.01$
 - Double-spin asymmetries

ψ N Interaction: Signature for QGP



• JLab experiment - measure $\sigma_{\rm abs}^{\psi N}$ at lower energy $\sqrt{s} \sim 5~{\rm GeV},$ in different conditions

ψ N Interaction: Experiment at SLAC 1977

- The cleanest method used so far: $\ell_{coh}, \ell_F < R_A$
- Large experimental uncertainties

- 20 GeV e^- on Be and Ta targets
- Detecting only μ^- , through iron
- The background was calculated (decays, Bethe-Heitler)
- Nuclear coherence not measured

 $\sigma(Be)/\sigma(Ta) = 1.21 \pm 0.7$ $\Rightarrow \sigma_{\psi N} = 3.5 \pm 0.8 \pm 0.6 \text{ mb}$

Authors: syst. errors might be larger

• JLab: we can do a much more accurate experiment!

EIC, Rutgers March 2010

 J/ψ at JLab 12 GeV

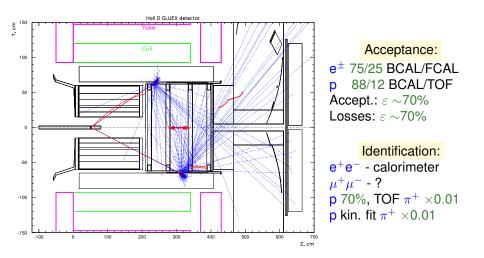
Experiment: Setup

• Use decays to $e^+e^-(6\%), \mu^+\mu^-(6\%)$ to identify J/ ψ mass

Standard Hall C equipment

- High rate at various targets
- Low background: < 2%, scaled from Cornell, SLAC
- Reconstruction of E_{γ} , identification of $\gamma + p \rightarrow J/\psi + p$

Hall C Spectrometers


- HMS: e^-, μ^- at $\theta > 20^\circ$
- SHMS: *e*⁺, μ⁺ at θ < 20°
- e⁺, e- Gas Cher., Shower
- μ^+, μ^- Gas Cher.

Beam and target

- Bremsstrahlung by 50 μ A beam
- 6 targets A = 9 197, 10% r.l. thick
- Each target: 3 plates $\sim 5~\text{cm}$ apart
- 20 cm LH₂ with a 7% radiator
- 20 cm LD₂ with a 7% radiator

Hall D: detecting γ +p \rightarrow p+J/ ψ \rightarrow e⁺e⁻

Hall D: detecting J/ψ , resolutions

- Track momentum, angular resolutions from reconstruction
- Track fit assumes the beam $\sigma_X = \sigma_Y = 1 \text{ mm}$
- Tagger energy resolution 60 MeV / \sqrt{12} = 17 MeV

	Variable					
Event fit	M_{ψ}	E _{beam}	M _{recoil}			
	GeV/c ²	GeV	GeV/c ²			
	e^+,e^-	e+,e-,p	e ⁺ ,e ⁻ ,tagger			
none	0.045	0.190	0.100			
Using <i>E</i> tagger	0.022	-	-			
Using M_{ψ}	-	0.080	0.032			

- M_{ψ} window (no fit) $5\sigma \sim 0.230 \text{ GeV/c}^2$: BG \sim 7%
- Tagger window $5\sigma \sim 1 \text{ GeV}$ (no fit), 0.4 GeV (M_{ψ} fit)

J/ ψ at JLab 12 GeV

