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What is charge density at the 
center of the neutron? 

• Neutron has no charge, but 
charge density need not vanish

• Is central density positive or 
negative?

 Fermi: n fluctuates to  
 

p at center, 
pion floats 
to edge

One gluon exchange favors   dud 

Real question- how does form factor relate to charge density?
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Meaning of form factor
• GE(Q2) is NOT Fourier transform of charge density
• Relativistic treatment needed- wave function is 

frame-dependent, initial and final states differ, 
no density

• Light front coordinates,      momentum frame

3

∞
“Time” x+ = (ct + z)/

√
2 = (x0 + x3)/

√
2, “evolution” p− = (p0 − p3)/

√
2

“Space” x− = (x0 − x3)/
√

2, “Momentum” p+ = (p0 + p3)/
√

2
“Transverse position, momentum, b,p

These coordinates are used to analyze form factors, deep 
inelastic scattering, GPDs,TMDS
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Relativistic formalism-
kinematic subgroup of Poincare

• Lorentz transformation –transverse 
velocity v

k- such that k2 not changed
Just like non-relativistic with k+ as 
mass, take momentum transfer in perp 
direction, then density is 2 Dimensional  
Fourier Transform, also 

q+ = q0 + q3 = 0,−q2 = Q2 = q2
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Absent in a Drell-Yan Frame

From Marc Vanderhaeghen
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J+(x−,b) =
∑

q

eqq
†
+(x−, b)q+(x−, b)

ρ∞(x−,b) = 〈p+,R = 0, λ|
∑

q

eqq
†
+(x−, b)q+(x−, b)|p+,R = 0, λ〉

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
∫

QdQ

2π
F1(Q2)J0(Qb)

F1 = 〈p+,p′, λ|J+(0)|p+,p, λ〉

Density is u− ū, d− d̄

Model independent transverse charge density
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Charge Density

Sunday, March 14, 2010



Transverse charge densities

BBBA

Kelly

Negative
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Negative F1 means 
central density negative

GeV2
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Neutron interpretation ρ(x,b)  
GAM, J. Arrington, PRC78,032201R  ’08

x=0.1 x=0.3

x=0.5

d or        dominates at high x, low bπ−

Using other people’s models
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!µ · !B =
∫

d3r!j · !A =
1
2

∫
d3r!j · ( !B × !r) =

1
2

∫
d3r(!r ×!j) · !B

1
2

∫
(!r ×!j) is magnetization density, direction of !B

!B in x-direction, calculate in IMF, integrate over x−, matrix element in |X〉

Magnetization density
ρM (b) = sin2 φ

2M b
∫ Q2dQ

2π F2(Q2)J1(Qb)

Transverse Nucleon 
magnetization density
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Figure 7: Upper panel: ρ̃M (b = (b,φ = π/2)) as a function of b. Lower panel:

Density plot of ρ̃M (b) . The horizontal axis is the direction of the applied mag-

netic field. The largest (smallest) values of ρ̃M are denoted by the brightest

(darkest) areas. This figure is obtained using a dipole parametrization for F2 of

the proton.

Direction of magnetic field
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Pion Transverse Charge Density   
-GAM  Phys.Rev.C79:055204,2009.
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of partons is valid. Setting the transverse center of momentum of a state of total very large momentum p+ to zero as
in Eq. (3), allows the transverse distance b relative to R to be defined.

Next we relate the charge density

ρ∞(x−,b) =
〈p+,R = 0, λ| ρ̂∞(x−,b) |p+,R = 0, λ〉

〈p+,R = 0, λ|p+,R = 0, λ〉 , (4)

to Fπ(Q2). In the DY frame no momentum is transferred in the plus-direction, so that information regarding the x−

dependence of the distribution is not accessible. Therefore we integrate over x−, using the relationship

q†+(x−,b)q+(x−,b) = eibp+x−
e−ibp·bq†+(0)q+(0)eibp·be−ibp+x−

, (5)

to find

ρ(b) ≡
∫

dx−ρ∞(x−,b) =
〈

p+,R = 0, λ
∣

∣ ρ̂∞(0,b)
∣

∣p+,R = 0, λ
〉

/(2p+). (6)

Furthermore, the use of Eqs. (5,3,2) leads to the simplification of the right-hand-side of the above equation:

ρ(b) =

∫

d2q

(2π)2
Fπ(Q2 = q2)e−iq·b, (7)

where ρ(b) is termed the transverse charge density, giving the charge density at a transverse position b, irrespective
of the value of the longitudinal position or momentum. This relation between an integral of the three-dimensional
infinite momentum frame density and the electromagnetic form factor is our principal new formula. Previous results
[5, 6, 7, 11, 12] involved the integral over the longitudinal momentum fraction x of the impact parameter parton
distribution function (pdf) q(x, b), which gives the charge density for a quark at position b for a momentum fraction
(of the plus-component) x. The equality of the respective integrals over x− or x of the quantities ρ∞(x−, b) and q(x, b)
is an example of Parseval’s theorem. The central charge density of the pion is determined by ρ(b = 0), because the
longitudinal dimension is Lorentz contracted to essentially zero in the infinite momentum frame

Recent pion data[1, 2] provide an accurate measurement of the pion form factor up to a value of Q2 = 2.45 GeV2.
Their analysis includes an assessment of the influence of the necessary model dependence caused by extracting the
form factor from the measured cross sections on the experimental error bars. The existing data for the pion form
factor show that it is well represented by the monopole form

Fπ(Q2) = 1/(1 + R2Q2/6), (8)

with R2 = 0.431 fm2. A better representation of the data may be a monopole plus dipole [2] which involves the square
of the term of Eq. (8), but any form involving the monopole term leads to a singular central charge density. This is
because the use Eq. (8) in Eq. (7) gives the result:

ρ(b) =
3K0

(√
6b

R

)

πR2
, (9)

where K0 is modified Bessel function of rank zero. For small values of b this function diverges as ∼ log(b). This
divergence is very surprising because the charge density we are considering measures a valence quark operator between
eigenstates of the full Hamiltonian. The divergences of quark distribution functions that occur at small values of
Bjorken x do not occur here. Any model, such as vector meson dominance or holographic QCD [13, 14, 15] that yields
a monopole form factor has a central density with a logarithmic divergence..

Intuition regarding a possible singularity in the central charge density may be improved by considering other
examples. Suppose that the non-relativistic (NR) limit in which the quark masses are heavy is applicable. In this
case, the pion would be a pure qq̄ object and the charge density is the Fourier transform of the form factor. Given
the form factor of Eq. (8) the three-dimensional density is uniquely given by

ρNR(r) =
3

2 π r R2
e

−
√

6 r
R (10)

where r is the distance relative to the pion center of mass. If one takes r =
√

b2 + z2 as demanded by the rotational
invariance of the non-relativistic wave function, then one finds

∫ ∞
−∞ dzρNR(r) is equal to ρ(b) of Eq. (9). This is

expected because in the NR limit the charge density is the same in all frames, including the infinite momentum
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expected because in the NR limit the charge density is the same in all frames, including the infinite momentum

Singular - varies as log (b) small b, log(log(b)) 
in pQCD
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FIG. 1: (Color online) Q2Fπ(Q2). Pion form factor data as plotted in [2]. The data labeled Jlab are from [2]. The data Brauel
et al. [28] and that of Ackermann et al. [29] have using the method of [2]. The Amendola data et al. are from [30] The
data point labeled PionCT is from [31]. The (red) dashed curve uses the monopole fit Eq. (8) and the (black) solid line the
constituent quark model of [27].

[4] Our notation is that x± ≡ (x0±x3)/
√

2, p± ≡ (p0±p3)/
√

2, and pµxµ = p−x++p+x−−p·b. The coordinates perpendicular
to the 0 and 3 directions are denoted as b and p.
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dashed curve uses the monopole fit and the (blue) solid-line the relativistic constituent quark model of[27].
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Dashed- monopole fit, solid rel. cqm:
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How will higher Q2  better determine 
transverse charge magnetization 

• Well designed procedure for 3 D Fourier 
transform relations-Friar Negele Kelly ...

• They used spherical Bessel, now Bessel 
or other orthogonal functions

ρ(b) =
∑

n cn J0(bx0n
R ), b ≤ R , x0n location of n’th zero

cn = 2x0n
J1(x0n)

∫∞
0

QdQ
2π

F (Q2)J0(QR)
x2
0n−Q2R2

If know all cn,  know transverse density, integrate to max 
value of Q. See how high you need to go, pion=monopole
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c1 is known now

c10 needs 40 GeV2
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Model independent for pion
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Dipole form factor proton -rapid 
convergence

10 GeV2 is enough
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Model independent - dipole form 
factor
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Converged at Q2=10 GeV2, 
exact, 15 terms enough
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Summary

• Transverse charge and magnetization 
densities are the only sane way to 
interpret form factors

• Proton transverse  charge density is 
determined now

• Going to  Q2=40 GeV2, can determine 
other transverse densities: pion  charge, 
proton magnetization and neutron charge, 
magnetization in  model independent way
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Spares follow

19
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Return of the cloudy bag model

• In a model nucleon:bare  nucleon + pion 
cloud - parameters adjusted to give 
negative definite F1, pion at center causes 
negative central transverse charge density

•  

20

Boosting the matrix element of J0

to the infinite momentum frame
changes GE to F1

Rinehimer and Miller  
PRC80,015201, 025206
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Generalized transverse densities

21

OΓ
q (px,b) =

∫
dx−eipxx−

4π
q†+(0,b)Γq+(x−,b)

ρΓ(b) =
∫

dx
∑

q

eq〈p+,R = 0, λ|OΓ
q (p+x,b)|p+,R = 0, λ〉

∫
dx sets x− = 0, get q†+(0,b)Γq+(0,b) Density!

Local operators calculable on lattice M. Göckeler et al 
PRL98,222001  Ã

′′

T10 ∼ sdd

Schierholtz, 2009 -this quantity is not zero, proton is not 
round

spin-dependent density

Γ = 1
2 (1 + n · γγ5) gives spin-dependent density
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Spin dependent densities-transverse- 
Lattice QCDSF, Zanotti, Schierholz...

22

This is not zero!
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Transverse Momentum Distributions -
momentum space density

23

ΦΓ
q (x,K) give probability of quark of given 3-momentum

h⊥1T gives momentum-space spin-dependent density
measurable experimentally
hard to calculate on lattice because - gauge link

In a state of fixed momentum
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GPD :

〈P ′, S′|
∫

dx−

4π
q̄(−x−

2
,0)γ+q(

x−

2
,0)eixp̄+x− |P, S〉

=
1

2p̄+
ū(P ′, S′)

(
γ+Hq(ξ, t) + i

σ+ν∆ν

2M
Eq(x, ξ, t)

)
u(P, S)

TMD :

ΦΓ
q (x =

k+

P+
,k) = 〈P, S|

∫
dζ−d2ζ

2(2π)3
eik·ζ q̄(0)Γq(ζ)|P, S〉ζ+=0

x+ = 0

Relation or not between GPD and TMD

24

GPD: nucleons have different momenta, but FT local in coordinate 
space if integrate over x

TMD: nucleons have same momenta, operator is 
local in momentum space
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Hq(x, ξ, t) = 〈P ′, S′|
∫

d2k
(2π)2

W γ+

q (ζ− = 0, ζ = 0, k+,k)|P, S〉

ΦΓ
q (x,k) = 〈P, S|

∫
dζ−

(2π)2
WΓ

q (ζ−, ζ, k+,k)|P, S〉

WΓ
q (ζ−, ζ, k+,k)

=
1
4π

∫
dη−d2ηeik·η q̄(ζ− − η−

2
, ζ − η

2
)Γq(ζ− +

η−

2
, ζ +

η

2
)

Both can be obtained Wigner distribution operator

25
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Summary

• Form factors,  GPDs, TMDs, understood from unified 
light-front formulation

• Neutron central transverse density is negative-
consistent with Cloudy Bag Model

• Proton is not round- lattice QCD spin-dependent-
density is not zero

• Experiment can whether or not proton is round by 
measuring 
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The Proton
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Cloudy Bag Model~1980 

27

Many successful predictions

One feature- pion penetrates to the bag interior
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