Meson production at JLab 6&12GeV and EIC

Tanja Horn The CATHOLIC UNIVERSITY of AMERICA

EIC Workshop: Electron-Nucleon Exclusive Reactions, Rutgers University, NJ

14 March 2010

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

Nucleon Structure: landscape

- Hadrons in QCD are relativistic many-body systems
 - Different components are probed in *e-p* scattering
- JLab 6&12 GeV: valence region
 - Quantum numbers: spin, flavor
 - Non-perturbative dynamics
 - "Source" of sea quarks and gluons
 - Vacuum structure, radiation
- Physical properties/measurements
 - Parton densities
 - Transverse spatial distributions:
 - GPDs and form factors
 - Tests of reaction mechanism
 - Orbital motion, correlations
- EIC: sea quarks, gluons

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

Nucleon Structure: exclusive processes

- Exclusive processes at sufficiently high Q² should be understandable in terms of the "handbag" diagram
 - The non-perturbative (soft) physics is represented by the GPDs
 - Shown to factorize from QCD perturbative processes for longitudinal photons [Collins, Frankfurt, Strikman 97]
- Physical interest in GPDs
 - Transverse spatial distribution of partons with longitudinal momentum x: transverse imaging of nucleon [Burkhardt 00]
 - Correlations in wave function
 - Moment xⁿ⁻¹ Form factor of local twist-2 spin-n operator: EM tensor, angular momentum [*Ji 96, Polyakov 02*]
- Tests of reaction mechanism
 - Model-independent features of small-size regime? Finite-size corrections?

3

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

Nucleon GPDs: spin-flavor

Deep Virtual Meson Production (DVMP)

Transverse spin/flavor distributions

- Nucleon structure described by 4 GPDs: *H*, *E* (unpolarized), \widetilde{H} , \widetilde{E} (polarized)
- Quantum numbers probe individual GPD components more selectively than DVCS
 - $\rho^{\circ}/\rho^{+}/K^{*}$ select *H*, *E* for u/d flavors
 - $-\pi,\eta,K$ select $\widetilde{H},\widetilde{E}$
- Need good understanding of *reaction mechanism*
 - QCD factorization for mesons is complex (additional interaction of the produced meson)

Transverse Spatial Distributions: Form Factors and GPDs

- Meson form factors and nucleon GPDs are essential to understand the structure of hadrons
- But measurements of form factors and GPDs have certain prerequisites:
 - For form factors, must make sure that σ_L is dominated by the meson pole term at low -t
 - For GPDs, must demonstrate that factorization applies
- A comparison of pion and kaon production data may shed further light on the reaction mechanism
 - quasi-model independent
 - more robust than calculations based on QCD factorization and present GPD models

THE CATHOLIC UNIVERSITY of AMERICA

JLab 6 GeV: e^{-bt} scaling of σ_{π} and σ_{K}

Combines data from Cornell, DESY, and JLab 6 GeV

- Pion and kaon data follow an almost exponential tdependence
 - Q² and t dependence does not factorize completely
- t-dependence flatter at larger x
- Pion t-dependence is steeper at low t than for kaons
 - pole factor $(m_{K,\pi}^2 t)^{-1}$ gives less enhancement for kaons than pions
 - Different from u-quark exchange

Pole factor enhances pion cross section – additional low t data would allow to interpret contribution for kaons

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

6

JLab 6 GeV: t-slopes of pions and kaons

- t-slope measures the overall size of the interaction region
 - t-slopes seem to become similar for π , K at x>0.2
- Current data not sufficient
 - Unseparated cross sections
 - Systematic uncertainties from scaling in W, Q², t

CUA

High quality *separated* data for both K and π in for |t| < 1GeV² would allow for better constraining effective transverse sizes

JLab 6 GeV: Q^2 dependence of σ_L and σ_T

- Measurements of GPDs are limited to kinematics where hardsoft factorization applies
- A test is the Q² dependence of the polarized cross section:
 - $\sigma_L \sim Q^{-6}$
 - $\sigma_{T} \sim Q^{-8}$
 - For large Q²: $\sigma_L \gg \sigma_T$
- The QCD scaling prediction is reasonably consistent with recent 6 GeV JLab π⁺ σ_L data, *but* σ_T does not follow the scaling expectation

Full understanding of the onset of factorization requires an extension of the kinematic reach

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

8

T. Horn et al., Phys. Rev. C78, 058201 (2008)

JLab 6 GeV: Pion Form Factor – a similar

puzzle?

T. Horn et al., Phys. Rev. Lett. 97 (2006) 19200. T. Horn et al., arXiv:0707.1794 (2007).

- Q² dependence of the pion form factor (F_π) follows prediction from perturbative QCD
 - Factorization condition seems to hold
- Different magnitudes imply that
 - Factorization condition does not hold
 - Or something else is missing in the calculation

Further information on the pion puzzle through varying the system

JLab 12 GeV: exclusive reactions

CLAS12 kinematic coverage $N(e, e'\gamma)N$

Scattering from q or \overline{q}

Knockout of $q\overline{q}$ pair

Unique features: $s = 2E_e m_p$

- Center of mass energy, s=20.6 GeV²
 [minimum for MEIC is ~200 GeV²]
- Luminosity 10³⁷ cm⁻²s⁻¹ (Hall A,C), 10³⁵ (CLAS12) for valence region, differential measurements, spin asymmetries
- CLAS12 and magnetic spectrometers in Hall A, C are complementary
- Transverse imaging in valence region:
 - GPDs from DVCS $\gamma^* N \rightarrow \gamma + N$
 - Transverse charge densities from elastic form factors $\int dx \rho(x,b)$
 - Transverse flavor/spin distributions from exclusive meson production $\gamma^*N \rightarrow N + \pi, K, \rho, K^*, \phi$
- Limited kinematic coverage:
 - How to test the reaction mechanism?

THE CATHOLIC UNIVERSITY of AMERICA

JLab 12 GeV: Factorization Tests in π⁺ Electroproduction

- JLab experiment E12-07-105 will search for the onset of factorization
- Q² coverage is 2-3 times larger than at 6 GeV at smaller t
- Factorization essential for reliable interpretation of results from the JLab GPD program at both 6 GeV and 12 GeV

Is the partonic description applicable at JLab?

Can we extract GPDs from pion production?

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

JLab 12 GeV: L/T separated kaon cross sections T. Horn et al. 400 400 $Q^2 = 1.0 Ge^{1/2}$ $Q^2 = 1.0 \text{ GeV}$ Approved experiment E12-09-011 dσ_{L,T}/dΩ (nb/sr) Mohring (1997) Carman (1999) will provide first L/T separated σι στ 🕂 Hall A (2005) 200 ¢. **kaon** data above the resonance region п 200 200 Q²=2.0 GeV² Q²=2.0 GeV² Onset of factorization σ σ_ . 口 100 100 Understanding of hard exclusive reactions 200 200 $Q^2 = 3.0 \text{ GeV}^2$ $Q^2=3.0 \text{ GeV}^2$ QCD model building do, projecte 🧧 dσ_τ projected

σ

3

2

W(GeV

п

Coupling constants

THE

CATHOLIC UNIVERSITY

of AMERICA

E12-09-011: Precision data for W > 2.5 GeV

1

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

0

12

2

W(GeV)

στ

3

JLab 12 GeV: $F_{\pi, K}$ - can kaons shed light on the puzzle?

- Compare the observed Q² dependence and magnitude of π⁺ and K⁺ form factors
- Will the analogy between pion cross section and form factor also manifest itself for kaons?

T. Horn et al., Phys. Rev. Lett. 97 (2006) 192001.

Is onset of scaling different for kaons than pions?

Kaons and pions together provide quasi model-independent study

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

Valence Quark Imaging: JLab 12 GeV Mesons

- Understanding of reaction mechanism
 - Role of qqbar pair knockout
 - Finite-size corrections

Feature: pole term in GPD

 Understand relative importance of "pole and "non-pole" contributions
 CUA

THE CATHOLIC UNIVERSITY of America

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

EIC: Quark Imaging through Meson Production

- Transverse distribution of nonperturbative sea quarks
- Flavor structure and longitudinal polarization
 - QCD vacuum structure
 - Chiral dynamics, "pion cloud"
- Exclusive meson production $\gamma^*N \to M+B$
 - Requires Q²>10GeV² for dominance of "pointlike" configurations -> pQCD
 - Meson quantum numbers select spin/flavor component of GPD
 - Information about meson wavefunction: size flavor structure

15

EIC: Transverse sea quark imaging

- New territory for collider!
- $\overline{u}, \overline{d}$ s, \overline{s} x 0.01 < x < 0.3

 $ep \rightarrow e'\pi^+n$

• Spatial structure of *non-perturbative sea*

- Closely related to Jlab 6/12 GeV
 - Quark spin/flavor separations
 - Nucleon/meson structure
- Simulation for π⁺ production assuming 100 days at a luminosity of 10³⁴ with 5 on 50 GeV (s=1000 GeV²)
 - V. Guzey, C. Weiss: Regge model
 - T. Horn: empirical π^+ parameterization

[Tanja Horn, Antje Bruell, Christian Weiss]

Lower and more symmetric energies essential to ensure exclusivity

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

EIC: Transverse strange sea quark imaging

- Do strange and non-strange sea quarks have the same spatial distribution?
 - πN or $K\Lambda$ components in nucleon
 - QCD vacuum fluctuations
 - Nucleon/meson structure
- Rate estimate for KΛ using an empirical fit to kaon electroproduction data from DESY and JLab assuming 100 days at a luminosity of 10³⁴ with 5 on 50 GeV (s=1000 GeV²)
 - Consistent with back-of-the-envelope scaling arguments
- Lower and more symmetric energies essential to ensure exclusivity

[Tanja Horn, David Cooper]

Pushes luminosity towards > 10³⁴, also at lower energy

Transverse polarization example

- Deformation of transverse distribution by transverse polarization of nucleon
 - Helicity flip GPD *E*, cf. Pauli ff [M. Burkhardt]
- EIC: exclusive ρ and φ production with transversely polarized beam
 - Excellent statistics at Q²>10 GeV²
 - Transverse polarization natural for collider

$$\frac{\sigma \uparrow -\sigma \downarrow}{\sigma \uparrow +\sigma \downarrow} \propto \frac{\mathrm{Im}(\mathcal{HE}^*)}{|\mathcal{H}|^2 + \mathrm{corr.}}$$

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

Beyond transverse imaging

- Longitudinal correlations in nucleon
 - GPDs at $x' \neq x$: correlated qqbar pairs in nucleon
 - QCD vacuum structure, relativistic nature of nucleon
 - EIC: reveal correlations through exclusive meson, γ at x>0.1, Q² dependence

...needs kinematic coverage beyond JLab 12 GeV

- Orbital motion of quarks/gluons
 - TMD and orbital motion from SIDIS
 - Major component of the EIC program
 - Connection with GPDs
 - Unintegrated distributions, Ji sum rule

...should be discussed together

19

THE CATHOLIC UNIVERSITY of AMERICA

L/T separations in exclusive K^*/π^* production

[Horn 08]

- L/T separated cross sections require:
 - Data taken at *different beam* energies (Rosenbluth)
 - Sufficiently large Δε (to avoid magnification of the systematic uncertainty in the separation)
- Virtual photon polarization, ε, goes to unity at high √s

Q²=10 GeV², x=0.1, -t=0.1

Requires special low energies for at least one ε point

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

20

L/T separation examples

Excellent potential to study the QCD transition nearly over the whole range from the strong QCD regime to the hard QCD regime.

Experimental Perspectives

- Exclusivity (channel selection)
- Particle identification
- Luminosity

\Longrightarrow Design of detector/Interaction Region (IR)

→ P. Nadel-Turonski talk

Deep Exclusive - meson kinematics

Deep Exclusive - recoil baryon kinematics

Exclusive Meson Production Perspectives

- Energies
 - More symmetric energies favorable for exclusive meson production
 - Lower energies essential for ϵ range in pseudoscalar L/T separations (pion form factor)
- Kinematic reach
 - Need Q²>10 GeV² (pointlike configurations)
 - x range between 0.001 and 0.1 overlapping with HERA and JLab12 GeV
 - s-range between 200 and 1000 GeV² (L/T separations)
- Luminosity
 - Non-diffractive processes (exclusive π and *K* production) require high luminosity for low rates, differential measurements in *x*, *t*, Q^2
 - Kaons push *luminosity* >10³⁴
- Detection
 - Recoil detection for exclusivity, should detect down to 0.5 deg

THE CATHOLIC UNIVERSITY of AMERICA

• The EIC is an excellent tool to access nucleon structure

- JLab 6&12 GeV: valence quarks
 - Main focus: valence quark imaging with DVCS
 - Also initial deep exclusive meson production studies
- EIC: gluon and sea quarks
 - Transverse gluon and sea quark imaging through deep exclusive meson production

JLab 6 GeV: Q⁻ⁿ scaling of K and $\pi \sigma_L/\sigma_T$

High quality σ_L and σ_T data for both kaon and pion would provide important information for understanding the meson reaction mechanism.

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

σ_L without explicit L/T?

- If σ_L is small, GPD flavor studies may be limited to focusing spectrometers
 - L/T separations required
- But data suggest that σ_L is larger for π⁻ than for π⁺ production
 - If this holds, one can extract σ_L from unseparated cross sections

$$\sigma = \sigma_{T} + \epsilon \sigma_{L} - \frac{\sigma_{T} \rightarrow 0}{\epsilon} \sigma_{L}$$

E12-07-105 will compare π^+ and π^- production to check possibilities of extracting GPDs without explicit L/T

THE CATHOLIC UNIVERSITY of AMERICA

Tanja Horn, Meson electroproduction at JLab 6&12GeV and EIC, JLab MEIC Users Meeting Rutgers2010

28

CEIA