Measurement of the Charged Pion Form Factor at EIC

Garth Huber and Dave Gaskell

(U. Regina and JLab)

Electron-Ion Collider Workshop:
Electron Nucleon Exclusive Reactions
March 14, 2010

pQCD and the Pion Form Factor

At large Q^{2}, pion form factor $\left(F_{\pi}\right)$ can be calculated using perturbative QCD (pQCD)

$$
F_{\pi}\left(Q^{2}\right)=\frac{4}{3} \pi \alpha_{s} \int_{0}^{1} d x d y \frac{2}{3} \frac{1}{x y Q^{2}} \phi(x) \phi(y)
$$

at asymptotically high Q^{2}, only the hardest portion of the wave function remains

$$
\phi_{\pi}(x) \underset{Q^{2} \rightarrow \infty}{\longrightarrow} \frac{3 f_{\pi}}{\sqrt{n_{c}}} x(1-x)
$$

and F_{π} takes the very simple form

$$
F_{\pi}\left(Q^{2}\right) \underset{Q^{2} \rightarrow \infty}{\rightarrow} \frac{16 \pi \alpha_{s}\left(Q^{2}\right) f_{\pi}^{2}}{Q^{2}}
$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

Measurement of π^{+}Form Factor - Low Q 2

- At low Q^{2}, F_{π} can be measured directly via high energy elastic π^{-}scattering from atomic electrons
- CERN SPS used 300 GeV pions to measure form factor up to $Q^{2}=0.25 \mathrm{GeV}^{2}$
[Amendolia et al, NPB277, 168 (1986)]
- These data used to extract the pion charge radius

$$
r_{\pi}=0.657 \pm 0.012 \mathrm{fm}
$$

- Maximum accessible Q^{2} roughly proportional to pion beam energy
- $Q^{2}=1 \mathrm{GeV}^{2}$ requires 1000 GeV pion beam

Measurement of π^{+}Form Factor - Larger \mathbf{Q}^{2}

- At larger Q^{2}, F_{π} must be measured indirectly using the "pion cloud" of the proton via $p\left(e, e^{\prime} \pi^{+}\right) n$
- At small $-t$, the pion pole process dominates the longitudinal cross section, σ_{L}
- In Born term model, F_{π}^{2} appears as,

$$
\frac{d \sigma_{L}}{d t} \propto \frac{-t Q^{2}}{\left(t-m_{\pi}^{2}\right)} g_{\pi N N}^{2}(t) F_{\pi}^{2}\left(Q^{2}, t\right)
$$

- Drawbacks of the this technique
- Isolating σ_{L} experimentally challenging
- Theoretical uncertainty in form factor extraction

F_{π} Extraction from JLab data

VGL Regge Model

- Feynman propagator replaced by π and ρ Regge propagators.
- Represents the exchange of a series of particles, compared to a single particle.
- Model parameters fixed from pion photoproduction.
- Free parameters: $\Lambda_{\pi}, \Lambda_{\rho}$ (trajectory cutoff).

$$
F_{\pi}\left(Q^{2}\right)=\frac{1}{1+Q^{2} / \Lambda_{\pi}^{2}}
$$

Horn et al, PRL97, 192001,2006

Unpolarized Pion Cross Section

$$
\begin{aligned}
& 2 \pi \frac{d^{2} \sigma}{d t d \phi}=\epsilon \frac{d \sigma_{L}}{d t}+\frac{d \sigma_{T}}{d t}+\sqrt{2 \epsilon(1+\epsilon)} \frac{d \sigma_{L T}}{d t} \cos \phi+\epsilon \frac{d \sigma_{T T}}{d t} \cos 2 \phi \\
& \begin{array}{l}
t=\text { four-momentum transferred to } \\
\text { nucleon } \\
=(\text { mass })^{2} \text { of struck virtual pion } \\
\begin{array}{l}
W=\text { total energy in virtual photon- } \\
\text { target center of mass } \\
Q^{2}=-(\text { mass })^{2} \text { of virtual photon } \\
\varepsilon=\text { virtual photon polarization, } 0 \rightarrow 1 \\
\phi=\text { azimuthal angle between } \\
\text { reaction plane and scattering plane }
\end{array}
\end{array}-_{-Q^{2}=\left(p_{e}-p_{e}^{\prime}\right)^{2}}^{W^{2}=\left(p_{\gamma}+p_{p}\right)^{2}}
\end{aligned}
$$

$L-T$ separation required to extract σ_{L}

L-T Separation in an e-p Collider

$$
\varepsilon=\frac{2(1-y)}{1+(1-y)^{2}} \text { where the fractional energy loss } y \approx \frac{Q^{2}}{x s_{\text {tot }}}
$$

- Systematic uncertainties in σ_{L} are magnified by $1 / \Delta \varepsilon$.
- desire $\Delta \varepsilon>0.2$.
- $\varepsilon \approx 1$ is simple to access.
- 5 GeV (e-) on $50 \mathrm{GeV}(p)$ typically assumed, but the exact energies are almost immaterial.
- To access $\varepsilon<0.8$, one needs $y>0.5$.
- This can only be accessed with small $s_{\text {tot }}$, i.e. low proton collider energies ($5-15 \mathrm{GeV}$).

Scattered electron detection requirements

- High $\varepsilon \approx 1$ measurements ($5 \mathrm{GeV} e^{-}$on $50 \mathrm{GeV} p$):
- Scattered electron angles of $20^{\circ}-60^{\circ}$ (wrt incident electron beam).
- Low $\boldsymbol{\varepsilon}$ measurements ($2-6 \mathrm{GeV}$ e- on $5-15 \mathrm{GeV} p$):
- In some cases, need to detect scattered electrons up to 135°.
- Resolution requirements:

$$
\delta \mathrm{P} / \mathrm{P} \approx 3 \times 10^{-3} \quad \delta \theta \approx 1 \mathrm{mr} .
$$

Recoil detector requirements

- Easiest way to assure exclusivity of the $p\left(e, e^{\prime} \pi^{+}\right) n$ reaction is by detecting the recoil neutron.
- Parallel-kinematics measurements (e.g. pion form factor and QCD scaling tests):
- Neutrons are emitted at small angle ($\theta<0.35^{\circ}$), with momentum typically about 80% of the proton beam.
- Current discussions for mEIC detector envision neutron/hadron detector relatively close to the interaction region after an "ion dipole", and/or very far away \rightarrow I'll come back to this

Kinematic Reach (Pion Form Factor)

Assumptions:

- High ε : $5\left(e^{-}\right)$on $50(p)$.
- Low ε proton energies as noted.
- $\Delta \varepsilon \sim 0.22$.
- Scattered electron detection over 4π.
- Recoil neutrons detected at $\theta<0.35^{\circ}$ with high efficiency.
- Statistical unc: $\Delta \sigma_{\mathrm{L}} /$ $\sigma_{\mathrm{L}} \sim 5 \%$
- Systematic unc: 6\%/ $\Delta \varepsilon$.
- Approximately one year at $L=10^{34}$.

Excellent potential to study the QCD transition nearly over the whole range from the strong QCD regime to the hard QCD regime.

Kinematic Reach (Pion Form Factor)

Q^{2} reach comparable to that of recent $\gamma \gamma \rightarrow \pi^{0}$ transition form factor measurements from Babar

F_{π} Compatible with mEIC?

$\rightarrow \mathrm{E}_{\mathrm{e}}=3-11 \mathrm{GeV}$ (mostly ok)
$\rightarrow \mathrm{E}_{\mathrm{p}}=20-60 \mathrm{GeV}$ (not ok for low ε at lowest Q^{2})

Recoil neutron detection:

\rightarrow There will be a "dead zone" in which recoil neutrons cannot be detected $\rightarrow 0.1$ to 0.5 degrees likely not accessible ${ }^{1}$
\rightarrow Low ε points require neutron detection between $\theta_{\mathrm{n}}=0.2-0.3$ for Q^{2} below $12.5 \mathrm{GeV}^{2}$

${ }^{1}$ Rolf Ent, private communication

F_{π} Compatible with mEIC?

Kinematics may be adjusted to accommodate nominal (m)EIC parameters depending on ability to detect neutrons at VERY small angles \rightarrow In general, increasing W allows $\varepsilon=0.8$ for nominal mEIC energies

- This pushes neutrons very far forward
\rightarrow Example - shift W from 10 to 10.5 GeV at $\mathrm{Q}^{2}=10 \mathrm{GeV}^{2}$ allows us to use 3 GeV e on $20 \mathrm{GeV} p$ for $\varepsilon=0.8$; ($\theta_{\mathrm{n}}=0.01$ degrees)
-But at large $\varepsilon, \theta_{\mathrm{n}}$ becomes 0.005 degrees

Extract σ_{L} with no L-T separation?

In principle possible to extract $\mathrm{R}=\sigma_{\mathrm{L}} / \sigma_{\mathrm{T}}$ using polarization degrees of freedom

$$
\chi_{z}=\frac{1}{P_{e} \sqrt{1-\epsilon^{2}}} P_{z} \quad \begin{aligned}
& \chi_{z}=\text { z-component of proton } \\
& \text { "reduced" recoil polarization in } \\
& H\left(e, e^{\prime} p\right) \pi^{0}
\end{aligned}
$$

Schmieden and Titator [Eur. Phys. J. A 8, 15-17 (2000)]

A similar relation holds for pion production from a polarized target if we re-define χ_{z}

$$
\chi_{z}=\frac{1}{2 P_{e} P_{T} \sqrt{1-\epsilon^{2}}} A_{z}
$$

$A_{z}=$ target doublespin asymmetry

Isolating σ_{L} with Polarization D.O.F

$$
\sigma_{p o l} \sim P_{e} P_{p} \sqrt{\left(1-\epsilon^{2}\right)} A_{z}
$$

Nominal, high energies, ε very close to $1.0 \rightarrow$ destroys figure of merit for this technique
\rightarrow If we can adjust ε to 0.9 then $\sqrt{\left(1-\epsilon^{2}\right)} \rightarrow 0.44$
$\rightarrow \varepsilon=0.95 \quad \sqrt{\left(1-\epsilon^{2}\right)} \rightarrow 0.31$
Example: At $\mathrm{Q}^{2}=5$, lowest s of $3 \mathrm{GeV} \mathrm{e-} \mathrm{on} 20 \mathrm{GeV} p$ results in the smallest $\varepsilon=0.947$ (for which neutron is still easily detectable)

Additional issue: $A_{z}=$ component of p polarization parallel to $\mathrm{q} \rightarrow$ proton polarization direction ideally tunable at IP

Parallel Kinematics

Polarization relation for extracting $\sigma_{\llcorner } / \sigma_{\top}$ only applies in parallel kinematics - how quickly does this relation break down away from $\theta_{\mathrm{CM}}=0$?

MAID2007
$\mathrm{Q}^{2}=5 \mathrm{GeV} 2$
$\mathrm{W}=1.95 \mathrm{GeV}$

L/T Extraction

Extraction via this technique requires strict cuts on θ_{CM} $Q^{2}=5 \mathrm{GeV}^{2}$, (3 on 20): $\rightarrow 1$ degree CM cut corresponds to ~ 30 mrad in the lab
$Q^{2}=25 \mathrm{GeV}^{2}$, (5 on 50): $\rightarrow 1$ degree CM cut corresponds to 20 mrad in the lab

At 1 degree, polarization observable already $\sim 15 \%$ different from true value \rightarrow very tight cuts will be
 needed (0.1 degrees?)

Summary

- Measurement of F_{π} at EIC will be challenging
- Use of L-T separation made easier with energies outside of "nominal"
- Reduction of neutron detection "dead zone" would also be beneficial
- Extreme forward neutron detection (<0.01 degrees) would alleviate both of the above
- Another option: measure away from $-t_{\text {min }}$ so neutron angle >0.5 degrees \rightarrow phase space for this is quite small and -t pretty large (-t ~0.2)
- Measurement using polarization degrees of freedom seems, at first glance, feasible not impossible
- Very tight cuts on pion angle will be required
- More detailed studies required \rightarrow a model incorporating all response functions needed to simulate how close to parallel we must be

Extra

$F_{\pi}\left(Q^{2}\right)$ after JLAB 12 GeV Upgrade

- JLab 12 GeV upgrade will allow measurement of F_{π} up to $6 \mathrm{GeV}^{2}$
- Will we see the beginning of the transition to the perturbative regime?
- Additional point at $Q^{2}=1.6$ GeV^{2} will be closer to pole: will provide another constraint on $-t_{\text {min }}$ dependence
- $Q^{2}=0.3 \mathrm{GeV}^{2}$ point will be best direct test of agreement with elastic $\pi+e$ data

Low εF_{π} Kinematics

Q^{2}	P_{p}	P_{e}	t	\mathcal{E}	$\boldsymbol{\theta}_{\mathrm{n}}$
5	5	2	0.047	0.78	0.32
6	5	3	0.031	0.80	0.19
8	5	3	0.052	0.77	0.28
10	5	4	0.042	0.75	0.19
10	10	5	0.008	0.80	0.02
12.5	5	4	0.062	0.72	0.26
12.5	10	4	0.013	0.64	0.02
15	5	4	0.085	0.69	0.32
15	10	5	0.018	0.78	0.04
15	15	6	0.006	0.79	0.01
17.5	10	5	0.024	0.77	0.04
17.5	15	6	0.008	0.78	0.01
20	10	5	0.030	0.75	0.05
20	15	6	0.010	0.77	0.01
25	15	6	0.015	0.76	0.02

