Measurement of the Charged Pion Form Factor at EIC

Garth Huber and Dave Gaskell (U. Regina and JLab)

Electron-Ion Collider Workshop: Electron Nucleon Exclusive Reactions March 14, 2010

pQCD and the Pion Form Factor

At large Q^2 , pion form factor (F_{π}) can be calculated using perturbative QCD (pQCD)

$$F_{\pi}(Q^{2}) = \frac{4}{3}\pi\alpha_{s}\int_{0}^{1}dxdy\frac{2}{3}\frac{1}{xyQ^{2}}\phi(x)\phi(y)$$

at asymptotically high Q^2 , only the hardest portion of the wave function remains

$$\phi_{\pi}(x) \xrightarrow[Q^2 \to \infty]{} \frac{3f_{\pi}}{\sqrt{n_c}} x(1-x)$$

and F_{π} takes the very simple form

$$F_{\pi}(Q^2) \xrightarrow[Q^2 \to \infty]{} \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$$

G.P. Lepage, S.J. Brodsky, Phys.Lett. 87B(1979)359.

where f_{π} =93 MeV is the $\pi^+ \rightarrow \mu^+ \nu$ decay constant.

Measurement of π^+ **Form Factor – Low Q**²

- At low Q^2 , F_{π} can be measured *directly* via high energy elastic π^- scattering from atomic electrons
 - CERN SPS used 300 GeV pions to measure form factor up to $Q^2 = 0.25$ GeV²

[Amendolia et al, NPB277, 168 (1986)]

- These data used to extract the pion charge radius

 r_{π} = 0.657 ± 0.012 fm

- Maximum accessible Q² roughly proportional to pion beam energy
 - Q²=1 GeV² requires
 1000 GeV pion beam

Measurement of π^+ **Form Factor – Larger Q**²

- At larger Q², F_{π} must be measured indirectly using the "pion cloud" of the proton via $p(e,e'\pi^+)n$
 - At small –*t*, the pion pole process dominates the longitudinal cross section, σ_L
 - In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

- Drawbacks of the this technique
 - Isolating σ_L experimentally challenging
 - Theoretical uncertainty in form factor extraction

F_{π} Extraction from JLab data

VGL Regge Model

- Feynman propagator replaced by π and ρ Regge propagators.
 - Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Model parameters fixed from pion photoproduction.
- Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff).

$$F_{\pi}(Q^{2}) = \frac{1}{1 + Q^{2} / \Lambda_{\pi}^{2}}$$

Horn et al, PRL97, 192001,2006 dơ/dt (µb/GeV² $Q^2 = 1.60$ $Q^2 = 2.45$ 6 • σ₁ 2 σ_ Ţ 4 Ī 2 0 n 0.05 0.1 0.15 0.2 0.25 0.1 0.20.3 0.4 -t (GeV²) -t (GeV²) Λ_{π}^2 =0.513, 0.491 GeV², Λ_0^2 =1.7 GeV²

Unpolarized Pion Cross Section

L-T separation required to extract $\sigma_{\!L}$

L-T Separation in an e-p Collider

$$\varepsilon = \frac{2(1-y)}{1+(1-y)^2} \text{ where the fractional energy loss } y \approx \frac{Q^2}{xs_{tot}}$$

- Systematic uncertainties in σ_L are magnified by 1/Δε.
 desire Δε>0.2.
- ε≈1 is simple to access.
 - 5 GeV (e-) on 50 GeV (p) typically assumed, but the exact energies are almost immaterial.
- To access $\varepsilon < 0.8$, one needs y > 0.5.
 - This can only be accessed with small s_{tot} , i.e. low proton collider energies (5-15 GeV).

Scattered electron detection requirements

- High $\epsilon \approx 1$ measurements (5 GeV e^- on 50 GeV p):
 - Scattered electron angles of 20°-60° (wrt incident electron beam).
- Low ε measurements (2-6 GeV e- on 5-15 GeV p):
 - In some cases, need to detect scattered electrons up to 135°.
- Resolution requirements:

 $\delta P/P \approx 3x10^{-3} \quad \delta \theta \approx 1 mr.$

Recoil detector requirements

- Easiest way to assure exclusivity of the $p(e,e'\pi^+)n$ reaction is by detecting the recoil neutron.
- Parallel-kinematics measurements (e.g. pion form factor and QCD scaling tests):
 - Neutrons are emitted at small angle (θ <0.35°), with momentum typically about 80% of the proton beam.
 - Current discussions for mEIC detector envision neutron/hadron detector relatively close to the interaction region after an "ion dipole", and/or very far away → I'll come back to this

Kinematic Reach (Pion Form Factor)

Assumptions:

- **High ε**: 5(*e*⁻) on 50(*p*).
- Low ε proton energies as noted.
- Δε~0.22.
- Scattered electron detection over 4π .
- Recoil neutrons detected at $\theta < 0.35^{\circ}$ with high efficiency.
- Statistical unc: $\Delta \sigma_L / \sigma_L \sim 5\%$
- Systematic unc: 6%/ Δε.
- Approximately one year at L=10³⁴.

Excellent potential to study the QCD transition nearly over the whole range from the strong QCD regime to the hard QCD regime.

Kinematic Reach (Pion Form Factor)

Q² reach comparable to that of recent $\gamma\gamma \rightarrow \pi^0$ transition form factor measurements from Babar

F_{π} Compatible with mEIC?

From mEIC parameters document:

 \rightarrow E_e = 3-11 GeV (mostly ok)

$$\rightarrow$$
 E_p = 20-60 GeV (not ok for low ε at lowest Q²)

Recoil neutron detection:

 \rightarrow There will be a "dead zone" in which recoil neutrons cannot be detected \rightarrow 0.1 to 0.5 degrees likely not accessible¹ \rightarrow Low ε points require neutron detection between θ_n =0.2-0.3 for Q² below 12.5 GeV^2

¹Rolf Ent, private communication

F_{π} Compatible with mEIC?

Kinematics may be adjusted to accommodate nominal (m)EIC parameters depending on ability to detect neutrons at VERY small angles \rightarrow In general, increasing *W* allows ϵ =0.8 for nominal mEIC energies

This pushes neutrons very far forward

→Example – shift W from 10 to 10.5 GeV at Q²=10 GeV² allows us to use
3 GeV e on 20 GeV p for ε= 0.8; (θ_n=0.01 degrees)
But at large ε, θ_n becomes 0.005 degrees

Extract σ_L with no L-T separation?

In principle possible to extract R= σ_L/σ_T using polarization degrees of freedom

A similar relation holds for pion production from a polarized target if we re-define χ_z

 A_z = target doublespin asymmetry

Isolating σ_L with Polarization D.O.F

$$\sigma_{pol} \sim P_e P_p \sqrt{(1-\epsilon^2)} A_z$$

Nominal, high energies, ε very close to 1.0 \rightarrow destroys figure of merit for this technique \rightarrow If we can adjust ε to 0.9 then $\sqrt{(1 - \epsilon^2)} \rightarrow 0.44$ $\rightarrow \varepsilon = 0.95 \quad \sqrt{(1 - \epsilon^2)} \rightarrow 0.31$

Example: At $Q^2 = 5$, lowest *s* of 3 GeV *e*- on 20 GeV *p* results in the smallest $\varepsilon = 0.947$ (for which neutron is still easily detectable)

Additional issue: A_z = component of p polarization parallel to q \rightarrow proton polarization direction ideally tunable at IP

Parallel Kinematics

Polarization relation for extracting σ_L/σ_T only applies in parallel kinematics – how quickly does this relation break down away from $\theta_{CM} = 0$?

Thomas Jefferson National Accelerator Facility

L/T Extraction

Extraction via this technique requires strict cuts on θ_{CM}

Jefferson Lab

Summary

- Measurement of F_{π} at EIC will be challenging
 - Use of L-T separation made easier with energies outside of "nominal"
 - Reduction of neutron detection "dead zone" would also be beneficial
 - Extreme forward neutron detection (<0.01 degrees) would alleviate both of the above
 - Another option: measure away from –t_{min} so neutron angle > 0.5 degrees → phase space for this is quite small and –t pretty large (-t ~ 0.2)
- Measurement using polarization degrees of freedom seems, at first glance, feasible not impossible
 - Very tight cuts on pion angle will be required
 - More detailed studies required → a model incorporating all response functions needed to simulate how close to parallel we must be

Extra

$F_{\pi^+}(Q^2)$ after JLAB 12 GeV Upgrade

- JLab 12 GeV upgrade will allow measurement of F_π up to 6 GeV²
 - Will we see the beginning of the transition to the perturbative regime?
- Additional point at Q²=1.6 GeV² will be closer to pole: will provide another constraint on -t_{min} dependence
- Q²=0.3 GeV² point will be best direct test of agreement with elastic π+e data

Low εF_{π} Kinematics

Q ²	Pp	P _e	-t	3	θ _n
5	5	2	0.047	0.78	0.32
6	5	3	0.031	0.80	0.19
8	5	3	0.052	0.77	0.28
10	5	4	0.042	0.75	0.19
10	10	5	0.008	0.80	0.02
12.5	5	4	0.062	0.72	0.26
12.5	10	4	0.013	0.64	0.02
15	5	4	0.085	0.69	0.32
15	10	5	0.018	0.78	0.04
15	15	6	0.006	0.79	0.01
17.5	10	5	0.024	0.77	0.04
17.5	15	6	0.008	0.78	0.01
20	10	5	0.030	0.75	0.05
20	15	6	0.010	0.77	0.01
25	15	6	0.015	0.76	0.02

Thomas Jefferson National Accelerator Facility

