New string vacua from simple topologies

Alessandro Tomasiello

[Rutgers, March 11th, 2008]

Introduction

Supersymmetry must be spontaneously broken.

- Superpartners?
- $\Lambda > 0$ incompatible with unbroken supersymmetry.

Strategy:

Step 1. Start from vacuum with $\Lambda < 0$

Step 2.break susylift to $\Lambda > 0$

Examples:

[Kachru,Kallosh,Linde,Trivedi'03]

Step 2. using $D_3-\overline{D_3}$ pairs

[deWolfe,Giryavets,Kachru,Taylor'05]

Step 1. $AdS_4 \times CY_6$ in IIA using • classical ingredients • O6

Step 2. Not easy (no-go, in some sense)

[Hertzberg, Kachru, Taylor, Tegmark'07]

General caveat about step 2:

from the point of view of the 4d effective action

At Step 1. a tachyon might be acceptable (if above Breitenlohner-Freedman bound)

In this talk:

[only Step I. will be considered]

- $AdS_4 \times \mathbb{CP}^3$ vacua in IIA
- no orientifolds, no brane instantons
- infinitely many
- all moduli stabilized: few to begin with

unlike usual Freund-Rubin construction

(fluxes proportional to volume forms)

all fluxes will be on

Plan

• General considerations about supersymmetry

• Some geometry of \mathbb{CP}^3

• Finding the new vacua

Supersymmetry

(includes all the particular cases you know already:

[Klebanov,Strassler'00;Maldacena,Nuñez'00;...])

 $AdS_4 \times M_6$ slightly less so has to be 'generalized half-flat'

> [Graña, Minasian, Petrini, AT'06]

However, AdS vacua are easier to find.

Important subclass: "SU(3) vacua"

fluxes* are determined by two real numbers...

... and by a ... and by a
$$g_s F_0 = 5m \qquad \qquad g_s F_2 = \frac{1}{3}\tilde{m}J - W_2^{*}$$
 two-form

$$g_s F_4 = \frac{3}{2}mJ^2$$
 $g_s F_6 = -\frac{1}{2}\tilde{m}J^3$

 $H = 2m \text{Re}\Omega$

metric determined by
2-form
$$J$$
 and 3-form Ω
such that

$$dJ = 2\tilde{m} \text{Re}\Omega$$

$$dW_2^- =$$

$$dW_2^- =$$

$$\frac{2}{3} \left(\tilde{m}^2 - 15m^2\right) \text{Re}\Omega$$

*these are internal; external determined by duality

Some geometry of \mathbb{CP}^3

• topology

• complex structure and metric

Usually on \mathbb{CP}^3 : Fubini-Study (Kähler, Einstein) I_{FS} , g_{FS}

It can't be useful for us:

• susy
$$\Rightarrow dJ = 2\tilde{m} \text{Re} \Omega \Rightarrow I$$
 not integrable
(1,1) (3,0) + (0,3)

• I_{FS} has no globally defined (3,0)-form: $\nexists \Omega_{\text{FS}}$

We need a different (almost) complex structure not integrable

not but

$$I_{\rm FS} = \begin{pmatrix} I_2 & \\ & I_4 \end{pmatrix} \qquad \qquad I_{\rm susy} = \begin{pmatrix} -I_2 & \\ & I_4 \end{pmatrix}$$

• integrable

- not integrable
- $c_1 = 4$ $c_1 = 0$

• We will also change the metric

rather than
$$g_{FS} = g_2 + 2g_4$$

squashing parameter'
 $g_{susy} = R^2(g_2 + \sigma g_4)$
overall scale

notice that we have few parameters to begin with:

'stabilizing moduli' will be easy

Finding the new vacua

$$g_{\text{susy}}$$
 $J_{\text{susy}} \equiv g_{\text{susy}} I_{\text{susy}}$
 $I_{\text{susy}} = g_{\text{susy}} I_{\text{susy}}$
 (susy)
 $dJ = 2\tilde{m} \text{Re}\Omega$
 $d\text{Im}\Omega = \frac{8}{3}\tilde{m}J^2 + W_2^ dW_2^- = \frac{2}{3}(\tilde{m}^2 - 15m^2) \text{Re}\Omega$

with

$$m = \frac{1}{2R} \sqrt{\left(\sigma - \frac{2}{5}\right)\left(2 - \sigma\right)}$$

$$\tilde{m} = -\frac{1}{2R}(\sigma + 2)$$

$$(\sigma, R) \longrightarrow (m, \tilde{m}) \longrightarrow \text{fluxes}$$

Flux quantization

• *H* is exact $H = 2m \text{Re}\Omega$ $dJ = 2\tilde{m} \text{Re}\Omega$ $H = d\left(\frac{m}{\tilde{m}}J\right)$

• F_k are not closed $dF_k = H \wedge F_{k-2} \Rightarrow d(e^{-B \wedge F})_k = 0$ ||| $d\tilde{F}_k = 0$

four equations for g_s, R, σ

- not all n_k are allowed
- all three are fixed
- for each vacuum, \exists infinitely many others
- it can be arranged: $r \gg 1$, $g_s \ll 1$

Some lessons

- complexity of vacua not unique to Calabi-Yau
- "vacua first, then effective field theories"

KK reduction on general M_6 is hard!

• Calabi-Yau
it can be done on
$$M_6$$

• "twisted tori" [Scherk-Schwarz]

For the vacua we found, 4d theory not known

other than these three special cases one vector multiplet, [Kashani-Poor'07] $\mathcal{N} = 2$; one hypermultiplet

Conclusions

• "Landscape" of vacua not exclusive to Calabi-Yau's

• Even just classical physics goes a long way

• KK more difficult than finding vacua