The Cosmic Microwave Background as a Probe of the Early Universe and Novel Physics

David Spergel
Rutgers
March 5, 2013
Today’s Cosmological Model

The universe is simple. We can fit all of our observations of the universe with five numbers:

- density of atoms
- age of the universe
- density of matter
- amplitude of fluctuations
- scale dependence of fluctuations

The universe is strange
Quick History of the Universe

- Universe starts out hot, dense and filled with radiation
- As the universe expands, it cools.
 - During the first minutes, light elements form
 - After 300,000 years, atoms form
 - After 100,000,000 years, stars start to form
 - After 1 Billion years, galaxies and quasars
Thermal History of Universe

- Radiation
- Matter
- Neutral
- Ionized

ρ vs z

10^4 vs 10^3
Thin Surface of Last Scatter

Because recombination happens fast, the surface of last scatter is thin.

\[\tau(z) = 0.37 \left(\frac{z}{1000} \right)^{14.25} \]
Growth of Fluctuations

- Linear theory
- Basic elements have been understood for 30 years (Peebles, Sunyaev & Zeldovich)
- Numerical codes agree at better than 0.1% (Seljak et al. 2003)
SMALL-SCALE FLUCTUATIONS OF RELIC RADIATION*

R. A. SUNYAEV and YA. B. ZELDOVICH

Institute of Applied Mathematics, Academy of Sciences of the U.S.S.R., Moscow, U.S.S.R.

(Received 11 September, 1969)

Abstract. Perturbations of the matter density in a homogeneous and isotropic cosmological model which leads to the formation of galaxies should, at later stages of evolution, cause spatial fluctuations of relic radiation. Silk assumed that an adiabatic connection existed between the density perturbations at the moment of recombination of the initial plasma and fluctuations of the observed temperature of radiation $\delta T/T = \delta \rho_m/3 \rho_m$. It is shown in this article that such a simple connection is not applicable due to:

1. The long time of recombination;
2. The fact that when regions with $M < 10^{15} M_\odot$ become transparent for radiation, the optical depth to the observer is still large due to Thompson scattering;
3. The spasmodic increase of $\delta \rho_m/\rho_m$ in recombination.

As a result the expected temperature fluctuations of relic radiation should be smaller than adiabatic fluctuations. In this article the value of $\delta T/T$ arising from scattering of radiation on moving electrons is calculated; the velocity field is generated by adiabatic or entropy density perturbations. Fluctuations of the relic radiation due to secondary heating of the intergalactic gas are also estimated. A detailed investigation of the spectrum of fluctuations may, in principle, lead to an understanding of the nature of initial density perturbations since a distinct periodic dependence of the spectral density of perturbations on wavelength (mass) is peculiar to adiabatic perturbations. Practical observations are quite difficult due to the smallness of the effects and the presence of fluctuations connected with discrete sources of radio emission.
PRIMEVAL ADIABATIC PERTURBATION
IN AN EXPANDING UNIVERSE*

P. J. E. Peebles†
Joseph Henry Laboratories, Princeton University

AND

J. T. Yu‡
Goddard Institute for Space Studies, NASA, New York

Received 1970 January 5; revised 1970 April 1

ABSTRACT

The general qualitative behavior of linear, first-order density perturbations in a Friedmann-Lemaître cosmological model with radiation and matter has been known for some time in the various limiting situations. An exact quantitative calculation which traces the entire history of the density fluctuations is lacking because the usual approximations of a very short photon mean free path before plasma recombination, and a very long mean free path after, are inadequate. We present here results of the direct integration of the collision equation of the photon distribution function, which enable us to treat in detail the complicated regime of plasma recombination. Starting from an assumed initial power spectrum well before recombination, we obtain a final spectrum of density perturbations after recombination. The calculations are carried out for several general-relativity models and one scalar-tensor model. One can identify two characteristic masses in the final power spectrum: one is the mass within the Hubble radius \(c t \) at recombination, and the other results from the linear dissipation of the perturbations prior to recombination. Conceivably the first of these numbers is associated with the great rich clusters of galaxies, the second with the large galaxies. We compute also the expected residual irregularity in the radiation from the primeval fireball. If we assume that (1) the rich clusters formed from an initially adiabatic perturbation and (2) the fireball radiation has not been seriously perturbed after the epoch of recombination of the primeval plasma, then with an angular resolution of 1 minute of arc the rms fluctuation in antenna temperature should be at least \(\delta T/T = 0.00015 \).

I. INTRODUCTION
Evolution of CMB Fluctuations

- Linear Regime
- Boltzmann equation
- Numerical Codes available on the web
 - www.cmbfast.org

\[\Theta(\vec{x}, t) = \sum_{\vec{k}} A(\vec{k}, 0) \Theta(k, t) \exp(i \vec{k} \cdot \vec{x}) \]

Inflation: Gaussian Random Field

\[\langle A(\vec{k}) A^*(\vec{k}') \rangle = P(k) \delta^{(3)}(\vec{k} - \vec{k}') \]
Evolution of Fluctuations: Tight Coupling

\[
\dot{\Theta}_0 + \frac{\dot{a}}{a} \frac{R}{1 + R} \Theta_0 + k^2 c_s^2 \Theta_0 = F(\eta)
\]

\[
F(\eta) = -\Phi - \frac{\dot{a}}{a} \frac{R}{1 + R} \Phi - \frac{k^2}{3} \Psi
\]

\[
c_s^2 = \frac{1}{3} \frac{1}{1 + R}
\]

\[
R = \frac{3\rho_b}{4\rho_\gamma}
\]

Silk Damping

\[\Theta(\eta) = \Theta(\eta_1) \exp\left(\frac{-k^2}{k_D^2(\eta)}\right) \]

\[k_D^{-2}(\eta) = \frac{1}{6} \int_0^\eta d\eta \frac{1}{\tau} \frac{R^2 + 4(1 + R)/5}{(1 + R)^2} \]

Photon-electron fluid is not a “perfect” fluid

Photons diffuse out of hot spots and erase fluctuations on small scale
CMB Overview

- We can detect both CMB temperature and polarization fluctuations

\[T(\hat{n}) = \sum_{lm} a_{lm} Y_{lm}(\hat{n}) \]

\[c_l = \frac{1}{2l+1} \sum_{m=-l}^{l} |a_{lm}|^2 \]

\[T_l = \frac{l(l+1)c_l}{2\pi} \]

\[\theta \sim 180\degree \]
CMB Spectrum

Density $\Theta_0 + \Psi$

Velocity Θ_1

ISW Effect: Photons climbing out of decaying potentials gain energy
-early ISW (due to universe not being fully matter dominated)
-late ISW (due to vacuum energy)
Polarized Fluctuations

- Small angular scales: polarization signal scales as gradient in the velocity field
- Large angular scales: reionization signal is proportional to optical depth

\[\frac{d\sigma}{d\Omega} = \frac{3\sigma_T}{8\pi} |\hat{\epsilon}' \cdot \hat{\epsilon}|^2 \]

Arthur Kosowsky
ADIABATIC DENSITY FLUCTUATIONS
ADIABATIC DENSITY FLUCTUATIONS
ISOCURVATURE ENTROPY FLUCTUATIONS
ISOCURVATURE ENTROPY FLUCTUATIONS
Determining Basic Parameters

Baryon Density

\[\Omega_b h^2 = 0.015, 0.017, 0.031 \]

also measured through D/H
Determining Basic Parameters

Matter Density

$$\Omega_m h^2 = 0.16, .., 0.33$$
Angular Diameter Distance

\(w = -1.8, \ldots, -0.2 \)

When combined with measurement of matter density constrains data to a line in \(\Omega_m - w \) space
WMAP Spacecraft

- Thermally isolated instrument cylinder
- Secondary reflectors
- Focal plane assembly
- Feed horns
- Gregorian optics, 1.4 x 1.6 m primaries
- Back to back
- Upper omni antenna
- Passive thermal radiator
- Deployed solar array w/ web shielding
- Medium gain antennae
- Warm spacecraft with:
 - Instrument electronics
 - Attitude control/propulsion
 - Command/data handling
 - Battery and power control

Wednesday, March 6, 13
FOREGROUND
CORRECTED MAP
FOREGROUND CORRECTED MAP
What Have We Learned?

- Simple model fits a wide range of data (only 5 numbers)
- Age of universe: 13.7 Gyr
- Composition:
 - Atoms: 4%
 - Matter: 23%
 - Dark Energy: 73%
- Scale Invariant Fluctuations seed growth of galaxies
- First Stars formed \(~200\) Myr after the big bang

With WMAP9, we have narrowed the constraints on the six-dimensional parameter space by 40,000 from pre-WMAP CMB
Growth of Structure

National Center for Supercomputer Applications by Andrey Kravtsov

Wednesday, March 6, 13
Growth of Structure
Today’s Universe (Sloan Digital Sky Survey)
Hlozek et al. 2011
All of the pieces seem to fit....

- Supernova distances
- Hubble Constant
- Age of Universe
- Cluster Properties
- Gravitational Lenses
- Nuclear Abundances
- Lyman alpha forest
- Galaxy Velocities
The Universe is Simple?

- Fluctuations are accurately as Gaussian, Random Phase
- No evidence for spatial variations in fluctuation properties
- No evidence for interaction terms
- No sign of global topology
Models make predictions....

What will we see on small angular scales?
ACT

Led by Lyman Page

80 scientists on 5 continents

6-meter telescope on Cerro Tocco (5190 m) in the Atacama Desert. Observing the sky at 148, 218 and 277 Ghz.

Wednesday, March 6, 13
ACT and SPT probe smaller scales
Detecting Clusters and Sources

Original Map

Filtered Map

Cluster

Source
Some New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)
Some New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)
Some New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)
Some New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)
Gravitational Lensing of the CMB

Intervening large-scale potentials deflect CMB photons and distorts the CMB.

The rms deflection is about 2.7 arcmins, but the deflections are coherent on degree scales.

Wednesday, March 6, 13
Kinematic SZ Effect

Hand et al. 1203.4219

Wednesday, March 6, 13
Direct Detection of Dark Energy from the CMB

\begin{align*}
\Omega_\Lambda & \quad \Omega_M \\
0.0 & \quad 0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0
\end{align*}

\begin{align*}
p(\Omega_\Lambda) & \\
0.0 & \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0
\end{align*}
ACT Lensing Detection

- Lensing deflects photons and produce non-Gaussian signal:

\[T_{\text{obs}}(\hat{n}) = T(\hat{n} + \nabla \phi) \approx T(\hat{n}) + \phi \cdot \nabla T \]

- Non-trivial 4-pt function

- Lensing power spectrum is a measure of the amplitude of fluctuations along the line of sign

Das et al. arXiv 1103.0419
This is just the beginning of CMB Lensing Studies

Planck

ACTPOL

Wednesday, March 6, 13
CMB Lensing Studies:
New Tool for DE Studies

- Sensitive to early dark energy (Verde & Spergel 2002)
- Probes growth rate of structure from $z = 1000$
- Cross-correlation with large-scale structure:
 - Planck/BOSS $S/N > 20$
 - ACTPOL/PFS $S/N > 100$
Effective relativistic species

\[r_d^2 = \pi^2 \int_0^{a_*} \frac{da}{a^3 \sigma_T n_e H} \left[\frac{R^2 + \frac{16}{15} (1 + R)}{6(1 + R^2)} \right] \]

\[r_s = \int_0^{t_*} \frac{c_s}{a} dt = \int_0^{a_*} \frac{c_s da}{a^2 H} \]

\[R = \frac{3 \rho_b}{4 \rho_\gamma} \]

Hou, Keisler, Knox et al. 2011
Effective relativistic species

Consistent with 3 neutrino model.

Sievers, Hlozek, Nolta et al. 2013
Effective relativistic species

Sievers, Hlozek, Nolta et al. 2013

$N_{\text{eff}} = 2.79 \pm 0.56$
ACT-SPT Consistency

\[N_{\text{eff}} = 2.90 \pm 0.53 \quad (\text{WMAP9 + ACT}) \]
\[N_{\text{eff}} = 3.75 \pm 0.47 \quad (\text{WMAP9 + SPT}) \]
\[N_{\text{eff}} = 3.34 \pm 0.40 \quad (\text{WMAP9 + ACT + SPT}) \]

Calabrese, Hlozek, et al. 2013
Effective relativistic degrees of freedom not strongly correlated with neutrino mass.
Primordial Helium

Sievers, Hlozek, Nolta et al. 2013

$$Y_p = 0.225 \pm 0.034 \ (\text{WMAP7 + ACT})$$

More Y_p decreases electrons available for recombination, leading to suppression of power

Consistency relation is tested, rather than applied.

$$Y_p = 0.2485 + 0.0016[(273.9 \Omega_b h^2 - 6) + 100(S - 1)];$$

$$S = \sqrt{1 + (7/43)(N_{\text{eff}} - 3)}$$

Renée Hlozek – Caltech Tea Talk
Non-standard physics

Dark energy also acting like a ‘relativistic species’ at early times.

\[
\Omega_{de}(a) = \frac{\Omega_{de}(0) - \Omega_e(1 - a^{-3w_0})}{\Omega_{de}(0) + \Omega_m(0)a^{3w_0}} + \Omega_e(1 - a^{-3w_0})
\]

\[
w(a) = -\frac{1}{3(1 - \Omega_{de}(a))} \frac{d \ln \Omega_{de}(a)}{d \ln a} + \frac{a_{eq}}{3(a + a_{eq})}
\]

\[
\Omega_e < 0.025 \text{ (95\% C.L., WMAP7 + ACT + ACTDefl)}
\]

Sievers Hlozek, Nolta et al. 2013

Renée Hlozek – Caltech Tea Talk
Fine structure constant

\[\alpha = \frac{e^2}{\hbar c} \]

Claims of deviation from unity at low redshifts \(z \sim 2 \) using quasar absorption spectra (Webb et al.)

\[\sigma_T = \frac{1}{6\pi} \frac{e^4}{m_e^2} \]

\(\alpha \) changes the physics of recombination

Sievers Hlozek, Nolta et al. 2013

\[\frac{dx_e}{d\tau} = aC_r \left[\beta(T_b)(1 - x_e) - n_H \alpha^{(2)}(T_b)x_e^2 \right] \]

Sievers Hlozek, Nolta et al. 2013

\[\frac{\alpha}{\alpha_0} = 1.004 \pm 0.008 \]

Renée Hlozek – Caltech Tea Talk
Inflationary parameters

Sievers, Hlozek, Nolta et al. 2013

Changes in model for Recfast v1.5 compared to Recfast 1.4.2

\[r = \frac{\Delta_h^2(k_0)}{\Delta_R^2(k_0)} \]

\[r < 0.19 \text{ (WMAP7 + ACT + BAO + } H_0, 95\% \text{ CL)} \]
Damping

\[\ell^3 (\ell + 1) C_\ell / 2\pi^2 [\text{mK}^2] \]

Dunkley, Calabrese, Sievers, et al. 2013
Inflationary parameters

\[
\Delta^2_R(k) = \Delta^2_R(k_0) \left(\frac{k}{k_0} \right)^{n_s(k_0) - 1 + \frac{1}{2} \ln(k/k_0) \frac{dn}{d\ln k}}
\]

\[
\frac{dn_s}{d\ln k} = -16\epsilon\eta + 24\epsilon^2 + 2\xi_i^2
\]

Sievers, Hlozek, Nolta et al. 2013

Renée Hlozek – Caltech Tea Talk

Wednesday, March 6, 13
Constraints on the primordial power

Hlozek et al. 2011

Renée Hlozek – Caltech Tea Talk
Next Step: ACTPOL

- **Funded by NSF for 2011-2016**
- Camera now under construction... 25 times faster survey speed and polarization sensitivity
- **First light in 2012**
- Wide survey (~4000 sq. degrees)
- Deep survey (5 x 25 sq degree fields)
E + B modes

- Scalar fluctuations generate E-modes. They produce TT, TE and EE correlations.
- Tensor fluctuations generate equal amounts of E and B modes. They produce TT, EE and BB correlations.
- Gravitational lensing rotate polarization and converts E modes into B modes.

Figure from Dodelson et al. NAS White Paper astro-ph/0902.3796
Why Measure High l Polarization?

- More modes/more sky coverage leads to more accurate parameters.
- New discovery space (another e-fold of inflation)
- Sensitive to ionization history
- New Lens sheet: BB power spectrum (directly related to the convergence power spectrum) has a signal/noise of 3000 in an all-sky 0.1 uK^2
The New Frontier

Full sky polarization survey to $l = 5000$ would have 6 times the number of modes as Planck.
ACTPol’s Discovery Space

$k = 0.2-0.4 \text{ Mpc}$
ACTPOL Wide

- Survey 4000 sq degrees with sensitivity of 28 microK/arcmin (polarization) and 20 microK/arcmin (temperature)
- Overlap SDSS III spectroscopy and imaging (600,000 LRGs, 80,000 quasar spectra)
- SUMIRE program: HSC imaging (under construction) + PFS (under review)

Science goals:
- EE power spectrum out to $l \sim 2000$
- CMB lensing (and cross-correlations with low z surveys)
- Clusters
- Missing Baryons
- Dark energy (calibrate BAOs; measure power spectrum at $z \sim 1-2$)
ACTPOL Deep

- Deep observing program:
 - 5 2x15 degree regions.
 - Plan to target regions with extensive deep data
 - 4 uK/arcmin in polarization

- Science goals:
 - high l EE tail
 - stacking of astronomical objects
 - characterization of foregrounds
 - delensing gravity wave B-mode (see Smith et al. astro-ph0811.3916)

*Figure 5. The upper left panel shows the noise per multipole for Planck, ACT Wide and ACT Deep and the predicted EE and BB power spectrum. The other three panels show the EE, BB and TE spectrum with anticipated ACT (filled boxes, at places small on a linear scale, see Figure 2) and Planck errors (open boxes). When the Planck errors are smaller, only they (open boxes) are shown. The deep field errors are shown by the grey boxes and are only shown when they are smaller than the wide field errors. The other three panels show the expected signal/noise for the EE, TE and BB angular power spectra binned with $\Delta l = 50$.***
HyperSuprime Camera

- 1.5 x 1.5 degree camera on Subaru (8.3 meter telescope)
- First light in early 2012
- Survey begins in 2013 (~200-300 nights) grizY
 - Wide survey
 - 1500 sq deg i~25.8
 - Deep survey
 - 30 sq deg i ~27.2 (+Narrow Bands)
 - Ultradeep survey
 - 3 sq deg i~28 (+NB)
Figure 5.3: The cosmic shear power spectra for galaxy distribution divided in three redshift slices, $0 \leq z_1 \leq 0.6$, $0.6 \leq z_2 \leq 1$, and $z_3 \geq 1$. The bold solid curves show the auto-spectra of 3 redshift bins for a ΛCDM model, while the thin curves are the results for a model with the dark energy equation of state $w = -0.9$. The boxes around the bold curves show the expected measurement error due to the sample variance and the intrinsic galaxy shapes for the HSC-wide survey.
HSC-HSC: Solid
HSC-ACTPOL: Dashed

\(z \sim 1.5 \) (black)
\(z \sim 0.8 \) (green)
\(z \sim 0.4 \) (cyan)
ACT + HSC + XMM Deep

ACTPOL should get first light in late spring 2012 and being surveying in fall 2012.
XMM is already taking its XMM-XXL data
HSC will get first light in early spring 2012
The first target field is XMM-LSS field

- Herschel: 17 sq. deg
- XMM: 25 sq. deg
- UKIRT: J+K
- SWIRE
- VIPERS
- 2 uK-arcmin sensitivity
CMB Lensing–Optical Lensing Cross-correlation

Correlation Coeff

\[r = f(\text{processes}), \quad z = \{0.4, 0.8, 1.2, 1.6, 2\} \]
LSST + Advanced ACTPOL

From Sudeep Das
Prime Focus Spectrograph

- Lots of imaging surveys (DES, HSC, LSST)....need spectroscopy
- 2400 fibers feeding three spectrographs covering 3800 - 13000 with 3 Angstrom res.
- IPMU/NAOJ/Princeton/Caltech/Sao Paolo/Marseilles/Edinburgh

Wednesday, March 6, 13
Conclusions

- The Universe is strange, but simple
- CMB Lensing: The fun is only just starting! Data is about to rapidly improve:
 - Planck, ACTPOL, SPTPOL
- Polarization measurements enable precision lensing measurements for high z source plane
- Cross-correlations with Optical Lensing: New Approach to reduce Systematics
ACT consistency

Sievers, Hlozek, Nolta et al. 2013
Consistency between experiments

Calabrese, Hlozek, et al. 2013

Renée Hlozek – Caltech Tea Talk

Wednesday, March 6, 13
ACT consistency

Calabrese, Hlozek, et al. 2013