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Summary of results
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Physical consequences




Quantum Hall effect
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Integer quantum Hall state

® simplest example: noninteracting electrons filling n Landau
levels
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degeneracy 5 X Area,
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The state is completely gapped




Fractional quantum Hall state

n=3

n=|

Without interactions, ground state has huge degeneracy

Interactions somehow lift the degeneracy, make system gapped

at particular values of the filling factor
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High B limit in FQHE

® Theoretically interesting limit:
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All interesting physics happens in the lowest Landau level

® Many properties captured by Laughlin’s trial wave function
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Effective field theory

e Effective field theory: captures low-energy dynamics

® What are the low-energy degrees of freedom of a
quantum Hall state?

® there are none (in the bulk): energy gap

® Thus the effective Lagrangian is polynomial over
external fields

(we will consider only clean systems)




Chern-Simons action

® The orthodox point of view is that all universal
information about transport is encoded in the
Chern-Simons action:

S=— [dz e A,0,A,
47T

encodes Hall conductivity




Universality beyond CS

Higher-derivatives corrections: of dynamical, not topological
nature, hence non universal?

We will show that there is universality beyond the CS
action
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S is the “shift”: topological property of a state

S =1/v for Laughlin’s state

exact result, insensitive of interactions




Symmetries of NR theory

: : DTS, M.Wingate 2006
Microscopic theory
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Gauge invariance: ¢ — €' A4, — A, + 8,0

General coordinate invariance:
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Here € is time independent: =& (X)




NR diffeomorphism

® These transformations can be generalized to be
time-dependent: E=&(t,X)

0 = — L1

0Ag = —LeAg—Apt"
0A; = _»CgAi_mgikék
5gz‘j — _Lﬁgij

Galilean transformations: special case &=vit




Where does it come from

Start with complex scalar field

S = /dil? \/7( 'uya,u¢*al/¢ -+ ¢ ¢)

Take nonrelativistic limit:
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S = /dt dx \/g [;waw + Ay — gm (00T +i A1) (00 — iA0)] .




Relativistic diffeomorphism
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( =0: gauge transform ¢=eimer

L =i: general coordinate transformations




Interactions

® |nteractions can be introduced that preserve
nonrelativistic diffeomorphism

® interactions mediated by fields

® For example,Yukawa interactions
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|Is CS action invariant!?
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|Is CS action invariant!?

® (S action is gauge invariant
® (S action is Galilean invariant

® CS action is not diffeomorphism invariant
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A,, does not transform like a one-form




More on geometry

® System does not live in a 3D Riemann space
® 2D Riemann manifold at any time slice

® can parallel transport along equal-time slices, but
not between different times




Velocity vector v

Can use v to transform objects from one time slice to
another

Different v’s differ by a 2D vector: (7' —v") = —[¢,




Connection

with v one can define a connection:
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Improved gauge potentials

® With v one can construct a gauge potential that
transforms as a one-form
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v as fluid velocity

® We can thus require

€I E;

B

Ui:

This is a nonlinear equation for v
v+ (v-V)v=E+v xB

hydrodynamic equation of an forced ideal fluid
without pressure

Can be solved by iteration:




CS term corrected

S=— [dzer4,0,A,
47T
v mE?
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fixed coefficient
Kohn’s theorem

but it is not the only Chern-Simons term




Spin connection




The spin connection

parallel transporting
from x to x+dx




Spin connection: time component
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Spin connection as U(1) gauge field

® Under local rotation of the vielbein

\éa(x) W, — wy, — 0,0

1
curvature is flux of w Oiwe — Dowy = 5\/§R

w,, transforms like a (2+1)D one-form

Two more CS terms

e“”’\fiﬂ&,tm\ shift (Wen-Zee)
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Wen-Zee shift

Y
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Total particle number on a manifold:

Q = /d2x\fj —/dzxf(QﬁB+ER):VN¢+RX

On a sphere: Q=v(Ny+S8),

N\

IQH states: v=n, k=n?/2
Laughlin’s states: v=1/n, k=1/2




Shift for IQH states

Q =nNgy +n* =n(Ny +n)




Back to flat space
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Back to flat space

q2 correction to
Hall conductivity

EVB ~ VAoVB ~ ¢*AyB






Hall viscosity from WZ term
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derived by N.Read
previously




What is Hall viscosity!

Standard fluid dynamics: 9;p + 0;5° = 0 continuity eq.
05" + (%-Tij — (0 Navier-Stokes eq.

jt = pv

T = pv'v? + P& —nV;

In 2 spatial dimensions, it is possible to write

T = ... — g (eFVF 4 Ry breaks parity
dissipationless

Hall viscosity  (Avron Seiler Zograf)




Hall viscosity in picture

y dimension

boundary plate
(2D, moving) | velocity, u

shear stress, T

T

boundary plate (2D, stationary) Hall shear stress




Physical interpretation

® First term: Hall viscosity

additional force Fx~0x Txx
Hall effect: additional contribution to vy




Physical interpretation (ll)

® 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

1 cE’ ()

Q(x) = 5 0xvy = 53 0B = 2mcfl/e

Coriolis=Lorentz

Hall fluid is diamagnetic: de = —MdB

M is spatially dependent M=M(x)

Extra contribution to current j=czx VM



Current ~ gradient of magnetization




High B limit

® |n the limit of high magnetic field: €(B) known: free
fermions

® n Landau levels for IQH states

® first Landau level for FQH states with v<1

® \VWen-Zee shift is known

Ozy (C]) 3n 2 4 p4 _ matches explicit
<7xy(0) =1 ji_(qg) -+-C?(q 0 ) v=n calculations
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exact
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Conclusion

Quantum Hall states live in a special type of
geometric structure: global time, (g;;,v")

Symmetry determines the g2 correction to Hall
conductivity, related to Hall viscosity

Open questions:
® edge states!

® | owest Landau level: additional symmetries!?

® AdS/CFT realizations!?




Power counting
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