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Quantum Hall effect



Integer quantum Hall state

• simplest example: noninteracting electrons filling n Landau 
levels
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The state is completely gapped
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Fractional quantum Hall state

n=1

n=2

n=3

Without interactions, ground state has huge degeneracy

Interactions somehow lift the degeneracy, make system gapped

at particular values of the filling factor 
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High B limit in FQHE
• Theoretically interesting limit: 
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All interesting physics happens in the lowest Landau level

• Many properties captured by Laughlin’s trial wave function
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Effective field theory

• Effective field theory: captures low-energy dynamics

• What are the low-energy degrees of freedom of a 
quantum Hall state?

• there are none (in the bulk): energy gap

• Thus the effective Lagrangian is polynomial over 
external fields 

(we will consider only clean systems)



Chern-Simons action

• The orthodox point of view is that all universal 
information about transport is encoded in the 
Chern-Simons action:
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Universality beyond CS

Higher-derivatives corrections: of dynamical, not topological 
nature, hence non universal?

We will show that there is universality beyond the CS 
action
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S is the “shift”: topological property of a state

S = 1/⌫ for Laughlin’s state

exact result, insensitive of interactions



Symmetries of NR theory
Microscopic theory

Dµ� � (�µ � iAµ)�

Gauge invariance: � � ei�� Aµ � Aµ + �µ�

General coordinate invariance:
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Here ξ is time independent: ξ=ξ(x) 

�A0 = �k�kA0� L�A0

DTS, M.Wingate 2006 
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NR diffeomorphism

• These transformations can be generalized to be 
time-dependent: ξ=ξ(t,x)

�� = �L��

�A0 = �L�A0�Ak �̇k

�Ai = �L�Ai�mgik �̇k

�gij = �L�gij

Galilean transformations: special case  ξi=vit



Where does it come from
Start with complex scalar field
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Relativistic diffeomorphism

μ=0: gauge transform

μ=i: general coordinate transformations

xµ � xµ + �µ

� = e�imcx0 ��
2mc



Interactions

• Interactions can be introduced that preserve 
nonrelativistic diffeomorphism

• interactions mediated by fields

• For example, Yukawa interactions
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Is CS action invariant?
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Is CS action invariant?
• CS action is gauge invariant

• CS action is Galilean invariant

• CS action is not diffeomorphism invariant

�SCS =
�m
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dt d2x �ijEigjk �̇k

does not transform like a one-form Aµ



More on geometry

• System does not live in a 3D Riemann space

• 2D Riemann manifold at any time slice

• can parallel transport along equal-time slices, but 
not between different times



Velocity vector v

�vi = �[⇠, v]i + ⇠̇i

Can use v to transform objects from one time slice to 
another

Different v’s differ by a 2D vector: �(ṽi�vi) = �[⇠, ṽ�v]i
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Connection
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Improved gauge potentials

• With v one can construct a gauge potential that 
transforms as a one-form

Ãi = Ai +mvi

Ã0 = A0 �
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v as fluid velocity
• We can thus require

vi =
✏ijẼj

B̃

This is a nonlinear equation for v

v̇ + (v ·r)v = E+ v ⇥B

hydrodynamic equation of an forced ideal fluid 
without pressure

Can be solved by iteration: vi =
✏ijEj
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CS term corrected
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fixed coefficient
Kohn’s theorem

but it is not the only Chern-Simons term



Spin connection
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The spin connection
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Spin connection: time component
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Spin connection as U(1) gauge field

• Under local rotation of the vielbein

↵(x) !µ ! !µ � @µ↵

curvature is flux of �1�2 � �2�1 =
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Two more CS terms
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Wen-Zee shift
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Shift for IQH states

N� + 1

N� + 3

N� + 5

Q = nN� + n2 = n(N� + n)



Back to flat space
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Back to flat space
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Ã @Ã
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Hall viscosity from WZ term

SWZ = � �B
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What is Hall viscosity?

ji = �vi

T ij = �vivj + P �ij � �Vij Vij =
1
2
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In 2 spatial dimensions, it is possible to write

T ij = · · ·� �H(�ikV kj + �jkV ki)

Hall viscosity (Avron Seiler Zograf) 

breaks parity

Standard fluid dynamics: �t� + �ij
i = 0

�tj
i + �jT

ij = 0
continuity eq.

Navier-Stokes eq.

dissipationless



Hall viscosity in picture

Hall shear stress



Physical interpretation

• First term: Hall viscosity

y
v

E
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v
x

�xvy + �yvx �= 0

Txx = Txx(x) �= 0

additional force Fx~∂x Txx

Hall effect: additional contribution to vy



Physical interpretation (II)

• 2nd term: more complicated interpretation

Fluid has nonzero angular velocity

�(x) =
1
2
�xvy = �cE�

x(x)
2B

�B = 2mc�/e

Coriolis=Lorentz

Hall fluid is diamagnetic: d� = �MdB

M is spatially dependent M=M(x)

Extra contribution to current j = c ẑ��M



Current ~ gradient of magnetization

j = c ẑ��M



High B limit

• In the limit of high magnetic field: ϵ(B) known: free 
fermions

• n Landau levels for IQH states

• first Landau level for FQH states with ν<1

• Wen-Zee shift is known 
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Conclusion

• Quantum Hall states live in a special type of 
geometric structure: global time, 

• Symmetry determines the q^2 correction to Hall 
conductivity, related to Hall viscosity

• Open questions:

• edge states?

• Lowest Landau level: additional symmetries?

• AdS/CFT realizations? 

(gij , v
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