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e Ample gravitational
evidence, both direct
and indirect, that dark
matter comprises a
large fraction of the
universe.



Particle properties of dark matter

e Thermal WIMPS:
e connection to EW scale well-motivated
o (relatively) few unknown parameters

¢ largely inform ongoing and exciting DM experimental
programs

e Nontrivial dark sectors

e may address other outstanding problems in the SM (e.g.
baryogenesis)

e may address puzzles in cosmological structure formation?
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Dark matter with long-range interactions

Dark matter can have self-interactions
Nontrivial cosmological constraints (light degrees of
freedom, acoustic oscillations, ...)

Nontrivial galactic structure constraints

e Famously, Bullet Cluster

e Halo shapes

o ..largely if only < 10% of DM has appreciable
self-interactions

Nontrivial particle constraints (kinetic mixing, ...)
Nonetheless, dark sectors with e.g. unbroken U(1)p still



¢ If DM has long range interactions, it may
energy via dark boson emission:

Dissipative dark matter
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Dissipative dark matter

e Approximately, cooling via dark radiation continues until

. . ’2 m
dark recombination, Tp < Bxc = %2 c

e baryonic matter: further atomic and molecular
heating/cooling. Neglect

e Then, velocity dispersion
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Dissipative dark matter

¢ Efficient cooling requires a light particle C with abundance
: asymmetric

e Assume endpoint of cooling is rotationally supported, as
for baryonic matter

e Depending on spectrum and interaction strength, DM may
be partially and/or non-adiabatically cooled



Dissipative dark matter: summary

Final picture:

e Subdominant partially ionized self-interacting dark sector
consisting of

¢ alight (< MeV) particle C with an asymmetric relic
abundance

 aheavy (> 10 GeV) particle X and its anti-particle X with
(in general) a symmetric as well as an asymmetric relic
abundance

e with equal and opposite charges under an U)o

e Asymmetric X, C (partially) bound into dark atoms

e partially or wholly cooled with velocity dispersion v in the
physically interesting range 10% — 10%c
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Observing dissipative dark matter

How can we detect the presence of a collapsed dark halo
component?

e gravitational: thin, dense disks constrained by surface
density studies

* constrains: 722 ~ 0.05.

e particle: Interactions with our sector are not intrinsic to relic
density or dissipative dynamics.

e X interactions with nucleons:
o o(XX—SM)
~ o(xX—anything)

e See how direct and indirect detection can constrain DDM.

o B



Some numbers

Typical galactic velocities:

Vsum = H05 km/s
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Some numbers

Typical galactic velocities:

Uspm = 505 km/s
Vpot = 220km/s ——

Cylindrical cow: model DDM velocity distribution as rotational +
Maxwellian, with dispersion set by cooling



Direct detection

— CDMSSi (1304.4279) 4
— CDMS Ge low energy (1011.2482)

— Xenon10 S2 only (1104.3088)
— DAMA (1002.1028)

e Cooled DM reduces
available kinetic energy for
DM-nucleon scattering 0001}

Vx/C

e For a given energy
threshold E;,,, experiment
is only sensitive to

2 Etprmn \
VDM = 5,2 00001k, ‘ -~

my [GeV]



Direct detection

CDMS Gelow threshold
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Direct detection

Xenon10 S2 only
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Indirect detection: solar capture

Usual story of solar capture:

e Captured DM in massive bodies:

dN

—— = Cy — CaN?
at N A
* Steady state abundance Neg = / &
e — Annihilation rate simply related to nuclear

cross-section, mass

e Signal: localized neutrino flux (spectrum dependent on
annihilation mode)



Capture of dark matter

Capture rates:

o Capture: w? — A? < v, (r)

e Rate atr:
Q(w) = ny(r)w [ dcosb o(cos 9)’A2(c039)>W2*Vgsc(")



Capture of Dark Matter

 Total capture rate depends on

e velocity distribution outside potential well: 7(u)
e capture rate at r: Q(w)
e depth of potential well: w? = % + Veso(r)?

dC  f(u)
dudvV  u
e For constant cross-section op:

mp — my)?
Q(w) = nn(r)onw (Vgsc - WU2>

° V®7esc(R®) — 618 km/S



Capture of self-interacting DM

¢ Additional process

aN )
E—CN —CAN

alters simple relation of flux to Cy
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Capture of self-interacting DM

¢ Additional process

aN
i — CaN?
o Cn Ca

alters simple relation of flux to Cy
e Cooled? v < Vg enhances low-velocity tails

o can lead to strong
enhancements



Self-capture and evaporation

, 1 > 9
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o Capture: w? — A% < v2,(r)

o EjeCtion: AZ > VSSC(I’) (Zentner)



Cross-sections for capture

« Rutherford X-X, X-X scattering cross-section gives

e Regulation of t-channel singularity:

e in a single collision: finite scattering angle required for

capture
e integrating over incident DM, by : net dark charge
neutrality in the sun

o dark Debye wavelength: \p = */4;%

o Eventually self-capture saturates, (ocap)N = 77§



Symmetric self-interacting DM

Solution for self-interacting DM: N(t) = - vtann(t/7)

= T/r—Cgtanh(i/7)
1/7=1/CnCa— C2

If Cy > Cgs then largely the same as non-self-interacting

with

If Cs > Cy then steady-state annihilation rate becomes

4C2
r — CiAS
Self-capture can dominate for if oy is not too

large



Asymmetric self-interacting DM

e Asymmetric DM: accumulation without annihilation
o N(t) = %’;(ecsf — 1) grows rapidly
o saturation of self-capture at t., linear afterwards
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Dissipative DM in the sun

e The general case interpolates:
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Neutrino telescope bounds

e Best bounds from IceCube:
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Neutrino telescope bounds

e Best bounds from lceCube:
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DM in the Earth

¢ Additional information from captured DM annihilating in the
Earth

e Shallow potential well highly sensitive to cooled velocity
dispersions: Vesc o = 11 km/s

e Cannot consider in isolation: Earth sits inside Sun’s
potential well



Nuclear capture

e Cooled DM population enhances nuclear capture in Earth:
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Self-capture and evaporation

e Since Vesc.» < Vimin, DM self interaction is dominated by
of captured DM
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e Nuclear capture dominates



Conclusions

Dissipative dynamics in dark sector an interesting and still
open possibility
Qualitatively distinct predictions for local direct and indirect
signals
Direct detection: cooled DM gives lower energy recoils

o Z-strength cross-sections still allowed if sufficient cooling
Solar capture: enhanced for kinematic as well as
dynamical reasons

o Constraints more stringent than from direct detection

Earth capture: signal becomes observable for cooled DM

¢ potentially powerful cross-check of particle and
astrophysical properties



