Looking for Dissipative Dark Matter

Jessie Shelton

Harvard University

J. Fan, A. Katz, JS work in progress

Rutgers October 22, 2013

Dark Matter

 Ample gravitational evidence, both direct and indirect, that dark matter comprises a large fraction of the universe.

Particle properties of dark matter

- Thermal WIMPS:
 - · connection to EW scale well-motivated
 - (relatively) few unknown parameters
 - largely inform ongoing and exciting DM experimental programs
- Nontrivial dark sectors
 - may address other outstanding problems in the SM (e.g. baryogenesis)
 - may address puzzles in cosmological structure formation?
 - can yield qualitatively distinct signals

- Dark matter can have long range self-interactions
- Nontrivial cosmological constraints (light degrees of freedom, acoustic oscillations, ...)

- Dark matter can have long range self-interactions
- Nontrivial cosmological constraints (light degrees of freedom, acoustic oscillations, ...)
- Nontrivial galactic structure constraints
 - Famously, Bullet Cluster
 - Halo shapes (Peter, Rocha, Bullock, Kaplinghat)
 - …largely obviated if only $\lesssim 10\%$ of DM has appreciable self-interactions

- Dark matter can have long range self-interactions
- Nontrivial cosmological constraints (light degrees of freedom, acoustic oscillations, ...)
- Nontrivial galactic structure constraints
 - Famously, Bullet Cluster
 - Halo shapes (Peter, Rocha, Bullock, Kaplinghat)
 - …largely obviated if only $\lesssim 10\%$ of DM has appreciable self-interactions
- Nontrivial particle constraints (kinetic mixing, ...)

- Dark matter can have long range self-interactions
- Nontrivial cosmological constraints (light degrees of freedom, acoustic oscillations, ...)
- Nontrivial galactic structure constraints
 - Famously, Bullet Cluster
 - Halo shapes (Peter, Rocha, Bullock, Kaplinghat)
 - …largely obviated if only $\lesssim 10\%$ of DM has appreciable self-interactions
- Nontrivial particle constraints (kinetic mixing, ...)
- Nonetheless, dark sectors with e.g. unbroken *U*(1)_D still consistent with all astrophysical data

Dissipative dark matter

• If DM has long range interactions, it may cool, losing energy via dark boson emission:

Dissipative dark matter

- Approximately, cooling via dark radiation continues until dark recombination, $T_D \lesssim B_{XC} = \frac{\alpha_D^2 m_C}{2}$
 - baryonic matter: further atomic and molecular heating/cooling. Neglect
- Then, velocity dispersion $\bar{v} = \sqrt{\frac{3T_D}{m_X}}$

$$ar{v} = 10^{-4} c rac{lpha_D}{0.01} \sqrt{rac{r}{0.1} rac{m_C}{ ext{MeV}} rac{ ext{GeV}}{m_X}}$$

⁽Fan, Katz, Randall, Reese)

Dissipative dark matter

- Efficient cooling requires a light particle *C* with abundance greater than thermal: asymmetric
- Assume endpoint of cooling is rotationally supported, as for baryonic matter
- Depending on spectrum and interaction strength, DM may be partially and/or non-adiabatically cooled

(Fan, Katz, Randall, Reese)

Dissipative dark matter: summary

Final picture:

- Subdominant partially ionized self-interacting dark sector consisting of
 - a light (≲ MeV) particle *C* with an asymmetric relic abundance
 - a heavy (\gtrsim 10 GeV) particle X and its anti-particle \bar{X} with (in general) a symmetric as well as an asymmetric relic abundance
 - with equal and opposite charges under an unbroken U(1)_D
- Asymmetric X, C (partially) bound into dark atoms
- partially or wholly cooled with velocity dispersion \bar{v} in the physically interesting range $10^3 10^4 c$

Observing dissipative dark matter

How can we detect the presence of a collapsed dark halo component?

- gravitational: thin, dense disks constrained by surface density studies (Weber, de Boer; Bovy, Rix)
 - constrains: $\frac{\Omega_{DDDM}}{\Omega_{DM}} \sim 0.05.$

Observing dissipative dark matter

How can we detect the presence of a collapsed dark halo component?

- gravitational: thin, dense disks constrained by surface density studies (Weber, de Boer; Bovy, Rix)
 - constrains: $\frac{\Omega_{DDDM}}{\Omega_{DM}} \sim 0.05$.
- particle: Interactions with our sector are not intrinsic to relic density or dissipative dynamics.
 - X interactions with nucleons: σ_N

•
$$\mathcal{B} = \frac{\sigma(X\bar{X} \to SM)}{\sigma(X\bar{X} \to anything)}$$

Observing dissipative dark matter

How can we detect the presence of a collapsed dark halo component?

- gravitational: thin, dense disks constrained by surface density studies (Weber, de Boer; Bovy, Rix)
 - constrains: $\frac{\Omega_{DDDM}}{\Omega_{DM}} \sim 0.05$.
- particle: Interactions with our sector are not intrinsic to relic density or dissipative dynamics.
 - X interactions with nucleons: σ_N
 - $\mathcal{B} = \frac{\sigma(X\bar{X} \to SM)}{\sigma(X\bar{X} \to anything)}$
- See how direct and indirect detection can constrain DDM.

Some numbers

Typical galactic velocities:

 $\bar{v}_{SHM} = 505\,\mathrm{km/s}$

Some numbers

Typical galactic velocities:

 $\bar{v}_{SHM} = 505 \,\mathrm{km/s}$

Cylindrical cow: model DDM velocity distribution as rotational + Maxwellian, with dispersion set by cooling

Direct detection

- Cooled DM reduces available kinetic energy for DM-nucleon scattering
- For a given energy threshold *E_{thr}*, experiment is only sensitive to

$$v_{DM}^2 > rac{E_{thr}m_N}{2\mu^2}$$

(See also: Fox, Liu, Weiner; Fox, Kribs, Tait; McCollough, Randall)

Direct detection

Bounds from CDMS-Ge low threshhold analysis assuming Maxwellian halo

Direct detection

Bounds from XENON10 S2 analysis assuming Maxwellian halo

Indirect detection: solar capture

Usual story of solar capture:

• Captured DM in massive bodies:

$$\frac{dN}{dt} = C_N - C_A N^2$$

- Steady state abundance $N_{eq} = \sqrt{\frac{C_N}{C_A}}$
- \Rightarrow Annihilation rate $\Gamma_A = C_N$ simply related to nuclear cross-section, mass
- Signal: localized neutrino flux (spectrum dependent on annihilation mode)

Capture of dark matter

Capture rates:

- Capture: w² − Δ² < v²_{esc}(r)
- Rate at r: $\Omega(w) = n_N(r)w \int d\cos\theta \,\sigma(\cos\theta) \big|_{\Delta^2(\cos\theta) > w^2 - v_{esc}^2(r)}$

Capture of Dark Matter

- Total capture rate depends on
 - velocity distribution outside potential well: f(u)
 - capture rate at $r: \Omega(w)$
 - depth of potential well: $w^2 = u^2 + v_{esc}(r)^2$

$$\frac{dC}{du\,dV}=\frac{f(u)}{u}\,w\,\Omega(w)$$

• For constant cross-section σ_N :

$$\Omega(w) = n_N(r)\sigma_N w \left(v_{esc}^2 - \frac{(m_D - m_N)^2}{4m_D m_N} u^2 \right)$$

• $v_{\odot,esc}(R_{\odot}) = 618$ km/s

Capture of self-interacting DM

Additional self-capture process

$$\frac{dN}{dt} = C_N + C_S N - C_A N^2$$

alters simple relation of flux to C_N (Zentner)

Capture of self-interacting DM

Additional self-capture process

$$\frac{dN}{dt} = C_N + C_S N - C_A N^2$$

alters simple relation of flux to C_N (Zentner)

• Cooled? $\bar{v} \ll \bar{v}_{SHM}$ enhances low-velocity tails

Capture of self-interacting DM

Additional self-capture process

$$\frac{dN}{dt} = C_N + C_S N - C_A N^2$$

alters simple relation of flux to C_N (Zentner)

- Cooled? $\bar{v} \ll \bar{v}_{SHM}$ enhances low-velocity tails
- Velocity dependent self-scattering can lead to strong enhancements

Self-capture and evaporation

- Capture: w² − Δ² < v²_{esc}(r)
- Ejection: $\Delta^2 > v_{esc}^2(r)$ (Zentner)

Cross-sections for capture

- Rutherford X-X, X-X scattering cross-section gives enhancement at small angles
- Regulation of *t*-channel singularity:
 - in a single collision: finite scattering angle required for capture
 - integrating over incident DM, by screening: net dark charge neutrality in the sun
 - dark Debye wavelength: $\lambda_D = \sqrt{\frac{T_{\odot}}{4\pi\alpha_D n_D}}$
- Eventually self-capture saturates, $\langle \sigma_{cap} \rangle N = \pi r_D^2$

Symmetric self-interacting DM

- Solution for self-interacting DM: $N(t) = \frac{C_N \tanh(t/\tau)}{1/\tau C_S \tanh(t/\tau)}$ with $1/\tau = \sqrt{C_N C_A - C_S^2}$ (Zentner)
- If $C_N \gg C_S$ then largely the same as non-self-interacting
- If $C_S \gg C_N$ then steady-state annihilation rate becomes $\Gamma = \frac{4C_S^2}{C_A}$
- Self-capture can dominate for $\bar{v} \sim 10^{-4}$ if σ_N is not too large

Asymmetric self-interacting DM

- Asymmetric DM: accumulation without annihilation
- $N(t) = \frac{C_N}{C_S}(e^{C_S t} 1)$ grows rapidly
 - saturation of self-capture at t_{*}, linear afterwards

 $\sigma_{\rm n} = 10^{-40} \text{ cm}^2, \, \overline{\rm v} = {\rm v}_{\rm rel} = 10^{-4}, \, \rho_{\rm X} = 0.4 \text{ GeV/cm}^3$

Dissipative DM in the sun

• The general case interpolates:

 $m_X = 100 \text{ GeV}, \sigma_n = 10^{-40} \text{ cm}^2, \overline{v} = v_{rel} = 10^{-4}, \rho_{\overline{v}}/\rho_X = 0.9$

Neutrino telescope bounds

Best bounds from IceCube:

Neutrino telescope bounds

Best bounds from IceCube:

DM in the Earth

- Additional information from captured DM annihilating in the Earth
- Shallow potential well highly sensitive to cooled velocity dispersions: v_{esc,⊕} = 11 km/s
- Cannot consider in isolation: Earth sits inside Sun's potential well

• Minimum relative velocity
$$v_{min} = \sqrt{\frac{2G_N M_{\odot}}{R_{orb}}} - v_{orb}$$

Nuclear capture

Cooled DM population enhances nuclear capture in Earth:

Enhancement of capture rate on iron for $\bar{\nu} = 10^{-4}c$ relative to $\bar{\nu} = 10^{-3}c$ (blue) and $\bar{\nu} = 5 \times 10^{-4}c$ (purple)

(See also: Bruch, Peter, Read, Baudis, Lake)

Self-capture and evaporation

Since v_{esc,⊕} ≲ v_{min}, DM self interaction is dominated by ejection of captured DM

Nuclear capture dominates

Conclusions

- Dissipative dynamics in dark sector an interesting and still open possibility
- Qualitatively distinct predictions for local direct and indirect signals
- Direct detection: cooled DM gives lower energy recoils
 - Z-strength cross-sections still allowed if sufficient cooling
- Solar capture: enhanced for kinematic as well as dynamical reasons
 - · Constraints more stringent than from direct detection
- Earth capture: signal becomes observable for cooled DM
 - potentially powerful cross-check of particle and astrophysical properties