Jets, our window on partons at the LHC

Gavin Salam

LPTHE, Universities of Paris VI and VII and CNRS

Work (in progress) with M. Cacciari, M. Dasgupta, L. Magnea, G. Soyez

Rutgers University — New High Energy Theory Seminar
27 November 2007
Partons — quarks and gluons — are key concepts of QCD.

- It’s in terms of quark and gluon fields that we write the Lagrangian.
- Perturbative QCD *only* deals with partons.
- Concept of parton powerful even beyond perturbation theory:
 - hadron classifications
 - exotic states, e.g. colour glass condensate (high gluon densities)
Yet it is surprisingly difficult to ascribe unambiguous meaning to partons.

- Not an asymptotic state of the theory
- Because of confinement
- But also even in perturbation theory because of collinear divergences (in massless approx.)

QCD coupling has related problems (probability of emitting a gluon...
Despite this, there are two decent ways of “seeing” partons;

- Scatter some hard probe off them, e.g. a virtual photon Deep Inelastic Scattering (DIS)
- See traces of them in the final state jets

In each case ill-defined nature of a parton translates into ambiguity in the partonic interpretation of what you see.
In final state, trace of original partons is visible as collimated bunches of energetic hadrons

Picture illustrates $e^+ e^- \rightarrow Z \rightarrow q\bar{q}$

Information not just visual, but also quantitative

\[E \sim \frac{m_Z}{2} \]
Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^8 events?
Jets are what we see.
Clearly (?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^8 events?
1. Introduction

Seeing v. defining jets

Jets are what we see.
Clearly (?) 2 jets here

How many jets do you see?
Do you really want to ask yourself this question for 10^8 events?
A jet definition is a systematic procedure that projects away the multiparticle dynamics, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a physical single hard quark or gluon: with good definitions their properties (multiplicity, energies, [flavour]) are

- finite at any order of perturbation theory
- insensitive to the parton → hadron transition

NB: finiteness ↔ set of jets depends on jet def.
A jet definition is a systematic procedure that projects away the multiparticle dynamics, so as to leave a simple picture of what happened in an event:

Jets are as close as we can get to a physical single hard quark or gluon: with good definitions their properties (multiplicity, energies, [flavour]) are

- finite at any order of perturbation theory
- insensitive to the parton \rightarrow hadron transition

NB: finiteness \leftrightarrow set of jets depends on jet def.
A jet definition is a systematic procedure that **projects away the multiparticle dynamics**, so as to leave a simple picture of what happened in an event:

Jets are *as close as we can get to a physical single hard quark or gluon*: with good definitions their properties (multiplicity, energies, [flavour]) are

- finite at any order of perturbation theory
- insensitive to the parton → hadron transition

NB: finiteness \leftrightarrow set of jets depends on jet def.
1. Introduction

1. Seeing Partons

Why does it work?

Proper jet definition gives results that are approximately invariant with respect to:

- soft and collinear branching
 - So divergent real and virtual contributions cancel
 - IR & Collinear safety
- local reshuffling of momenta

Hadronisation
Why does it work?

Proper jet definition gives results that are approximately invariant with respect to:

- soft and collinear branching

 So divergent real and virtual contributions cancel

 IR & Collinear safety

- local reshuffling of momenta

 Hadronisation
Why does it work?

Proper jet definition gives results that are approximately invariant with respect to

- soft and collinear branching
 - So divergent real and virtual contributions cancel
 - IR & Collinear safety

- local reshuffling of momenta

Hadronisation
Proper jet definition gives results that are approximately invariant with respect to:

- soft and collinear branching
 So divergent real and virtual contributions cancel
 IR & Collinear safety

- local reshuffling of momenta

Hadronisation
Why does it work?

Proper jet definition gives results that are approximately invariant with respect to:

- soft and collinear branching
 So divergent real and virtual contributions cancel
 IR & Collinear safety

- local reshuffling of momenta

Hadronisation
Why does it work?

Proper jet definition gives results that are approximately invariant with respect to:

- soft and collinear branching
 So divergent real and virtual contributions cancel
 IR & Collinear safety
- local reshuffling of momenta

Hadronisation
Heavy objects: multi-jet final-states

- 10^7 $t\bar{t}$ pairs for 10 fb$^{-1}$ (1 year, low-lumi)
- Vast # of QCD multijet events

<table>
<thead>
<tr>
<th># jets</th>
<th># events for 10 fb$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>$9 \cdot 10^8$</td>
</tr>
<tr>
<td>4</td>
<td>$7 \cdot 10^7$</td>
</tr>
<tr>
<td>5</td>
<td>$6 \cdot 10^6$</td>
</tr>
<tr>
<td>6</td>
<td>$3 \cdot 10^5$</td>
</tr>
<tr>
<td>7</td>
<td>$2 \cdot 10^4$</td>
</tr>
<tr>
<td>8</td>
<td>$2 \cdot 10^3$</td>
</tr>
</tbody>
</table>

Tree level
\[p_t(jet) > 60 \text{ GeV}, \theta_{ij} > 30 \text{ deg}, |y_{ij}| < 3 \]

Draggiotis, Kleiss & Papadopoulos '02

All-hadronic
(BR~46%, huge bckg)

picture: Juste LP ’05
Tree-level calculations with many partons / W / Z / H / etc.

- Alpgen
- Madgraph
- Sherpa
- Helas/Helac
- [Twistor-derived rules]

Monte Carlo event generators

- Pythia (f77), Pythia8 (C++)
- Herwig (f77), Herwig++ (C++)
- Ariadne
- Sherpa
- With NLO matching: MC@NLO, POWHEG, (Vincia, GeNeVA, . . .)

Each tool associated with 3–15 people: total of ~ 50
1. Introduction

2. Jets at LHC

Experimenters’ priorities

1. $pp \rightarrow WW + \text{jet}$ Les Houches

2. $pp \rightarrow H + 2 \text{jets}$
 ▶ Background to VBF Higgs production

3. $pp \rightarrow t\bar{t}b\bar{b}$

4. $pp \rightarrow t\bar{t} + 2 \text{jets}$
 ▶ Background to $t\bar{t}H$

5. $pp \rightarrow WW b\bar{b}$

6. $pp \rightarrow VV + 2 \text{jets}$
 ▶ Background to $W\ W \rightarrow H \rightarrow WW$

7. $pp \rightarrow V + 3 \text{jets}$
 ▶ General background to new physics

8. $pp \rightarrow VVV + \text{jet}$
 ▶ Background to SUSY trilepton

Currently available

NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Theorist’s list (G. Heinrich)

▶ $2 \rightarrow 3$ (OK for a good student!)
 ▶ $pp \rightarrow WW + \text{jet}$
 ▶ $pp \rightarrow VVV$
 ▶ $pp \rightarrow H + 2 \text{jets}$

▶ $2 \rightarrow 4$ (Beyond today’s means)
 ▶ $pp \rightarrow 4 \text{jets}$
 ▶ $pp \rightarrow t\bar{t} + 2 \text{jets}$
 ▶ $pp \rightarrow t\bar{t}b\bar{b}$
 ▶ $pp \rightarrow V + 3 \text{jets}$
 ▶ $pp \rightarrow VVV + 2 \text{jets}$
 ▶ $pp \rightarrow VVV + \text{jet}$
 ▶ $pp \rightarrow WW b\bar{b}$
1. Introduction

2. Jets at LHC

NLO wishlist (2005)

Experimenters’ priorities

1. \(pp \rightarrow WW + \text{jet} \)
 Les Houches

2. \(pp \rightarrow H + 2 \text{ jets} \)
 ▶ Background to VBF Higgs production

3. \(pp \rightarrow t\bar{t}b\bar{b} \)

4. \(pp \rightarrow t\bar{t} + 2 \text{ jets} \)
 ▶ Background to \(t\bar{t}H \)

5. \(pp \rightarrow WW b\bar{b} \)

6. \(pp \rightarrow VV + 2 \text{ jets} \)
 ▶ Background to
 \(WW \rightarrow H \rightarrow WW \)

7. \(pp \rightarrow V + 3 \text{ jets} \)
 ▶ General background to new physics

8. \(pp \rightarrow VVV + \text{jet} \)
 ▶ Background to SUSY trilepton

Currently available

NLOJET++, MCFM, PHOX, ...

http://www.cedar.ac.uk/hepcode/

Theorist’s list (G. Heinrich)

▶ \(2 \rightarrow 3 \) (OK for a good student!)
 ▶ \(pp \rightarrow WW + \text{jet} \)
 ▶ \(pp \rightarrow VVV \)
 ▶ \(pp \rightarrow H + 2 \text{ jets} \)

▶ \(2 \rightarrow 4 \) (Beyond today’s means)
 ▶ \(pp \rightarrow 4 \text{ jets} \)
 ▶ \(pp \rightarrow t\bar{t} + 2 \text{ jets} \)
 ▶ \(pp \rightarrow t\bar{t}b\bar{b} \)
 ▶ \(pp \rightarrow V + 3 \text{ jets} \)
 ▶ \(pp \rightarrow VVV + 2 \text{ jets} \)
 ▶ \(pp \rightarrow VVV + \text{jet} \)
 ▶ \(pp \rightarrow WW b\bar{b} \)
Experimenters’ priorities

1. $pp \to WW + \text{jet}$
 Les Houches

2. $pp \to H + 2 \text{ jets}$
 ▶ Background to VBF Higgs production

3. $pp \to t\bar{t}b\bar{b}$

4. $pp \to t\bar{t} + 2 \text{ jets}$
 ▶ Background to $t\bar{t}H$

5. $pp \to WW b\bar{b}$

6. $pp \to VV + 2 \text{ jets}$
 ▶ Background to $W W \to H \to WW$

7. $pp \to V + 3 \text{ jets}$
 ▶ General background to new physics

8. $pp \to VVV + \text{jet}$
 ▶ Background to SUSY trilepton

Currently available

NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Theorist’s list (G. Heinrich)

▶ $2 \to 3$ (OK for a good student!)
 ▶ $pp \to WW + \text{jet}$
 ▶ $pp \to VVV$
 ▶ $pp \to H + 2 \text{ jets}$

▶ $2 \to 4$ (Beyond today’s means)
 ▶ $pp \to 4 \text{ jets}$
 ▶ $pp \to t\bar{t} + 2 \text{ jets}$
 ▶ $pp \to t\bar{t}bb$
 ▶ $pp \to V + 3 \text{ jets}$
 ▶ $pp \to VV + 2 \text{ jets}$
 ▶ $pp \to VVV + \text{jet}$
 ▶ $pp \to WW b\bar{b}$
NLO wishlist (2007)

Experimenters’ priorities

1. $pp \rightarrow WW + \text{jet}$
 Les Houches

2. $pp \rightarrow H + 2\text{ jets}$
 CEZ ’06
 ■ Background to VBF Higgs production

3. $pp \rightarrow t\bar{t}b\bar{b}$

4. $pp \rightarrow t\bar{t} + 2\text{ jets}$
 DUW ’07
 ■ Background to $t\bar{t}H$

5. $pp \rightarrow WW b\bar{b}$

6. $pp \rightarrow VV + 2\text{ jets}$
 ■ Background to $WW \rightarrow H \rightarrow WW$

7. $pp \rightarrow V + 3\text{ jets}$
 ■ General background to new physics

8. $pp \rightarrow VVV + \text{jet}$
 LMP ’07
 ■ Background to SUSY trilepton

Currently available
NLOJET++, MCFM, PHOX, ...
http://www.cedar.ac.uk/hepcode/

Theorist’s list (G. Heinrich)

■ $2 \rightarrow 3$ (some results)
 ■ $pp \rightarrow WW + \text{jet}$
 ■ $pp \rightarrow VVV$
 LMP ’07
 ■ $pp \rightarrow H + 2\text{ jets}$
 CEZ ’06

■ $2 \rightarrow 4$ (some progress)
 ■ $pp \rightarrow 4\text{ jets}$
 ■ $pp \rightarrow t\bar{t} + 2\text{ jets}$
 ■ $pp \rightarrow t\bar{t}bb$
 ■ $pp \rightarrow V + 3\text{ jets}$
 ■ $pp \rightarrow VV + 2\text{ jets}$
 ■ $pp \rightarrow VVV + \text{jet}$

Another 30-50 people active
Jet (definitions) provide central link between expt., “theory” and theory
What’s new for jets @ LHC?

Number of particles:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>50</td>
</tr>
<tr>
<td>Tevatron</td>
<td>100–400</td>
</tr>
<tr>
<td>LHC low-lumi</td>
<td>800</td>
</tr>
<tr>
<td>LHC high-lumi</td>
<td>4000</td>
</tr>
<tr>
<td>LHC PbPb</td>
<td>30000</td>
</tr>
</tbody>
</table>

- Range & complexity of signatures (jets, \(t\bar{t}, tj, Wj, Hj, t\bar{t}j, WWj, Wjj, SUSY, \) etc.)
- Theoretical investment
 \(\sim 100 \text{ people} \times 10 \text{ years} \)
 \(60 – 100 \text{ million $} \)

Physics scales:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Physics</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>Electroweak</td>
<td>100 GeV</td>
</tr>
<tr>
<td></td>
<td>+ Hadronisation</td>
<td>0.5 GeV</td>
</tr>
<tr>
<td>Tevatron</td>
<td>+ Underlying event</td>
<td>10 – 15 GeV</td>
</tr>
<tr>
<td>LHC</td>
<td>+ BSM</td>
<td>1 TeV?</td>
</tr>
<tr>
<td></td>
<td>+ Pileup</td>
<td>30 – 120 GeV</td>
</tr>
</tbody>
</table>
What’s new for jets @ LHC?

Number of particles:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>50</td>
</tr>
<tr>
<td>Tevatron</td>
<td>100–400</td>
</tr>
<tr>
<td>LHC low-lumi</td>
<td>800</td>
</tr>
<tr>
<td>LHC high-lumi</td>
<td>4000</td>
</tr>
<tr>
<td>LHC PbPb</td>
<td>30000</td>
</tr>
</tbody>
</table>

- Range & complexity of signatures (jets, $t\bar{t}$, tj, Wj, Hj, $t\bar{t}j$, WWj, Wjj, SUSY, etc.)
- Theoretical investment
 \[\sim 100 \text{ people} \times 10 \text{ years} \]
 \[60 - 100 \text{ million } \text{\$} \]

Physics scales:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Physics</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>Electroweak</td>
<td>100 GeV</td>
</tr>
<tr>
<td></td>
<td>+ Hadronisation</td>
<td>0.5 GeV</td>
</tr>
<tr>
<td>Tevatron</td>
<td>+ Underlying event</td>
<td>10 – 15 GeV</td>
</tr>
<tr>
<td>LHC</td>
<td>+ BSM</td>
<td>1 TeV?</td>
</tr>
<tr>
<td></td>
<td>+ Pileup</td>
<td>30 – 120 GeV</td>
</tr>
</tbody>
</table>
What’s new for jets @ LHC?

Number of particles:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>50</td>
</tr>
<tr>
<td>Tevatron</td>
<td>100–400</td>
</tr>
<tr>
<td>LHC low-lumi</td>
<td>800</td>
</tr>
<tr>
<td>LHC high-lumi</td>
<td>4000</td>
</tr>
<tr>
<td>LHC PbPb</td>
<td>30000</td>
</tr>
</tbody>
</table>

- Range & complexity of signatures (jets, $t\bar{t}$, tj, Wj, Hj, $t\bar{t}j$, WWj, Wjj, SUSY, etc.)
- Theoretical investment
 \[\sim 100 \text{ people} \times 10 \text{ years} \]
 \[60 - 100 \text{ million } $ \]

Physics scales:

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Physics</th>
<th>Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEP, HERA</td>
<td>Electroweak</td>
<td>100 GeV</td>
</tr>
<tr>
<td></td>
<td>+ Hadronisation</td>
<td>0.5 GeV</td>
</tr>
<tr>
<td>Tevatron</td>
<td>+ Underlying event</td>
<td>10 – 15 GeV</td>
</tr>
<tr>
<td>LHC</td>
<td>+ BSM</td>
<td>1 TeV?</td>
</tr>
<tr>
<td></td>
<td>+ Pileup</td>
<td>30 – 120 GeV</td>
</tr>
</tbody>
</table>
Periodic key developments in jet definitions spurred by ever-increasing experimental/theoretical sophistication.

Approach of LHC provides motivation for taking a new, fresh, systematic look at jets.

This talk: some of the discoveries along the way

Definitions shown are those with widest exptl. impact

NB: also ARCLUS, OJF, ...
1. Introduction

- Periodic key developments in jet definitions spurred by ever-increasing experimental/theoretical sophistication.

- Approach of LHC provides motivation for taking a new, fresh, systematic look at jets.

- This talk: some of the discoveries along the way

Jet Definition History

Definitions shown are those with widest exptl. impact

NB: also ARCLUS, OJF, ...
<table>
<thead>
<tr>
<th>Sequential recombination</th>
<th>Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_t, Jade, Cam/Aachen, ...</td>
<td>UA1, JetClu, Midpoint, ...</td>
</tr>
<tr>
<td>Bottom-up: Cluster ‘closest’ particles repeatedly until few left \rightarrow jets.</td>
<td>Top-down: Find coarse regions of energy flow (cones), and call them jets.</td>
</tr>
<tr>
<td>Works because of mapping: closeness \Leftrightarrow QCD divergence</td>
<td>Works because QCD only modifies energy flow on small scales</td>
</tr>
<tr>
<td>Loved by $e^+ e^-$, ep and theorists</td>
<td>Loved by pp and few(er) theorists</td>
</tr>
</tbody>
</table>

Both had serious issues that got in way of practical use and/or physical validity.
Two classes of jet algorithm

<table>
<thead>
<tr>
<th>Sequential recombination</th>
<th>Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_t), Jade, Cam/Aachen, ...</td>
<td>UA1, JetClu, Midpoint, ...</td>
</tr>
<tr>
<td>Bottom-up: Cluster ‘closest’ particles repeatedly until few left → jets.</td>
<td>Top-down: Find coarse regions of energy flow (cones), and call them jets.</td>
</tr>
<tr>
<td>Works because of mapping: (\text{closeness} \Leftrightarrow QCD \text{ divergence})</td>
<td>Works because \textit{QCD only modifies energy flow on small scales}</td>
</tr>
<tr>
<td>Loved by (e^+e^-), (ep) and theorists</td>
<td>Loved by (pp) and few(er) theorists</td>
</tr>
</tbody>
</table>

Both had serious issues that got in way of practical use and/or physical validity.
Sequential recombination algorithms

k_t algorithm
Catani, Dokshizter, Olsson, Seymour, Turnock, Webber ’91–’93
Ellis, Soper ’93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- Rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{z_i}}{E_i - p_{z_i}}$
- ΔR_{ij} is boost invariant angle

R sets jet opening angle
2. Safe, practical jet-finding

1. Sequential recombination

k_t algorithm

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- Rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{z_i}}{E_i - p_{z_i}}$
- ΔR_{ij} is boost invariant angle
- R sets jet opening angle
Sequential recombination algorithms

k_t algorithm
Catani, Dokshizter, Olsson, Seymour, Turnock, Webber ’91–’93
Ellis, Soper ’93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- Rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zj}}{E_i - p_{zj}}$
- ΔR_{ij} is boost invariant angle
- R sets jet opening angle
Sequential recombination algorithms

k_t algorithm

Catani, Dokshizter, Olsson, Seymour, Turnock, Webber ’91–’93
Ellis, Soper ’93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- rapidity $y_i = \frac{1}{2} \ln \left(\frac{E_i + p_{zi}}{E_i - p_{zi}} \right)$
- ΔR_{ij} is boost invariant angle

R sets jet opening angle
Sequential recombination algorithms

k_t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93
Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2)\Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{z_i}}{E_i - p_{z_i}}$
- ΔR_{ij} is boost invariant angle

R sets jet opening angle
Sequential recombination algorithms

k_t algorithm Catani, Dokshizter, Olsson, Seymour, Turnock, Webber '91–'93
Ellis, Soper '93

- Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2 / R^2$ and $d_{iB} = k_i^2$
- Recombine i, j (if iB: $i \rightarrow$ jet)
- Repeat

NB: hadron collider variables

- $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$
- rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$
- ΔR_{ij} is boost invariant angle

R sets jet opening angle
Sequential recombination algorithms

k_t algorithm

Catani, Dokshitzter, Olsson, Seymour, Turnock, Webber ’91–’93
Ellis, Soper ’93

► Find smallest of all $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2/R^2$ and $d_{iB} = k_i^2$

► Recombine i, j (if iB: $i \rightarrow$ jet)

► Repeat

NB: hadron collider variables

► $\Delta R_{ij}^2 = (\phi_i - \phi_j)^2 + (y_i - y_j)^2$

► rapidity $y_i = \frac{1}{2} \ln \frac{E_i + p_{zi}}{E_i - p_{zi}}$

► ΔR_{ij} is boost invariant angle

R sets jet opening angle
Why k_t?

k_t distance measures

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2, \quad d_{iB} = k_{ti}^2$$

are closely related to structure of divergences for QCD emissions

$$[dk_j]|_{M_{g\rightarrow g+g}(k_j)} \sim \frac{\alpha_s C_A}{2\pi} \frac{dk_{tj}}{\min(k_{ti}, k_{tj})} \frac{d\Delta R_{ij}}{\Delta R_{ij}}, \quad (k_{tj} \ll k_{ti}, \Delta R_{ij} \ll 1)$$

and

$$[dk_i]|_{M_{\text{Beam}\rightarrow \text{Beam}+g}(k_i)} \sim \frac{\alpha_s C_A}{\pi} \frac{dk_{ti}}{k_{ti}} d\eta_i, \quad (k_{ti}^2 \ll \{\hat{s}, \hat{t}, \hat{u}\})$$

k_t algorithm attempts approximate inversion of branching process
Why k_t?

k_t distance measures

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \Delta R_{ij}^2, \quad d_{iB} = k_{ti}^2$$

are closely related to structure of divergences for QCD emissions

$$[dk_j]|_{M^2_{g \rightarrow g_i g_j}(k_j)} \sim \frac{\alpha_s C_A}{2\pi} \frac{d\Delta R_{ij}}{\min(k_{ti}, k_{tj}) \Delta R_{ij}}, \quad (k_{tj} \ll k_{ti}, \, \Delta R_{ij} \ll 1)$$

and

$$[dk_i]|_{M^2_{\text{Beam} \rightarrow \text{Beam}+g_i}(k_i)} \sim \frac{\alpha_s C_A}{\pi} \frac{dk_{ti}}{k_{ti}} \, d\eta_i, \quad (k_{ti}^2 \ll \{\hat{s}, \hat{t}, \hat{u}\})$$

k_t algorithm attempts approximate inversion of branching process
‘Trivial’ computational issue:

- for N particles: $N^2 \ d_{ij}$ searched through N times $= N^3$
- 4000 particles (or calo cells): 1 minute

 NB: often study $10^7 - 10^8$ events (20-200 CPU years)

- Heavy Ions: 30000 particles: 10 hours/event

As far as possible physics choices should not be limited by computing.

Even if we’re clever about repeating the full search each time, we still have $O(N^2) \ d_{ij}$’s to establish
Can we do better than N^2?

There are $N(N - 1)/2$ distances d_{ij} — surely we have to calculate them all in order to find smallest?

k_t distance measure is partly geometrical:

- Consider smallest $d_{ij} = \min(k_{ti}^2, k_{tj}^2)R_{ij}^2$
- Suppose $k_{ti} < k_{tj}$
- Then: $R_{ij} \leq R_{i\ell}$ for any $\ell \neq j$. \[\text{[If } \exists \ell \text{ s.t. } R_{i\ell} < R_{ij} \text{ then } d_{i\ell} < d_{ij}\]

In words: if i, j form smallest d_{ij} then j is geometrical nearest neighbour (GNN) of i.

k_t distance need only be calculated between GNNs

Each point has 1 GNN \rightarrow need only calculate N d_{ij}’s
There are $N(N-1)/2$ distances d_{ij} — surely we have to calculate them all in order to find smallest?

k_t distance measure is partly *geometrical*:

1. Consider smallest $d_{ij} = \min(k_{ti}^2, k_{tj}^2)R_{ij}^2$
2. Suppose $k_{ti} < k_{tj}$
3. Then: $R_{ij} \leq R_{i\ell}$ for any $\ell \neq j$. $[\text{If } \exists \ell \text{ s.t. } R_{i\ell} < R_{ij} \text{ then } d_{i\ell} < d_{ij}]$

In words: if i, j form smallest d_{ij} then j is geometrical nearest neighbour (GNN) of i.

k_t distance need only be calculated between GNNs

Each point has 1 GNN \rightarrow need only calculate N d_{ij}’s
Can we do better than N^2?

There are $N(N - 1)/2$ distances d_{ij} — surely we have to calculate them all in order to find smallest?

k_t distance measure is partly *geometrical*:

- Consider smallest $d_{ij} = \min(k_{ti}^2, k_{tj}^2) R_{ij}^2$
- Suppose $k_{ti} < k_{tj}$
- Then: $R_{ij} \leq R_{i\ell}$ for any $\ell \neq j$.
 [If $\exists \ell$ s.t. $R_{i\ell} < R_{ij}$ then $d_{i\ell} < d_{ij}$]

In words: if i, j form smallest d_{ij} then j is geometrical nearest neighbour (GNN) of i.

k_t distance need only be calculated between GNNs

Each point has 1 GNN \rightarrow need only calculate N d_{ij}'s
Finding Geom Nearest Neighbours

Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908

A vertex’s nearest other vertex is always in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,8,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: $N \ln N$ time Fortune '88

Update of 1 point in Voronoi diagram: $\ln N$ time

Devillers '99 [+ related work by other authors]

Convenient C++ package available: CGAL http://www.cgal.org

Assemble with other comp. science methods: FastJet

Cacciari & GPS, hep-ph/0512210
http://www.lpthe.jussieu.fr/~salam/fastjet/
Finding Geom Nearest Neighbours

Given a set of vertices on plane (1...10) a Voronoi diagram partitions plane into cells containing all points closest to each vertex

Dirichlet '1850, Voronoi '1908

A vertex’s nearest other vertex is always in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,8,3 (it turns out to be 3)

Construction of Voronoi diagram for \(N \) points: \(N \ln N \) time

Update of 1 point in Voronoi diagram: \(\ln N \) time

Devillers '99 [+ related work by other authors]

Convenient C++ package available: CGAL http://www.cgal.org

Assemble with other comp. science methods: FastJet

Finding Geom Nearest Neighbours

Given a set of vertices on plane (1...10) a **Voronoi diagram** partitions plane into cells containing all points closest to each vertex

Dirichlet ’1850, Voronoi ’1908

A vertex’s nearest other vertex is always in an adjacent cell.

E.g. GNN of point 7 will be found among 1,4,2,8,3 (it turns out to be 3)

Construction of Voronoi diagram for N points: $N \ln N$ time

Update of 1 point in Voronoi diagram: $\ln N$ time

Devillers ’99 [+ related work by other authors]

Convenient C++ package available: **CGAL**

http://www.cgal.org

Assemble with other comp. science methods: **FastJet**

Cacciari & GPS, hep-ph/0512210

http://www.lpthe.jussieu.fr/~salam/fastjet/
2. Safe, practical jet-finding
 1. Sequential recombination

FastJet performance

NB: for $N < 10^4$, FastJet switches to a related geometrical N^2 alg.
Conclusion: speed issues for k_t resolved
Modern cone algs have two main steps:

- Find some/all stable cones
 \[\equiv\text{cone pointing in same direction as the momentum of its contents}\]
- Resolve cases of overlapping stable cones

By running a ‘split–merge’ procedure
Modern cone algs have two main steps:

- Find some/all stable cones

 \[\equiv \text{cone pointing in same direction as the momentum of its contents}\]

- Resolve cases of overlapping stable cones

 By running a ‘split–merge’ procedure
Modern cone algs have two main steps:

- Find some/all stable cones
 - Cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones
 By running a ‘split–merge’ procedure
Modern cone algs have two main steps:

- Find some/all stable cones
 - cone pointing in same direction as the momentum of its contents
- Resolve cases of overlapping stable cones
 By running a ‘split–merge’ procedure
Modern cone algs have two main steps:

- Find some/all stable cones

 ≡ cone pointing in same direction as the momentum of its contents

- Resolve cases of overlapping stable cones

 By running a ‘split–merge’ procedure
Modern cone algs have two main steps:

- Find some/all stable cones
 \[\equiv\text{cone pointing in same direction as the momentum of its contents}\]
- Resolve cases of overlapping stable cones

By running a ‘split–merge’ procedure

Qu: How do you find the stable cones?

All experiments use iterative methods:

- use each particle as a starting direction for cone; use sum of contents as new starting direction; repeat.
- use additional ‘midpoint’ starting points between pairs of initial stable cones.

‘Midpoint’ algorithm
Stable cones
with midpoint: \{1,2\} & \{3\}

Jets with midpoint \(f = 0.5 \) \{1,2\} & \{3\}

Midpoint cone alg. misses some stable cones; extra soft particle \(\rightarrow \) extra starting point \(\rightarrow \) extra stable cone found

MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold
2. Safe, practical jet-finding

- Cone algorithms

Midpoint IR problem

Stable cones
with midpoint: \(\{1,2\} \) & \(\{3\} \)

Jets with midpoint \((f = 0.5) \) \(\{1,2\} \) & \(\{3\} \)

Midpoint cone alg. misses some stable cones; extra soft particle \(\rightarrow \) extra starting point \(\rightarrow \) extra stable cone found

MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold
2. Safe, practical jet-finding

2. Cone algorithms

Midpoint IR problem

Stable cones with midpoint: \{1,2\} & \{3\}

Jets with midpoint \(f = 0.5 \): \{1,2\} & \{3\}

Midpoint cone alg. misses some stable cones; extra soft particle \rightarrow extra starting point \rightarrow extra stable cone found

MIDPOINT IS INFRARED UNSAFE

Or collinear unsafe with seed threshold
Midpoint was supposed to solve *just this type of problem*. But worked only at lowest order.

IR/Collinear unsafety is a serious problem!

- Invalidates theorems that ensure finiteness of perturbative QCD
 - Cancellation of real & virtual divergences
- Destroys usefulness of (intuitive) partonic picture
 - You cannot think in terms of hard partons if adding a 1 GeV gluon changes 100 GeV jets
- ‘Pragmatically:’ limits accuracy to which it makes sense to calculate

<table>
<thead>
<tr>
<th>Process</th>
<th>1st miss cones @</th>
<th>Last meaningful order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td>NNLO</td>
<td>NLO [NNLO being worked on]</td>
</tr>
<tr>
<td>$W/Z + 1$ jet</td>
<td>NNLO</td>
<td>NLO</td>
</tr>
<tr>
<td>3 jets</td>
<td>NLO</td>
<td>LO [NLO in nlojet++]</td>
</tr>
<tr>
<td>$W/Z + 2$ jets</td>
<td>NLO</td>
<td>LO [NLO in MCFM]</td>
</tr>
<tr>
<td>jet masses in $2j + X$</td>
<td>LO</td>
<td>none</td>
</tr>
</tbody>
</table>

50 million worth of work for nothing?
Midpoint was supposed to solve *just this type of problem*. But worked only at lowest order.

IR/Collinear unsafety is a serious problem!

- Invalidates theorems that ensure finiteness of perturbative QCD
 - Cancellation of real & virtual divergences
- Destroys usefulness of (intuitive) partonic picture
 - You cannot think in terms of hard partons if adding a 1 GeV gluon changes 100 GeV jets
- ‘Pragmatically:’ limits accuracy to which it makes sense to calculate

<table>
<thead>
<tr>
<th>Process</th>
<th>1st miss cones @</th>
<th>Last meaningful order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusive jets</td>
<td>NNLO</td>
<td>NLO [NNLO being worked on]</td>
</tr>
<tr>
<td>$W/Z + 1$ jet</td>
<td>NNLO</td>
<td>NLO</td>
</tr>
<tr>
<td>3 jets</td>
<td>NLO</td>
<td>LO [NLO in nlojet++]</td>
</tr>
<tr>
<td>$W/Z + 2$ jets</td>
<td>NLO</td>
<td>LO [NLO in MCFM]</td>
</tr>
<tr>
<td>jet masses in $2j + X$</td>
<td>LO</td>
<td>none</td>
</tr>
</tbody>
</table>

$50 million worth of work for nothing?
Rather than define the cone alg. through the *procedure* you use to find cones, define it by the *result you want*:

A cone algorithm should find all stable cones

First advocated: Kidonakis, Oderda & Sterman '97
Guarantees IR safety of the set of stable cones

Only issue: you still need to find the stable cones in practice.

One known exact approach:

- Take each possible subset of particles and see if it forms a stable cone. Tevatron Run II workshop, '00 (for fixed-order calcs.)
- There are 2^N subsets for N particles. Computing time $\sim N2^N$.
 10^{17} years for an event with 100 particles
Seedless cone algorithms

Rather than define the cone alg. through the *procedure* you use to find cones, define it by the *result you want:*

A cone algorithm should find **all** stable cones

First advocated: Kidonakis, Oderda & Sterman ’97
Guarantees IR safety of the set of stable cones

Only issue: you still need to find the stable cones in practice.

One known exact approach:

- Take each possible subset of particles and see if it forms a stable cone.
 Tevatron Run II workshop, ’00 (for fixed-order calcs.)
- There are 2^N subsets for N particles. Computing time $\sim N2^N$.
 10^{17} years for an event with 100 particles
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

![Diagram](image)

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Transform into a geometrical problem

Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each pair of points in the plane, draw the two circles that have those two points on their edge.
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

For each pair of points in the plane, draw the two circles that have those two points on their edge.
Transform into a geometrical problem

Cones are just \textit{circles} in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is \textit{geometry}:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each \textit{pair} of points in the plane, draw the two circles that have those two points on their edge.
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

![Diagram](image)

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Transform into a geometrical problem

Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
Transform into a geometrical problem

Cones are just *circles* in the $y - \phi$ plane. To find all stable cones:

1. Find all distinct ways of enclosing a subset of particles in a $y - \phi$ circle
2. Check, for each enclosure, if it corresponds to a stable cone

Finding all distinct circular enclosures of a set of points is *geometry*:

Any enclosure can be moved until a pair of points lies on its edge.

Polynomial time recipe for finding all distinct enclosures:

- For each *pair* of points in the plane, draw the two circles that have those two points on their edge.
A Seedless Infrared Safe Cone: SISCone

Naive implementation of this idea would run in N^3 time.

- N^2 pairs of points, pay N for each pair to check stability
- N^3 is also time taken by midpoint codes (smaller coeff.)

With some thought, this reduces to $N^2 \ln N$ time.

- Traversal order, stability check
- checkxor
- GPS & Soyez '07

- Much faster than midpoint with no seed threshold
 - IR unsafe

- Same speed as midpoint codes with seeds > 1 GeV
 - Collinear unsafe
Naive implementation of this idea would run in N^3 time.

N^2 pairs of points, pay N for each pair to check stability

N^3 is also time taken by midpoint codes (smaller coeff.)

With some thought, this reduces to $N^2 \ln N$ time.

- Traversal order, stability check
- checkxor
- GPS & Soyez ’07

- Much faster than midpoint with no seed threshold
- IR unsafe
- Same speed as midpoint codes with seeds > 1 GeV
- Collinear unsafe
Naive implementation of this idea would run in N^3 time.

N^2 pairs of points, pay N for each pair to check stability

N^3 is also time taken by midpoint codes (smaller coeff.)

With some thought, this reduces to $N^2 \ln N$ time.

Traversal order, stability check

GPS & Soyez '07

◮ Much faster than midpoint with no seed threshold

▷ IR unsafe

◮ Same speed as midpoint codes with seeds > 1 GeV

Collinear unsafe
Naive implementation of this idea would run in N^3 time.

N^2 pairs of points, pay N for each pair to check stability

N^3 is also time taken by midpoint codes (smaller coeff.)

With some thought, this reduces to $N^2 \ln N$ time.

Traversal order, stability check

GPS & Soyez '07

◮ Much faster than midpoint with no seed threshold

IR unsafe

◮ Same speed as midpoint codes with seeds > 1 GeV

Collinear unsafe
Naive implementation of this idea would run in N^3 time. N^2 pairs of points, pay N for each pair to check stability N^3 is also time taken by midpoint codes (smaller coeff.)

With some thought, this reduces to $N^2 \ln N$ time.

Traversal order, stability check checkxor
GPS & Soyez '07

- Much faster than midpoint with no seed threshold
 IR unsafe
- Same speed as midpoint codes with seeds > 1 GeV
 Collinear unsafe
MC cross check of IR safety

- Generate event with
 \[2 < N < 10\] hard particles, find jets

- Add \[1 < N_{\text{soft}} < 5\] soft particles, find jets again
 [repeatedly]

- If the jets are different, algorithm is IR unsafe.

<table>
<thead>
<tr>
<th>Unsafety level</th>
<th>failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hard + 1 soft</td>
<td>(\sim 50%)</td>
</tr>
<tr>
<td>3 hard + 1 soft</td>
<td>(\sim 15%)</td>
</tr>
<tr>
<td>SISCones</td>
<td>IR safe !</td>
</tr>
</tbody>
</table>

Be careful with split–merge too.
2. Safe, practical jet-finding

- Cone algorithms

- MC cross check of IR safety

- Generate event with
 $2 < N < 10$ hard particles,
 find jets

- Add $1 < N_{soft} < 5$ soft particles, find jets again
 [repeatedly]

- If the jets are different, algorithm is IR unsafe.

<table>
<thead>
<tr>
<th>Unsafety level</th>
<th>failure rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hard + 1 soft</td>
<td>$\sim 50%$</td>
</tr>
<tr>
<td>3 hard + 1 soft</td>
<td>$\sim 15%$</td>
</tr>
<tr>
<td>SISCone</td>
<td>IR safe !</td>
</tr>
</tbody>
</table>

Be careful with split–merge too.
A full set of algs

Complementary set of IR/Collinear safe jet algs → flexibility in studying complex events.

Consider families of jet algs: e.g. sequential recombination with

\[d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \Delta R_{ij}^2 / R^2 \]

<table>
<thead>
<tr>
<th>Alg. name</th>
<th>Comp. Geometry problem</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p = 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(k_t)</td>
<td>Dynamic Nearest Neighbour</td>
<td>(N \ln N) exp.</td>
</tr>
<tr>
<td>CDOSTW ’91-93; ES ’93</td>
<td>CGAL (Devillers et al)</td>
<td></td>
</tr>
<tr>
<td>(p = 0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cambridge/Aachen</td>
<td>Dynamic Closest Pair</td>
<td>(N \ln N)</td>
</tr>
<tr>
<td>Dok, Leder, Moretti, Webber ’97</td>
<td>T. Chan ’02</td>
<td></td>
</tr>
<tr>
<td>Wengler, Wobisch ’98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(p = -1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>anti-(k_t) (cone-like)</td>
<td>Dynamic Nearest Neighbour</td>
<td>(N^{3/2})</td>
</tr>
<tr>
<td>Cacciari, GPS, Soyez, in prep.</td>
<td>CGAL (worst case)</td>
<td></td>
</tr>
<tr>
<td>cone</td>
<td>All circular enclosures</td>
<td>(N^2 \ln N) exp.</td>
</tr>
<tr>
<td>SISCone</td>
<td>previously unconsidered</td>
<td></td>
</tr>
<tr>
<td>GPS Soyez ’07 + Tevatron run II ’00</td>
<td>All circular enclosures</td>
<td></td>
</tr>
</tbody>
</table>

All accessible in FastJet

FastJet in software of all (4) LHC collaborations
Once you have a decent set of jet algs, *start asking questions about them.*

- They share a common parameter R (angular reach). How do results depend on R?
- In what way do the various algorithms differ?
- How are they to be best used in the challenging LHC environment?

Try to answer questions with Monte Carlo? Gives little understanding of underlying principles.

⇒ *Supplement with analytical approximations.*
3. Understanding jet algs

Various contributions

- Gluon emission, $\mathcal{O}(\alpha_s)$
- Conversion of quarks, gluons $\rightarrow \pi^\pm$, etc.
- Hadronisation
- Underlying event
- Pileup
Various contributions

- Gluon emission, $\mathcal{O}(\alpha_s)$
- Conversion of quarks, gluons $\rightarrow \pi^\pm$, etc.
- Hadronisation
- Underlying event
- Pileup

Diagram:
- Proton
- Anti-proton
- Various partons and quark interactions
3. Understanding jet algs

Various contributions

- Gluon emission, $\mathcal{O}(\alpha_s)$
- Conversion of quarks, gluons $\rightarrow \pi^\pm$, etc.

Hadronisation

- Underlying event
- Pileup

Proton

σ

Anti-proton
Various contributions

- Gluon emission, $O(\alpha_s)$
- Conversion of quarks, gluons $\rightarrow \pi^\pm$, etc.
 Hadronisation
- Underlying event
- Pileup
Various contributions

- Gluon emission, $\mathcal{O}(\alpha_s)$
- Conversion of quarks, gluons $\rightarrow \pi^\pm$, etc.

 Hadronisation

- Underlying event
- Pileup
Start with *quark* with transverse momentum p_t

$$\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi |M^2| \alpha_s(k_{t,rel})(p_{t,jet} - p_t)$$

$$\simeq \frac{\alpha_s C_F}{\pi} \int_{R}^{\mathcal{O}(1)} \frac{d\theta}{\theta} \int dz \, p_{gq}(z) \cdot ((1 - z)p_t - p_t)$$

$$\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t) \quad C_F = \frac{4}{3}$$

Similarly for gluon:

$$\langle \delta p_t \rangle_{PT} \simeq - (0.94 C_A + 0.15 n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t) \quad C_A = 3$$

NB1: $\alpha_s p_t \ln R$ structure & coeff. independent of process

NB2: these and subsequent results hold for *all algorithms* (1-gluon approx).
Start with \textit{quark} with transverse momentum p_t

\[
\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi |M^2| \alpha_s(k_{t,rel})(p_{t,\text{jet}} - p_t)
\]

\[
\simeq \frac{\alpha_s C_F}{\pi} \int_R \mathcal{O}(1) \frac{d\theta}{\theta} \int dz p_{gq}(z) \cdot ((1 - z)p_t - p_t)
\]

\[
\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
\]

$C_F = 4/3$

Similarly for gluon:

\[
\langle \delta p_t \rangle_{PT} \simeq - (0.94 C_A + 0.15 n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
\]

$C_A = 3$

\text{NB1: } \alpha_s p_t \ln R \text{ structure & coeff. independent of process}

\text{NB2: these and subsequent results hold for all algorithms (1-gluon approx).}
Start with \textit{quark} with transverse momentum p_t

\[
\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi|\mathcal{M}^2| \alpha_s(k_{t,\text{rel}})(p_{t,\text{jet}} - p_t)
\]

\[
\simeq \alpha_s \frac{C_F}{\pi} \int_{\mathcal{O}(1)}^{\mathcal{O}(1)} \frac{d\theta}{\theta} \int dz \ p_{gq}(z) \cdot (-zp_t)
\]

\[
\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
\]

$C_F = 4/3$

Similarly for gluon:

\[
\langle \delta p_t \rangle_{PT} \simeq -(0.94C_A + 0.15n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
\]

$C_A = 3$

NB1: $\alpha_s p_t \ln R$ structure & coeff. independent of process

NB2: these and subsequent results hold for \textit{all algorithms} (1-gluon approx).
Start with *quark* with transverse momentum p_t

$$
\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi |M^2| \alpha_s(k_{t,\text{rel}}) (p_{t,\text{jet}} - p_t)
$$

$$
\simeq \frac{\alpha_s C_F}{\pi} \int_{R}^{O(1)} \frac{d\theta}{\theta} \int dz p_{gq}(z) \cdot (-zp_t)
$$

$$
\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + O(\alpha_s p_t)
$$

Similarly for gluon:

$$
\langle \delta p_t \rangle_{PT} \simeq -(0.94 C_A + 0.15 n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + O(\alpha_s p_t)
$$

$C_F = 4/3$

$C_A = 3$

NB1: $\alpha_s p_t \ln R$ structure & coeff. independent of process

NB2: these and subsequent results hold for *all algorithms* (1-gluon approx).
Start with \textit{quark} with transverse momentum p_t

$$
\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi |M^2| \alpha_s(k_{t,rel}) (p_{t,jet} - p_t)
$$

$$
\simeq \frac{\alpha_s C_F}{\pi} \int_{R}^{O(1)} \frac{d\theta}{\theta} \int dz \, p_{gq}(z) \cdot (-zp_t)
$$

$$
\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
$$

$C_F = 4/3$

Similarly for gluon:

$$
\langle \delta p_t \rangle_{PT} \simeq -(0.94 C_A + 0.15 n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + \mathcal{O}(\alpha_s p_t)
$$

$C_A = 3$

NB1: $\alpha_s p_t \ln R$ structure & coeff. independent of process

NB2: these and subsequent results hold for \textit{all algorithms} (1-gluon approx).
Start with *quark* with transverse momentum p_t

\[
\langle \delta p_t \rangle_{PT} \simeq \frac{1}{\sigma_0} \int d\Phi |M^2| \alpha_s(k_{t,\text{rel}})(p_{t,\text{jet}} - p_t)
\]

\[
\simeq \frac{\alpha_s C_F}{\pi} \int_R O(1) \frac{d\theta}{\theta} \int dz p_{gq}(z) \cdot (-zp_t)
\]

\[
\simeq -1.01 \frac{\alpha_s C_F}{\pi} p_t \ln \frac{1}{R} + O(\alpha_s p_t)
\]

Similarly for gluon:

\[
\langle \delta p_t \rangle_{PT} \simeq -(0.94 C_A + 0.15 n_f T_R) \frac{\alpha_s}{\pi} p_t \ln \frac{1}{R} + O(\alpha_s p_t)
\]

$C_F = 4/3$

$C_A = 3$

NB1: $\alpha_s p_t \ln R$ structure & coeff. independent of process

NB2: these and subsequent results hold for *all algorithms* (1-gluon approx).
Simplest form of a trick developed ~ 1995: to establish non-perturbative contribution, replace $\alpha_s(k_{t,\text{rel}}) \rightarrow \delta \alpha_s(k_{t,\text{rel}})$, with support only near Λ_{QCD}.

Dokshitzer & Webber; Korchemsky & Sterman
Akhoury & Zakharov; Beneke & Braun

E.g.:

$$\frac{2}{\pi} \delta \alpha_s(k_{t,\text{rel}}) = \Lambda \delta(k_{t,\text{rel}} - \Lambda)$$

$$\Lambda = \int dk_{t,\text{rel}} \delta \alpha_s(k_{t,\text{rel}}), \text{ should be}$$

‘universal’.

Tested for ~ 10 observables in e^+e^- and DIS.

$$\alpha_0 \simeq 0.5 \leftrightarrow \Lambda \simeq 0.4 \text{ GeV}$$
Simplest form of a trick developed \sim 1995: to establish non-perturbative contribution, replace $\alpha_s(k_{t,rel}) \rightarrow \delta\alpha_s(k_{t,rel})$, with support only near Λ_{QCD}.

Dokshitzer & Webber; Korchemsky & Sterman
Akhoury & Zakharov; Beneke & Braun

E.g.:

$$\frac{2}{\pi} \delta\alpha_s(k_{t,rel}) = \Lambda \delta(k_{t,rel} - \Lambda)$$

$$\Lambda = \int dk_{t,rel} \delta\alpha_s(k_{t,rel}), \text{ should be}$$

‘universal’.

Tested for \sim 10 observables in e^+e^- and DIS.

$$\alpha_0 \approx 0.5 \leftrightarrow \Lambda \approx 0.4 \text{ GeV}$$
Simplest form of a trick developed ~ 1995: to establish non-perturbative contribution, replace $\alpha_s(k_{t, rel}) \rightarrow \delta \alpha_s(k_{t, rel})$, with support only near Λ_{QCD}. Dokshitzer & Webber; Korchemsky & Sterman; Akhoury & Zakharov; Beneke & Braun

E.g.:

$$\frac{2}{\pi} \delta \alpha_s(k_{t, rel}) = \Lambda \delta(k_{t, rel} - \Lambda)$$

$$\Lambda = \int dk_{t, rel} \delta \alpha_s(k_{t, rel}), \text{ should be}\quad \text{‘universal’}.$$

Tested for ~ 10 observables in e^+e^- and DIS.

$$\alpha_0 \simeq 0.5 \leftrightarrow \Lambda \simeq 0.4 \text{ GeV}$$
Hadronisation for quarks:

\[
\langle \delta p_t \rangle_{hadr} \simeq \frac{C_F}{\pi} \int_R^{O(1)} \frac{d\theta}{\theta} \int dz \ p_{gq}(z) \ \delta \alpha_s(z\theta p_t) \cdot (-zp_t)
\]

\[
= -\frac{C_F \Lambda}{R} + O(\Lambda R)
\]

Deductions from Korchemsky & Sterman '94
Seymour '97; but lost in mists of time.

If underlying event had similar mechanism, we’d get:

\[
\langle \delta p_t \rangle_{UE} \simeq \frac{2C_F}{\pi} \int_R^{O(1)} \theta d\theta \int dz \ \frac{dk_t}{k_t} \ \delta \alpha_s(k_t) \cdot (k_t)
\]

\[
\simeq C_F \Lambda \frac{R^2}{2} + O(\Lambda R^4)
\]

NB: to first approx., all jet algorithms identical.
Hadronisation for quarks:

\[
\langle \delta p_t \rangle_{\text{hadr}} \simeq \frac{C_F}{\pi} \int_R^{\mathcal{O}(1)} \frac{d\theta}{\theta} \int dz \ p_{gq}(z) \delta \alpha_s(z\theta p_t) \cdot (-zp_t)
\]

\[
= -\frac{C_F \Lambda}{R} + \mathcal{O} (\Lambda R)
\]

Deduced from Korchemsky & Sterman '94

If underlying event had similar mechanism, we’d get:

\[
\langle \delta p_t \rangle_{UE} \simeq \frac{2C_F}{\pi} \int_R^{\mathcal{O}(1)} \theta d\theta \int dz \frac{dk_t}{k_t} \delta \alpha_s(k_t) \cdot (k_t)
\]

\[
\simeq C_F \Lambda \frac{R^2}{2} + \mathcal{O} (\Lambda R^4)
\]

NB: to first approx., all jet algorithms identical
3. Understanding jet algs

1. R-dependence

Hadronisation (cont.)

Hadronisation for quarks:

\[
\langle \delta p_t \rangle_{hadr} \simeq \frac{C_F}{\pi} \int_R^{O(1)} \frac{d\theta}{\theta} \int dz \, p_gq(z) \delta\alpha_s(z\theta p_t) \cdot (-zp_t)
\]

\[
= -\frac{C_F \Lambda}{R} + O(\Lambda R)
\]

Deducible from Korchemsky & Sterman '94
Seymour '97; but lost in mists of time.

If underlying event had similar mechanism, we’d get:

\[
\langle \delta p_t \rangle_{UE} \simeq \frac{2C_F}{\pi} \int_R^{O(1)} \theta d\theta \int dz \, \frac{dk_t}{k_t} \delta\alpha_s(k_t) \cdot (k_t)
\]

\[
\simeq C_F \Lambda \frac{R^2}{2} + O(\Lambda R^4)
\]

NB: to first approx., all jet algorithms identical
Hadronisation for quarks:

\[
\langle \delta p_t \rangle_{hadr} \simeq \frac{C_F}{\pi} \int_R^{O(1)} \frac{d\theta}{\theta} \int dz \ p_{gq}(z) \delta \alpha_s(z\theta p_t) \cdot (-zp_t)
\]

\[= -\frac{C_F\Lambda}{R} + O(\Lambda R)\]

Gluons:

\[-\frac{C_A\Lambda}{R}\]

Dasgupta, Magnea & GPS '07

Deducible from Korchemsky & Sterman '94

Seymour '97; but lost in mists of time.

If underlying event had similar mechanism, we’d get:

\[
\langle \delta p_t \rangle_{UE} \simeq 2\frac{C_F}{\pi} \int_R^{O(1)} \theta d\theta \int dz \ \frac{dk_t}{k_t} \delta \alpha_s(k_t) \cdot (k_t)
\]

\[\approx C_F \Lambda \frac{R^2}{2} + O(\Lambda R^4)\]

NB: to first approx., all jet algorithms identical
Hadronisation for quarks:

\[\langle \delta p_t \rangle_{hadr} \simeq \frac{C_F}{\pi} \int_{\theta}^{\theta + \Theta(1)} \frac{d\theta}{\theta} \int dz \, p_{gq}(z) \delta \alpha_s(z \theta p_t) \cdot (-zp_t) \]

\[= -\frac{C_F \Lambda}{R} + O(\Lambda R) \]

gluons: \[-\frac{C_A \Lambda}{R} \]

Dasgupta, Magnea & GPS '07
Deducible from Korchemsky & Sterman '94
Seymour '97; but lost in mists of time.

If underlying event had similar mechanism, we’d get:

\[\langle \delta p_t \rangle_{UE} \simeq \frac{2C_F}{\pi} \int_{\theta}^{\theta + \Theta(1)} \theta d\theta \int dz \frac{dk_t}{k_t} \delta \alpha_s(k_t) \cdot (k_t) \]

\[\simeq C_F \Lambda \frac{R^2}{2} + O(\Lambda R^4) \]

NB: to first approx., all jet algorithms identical
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

qq → qq, Tevatron

$\langle \delta p_t \rangle_{\text{hadr}}$ [GeV]

R

MC hadr. agrees with calc.
- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation
- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!)
UE is ~ 10 GeV
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

<table>
<thead>
<tr>
<th>$\langle \delta p_t \rangle_{\text{hadr}}$ [GeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
</tr>
<tr>
<td>-3</td>
</tr>
<tr>
<td>-4</td>
</tr>
<tr>
<td>-5</td>
</tr>
<tr>
<td>-6</td>
</tr>
</tbody>
</table>

- $qq \rightarrow qq$, Tevatron
 - Herwig 6.510
 - Jimmy 4.31

- $\langle \delta p_t \rangle_{\text{hadr}}$ agrees with calc.
 - to varying degrees for range of algs
 - also in larger gluonic channels

MC UE \gg naive expectation
 - models tuned on same data behave differently
 - UE is huge at LHC
 - largely indep. of scattering channel

Scale for (non-perturbative!) UE is ~ 10 GeV
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

qq → qq, Tevatron

MC hadr. agrees with calc.

- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!) UE is ~ 10 GeV
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

$\langle \delta p_t \rangle_{\text{hadr}}$ [GeV]

$gg \rightarrow gg$, Tevatron

MC hadr. agrees with calc.

- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!) UE is ~ 10 GeV
3. Understanding jet algs

1. \(R \)-dependence

Test NP results v. MC

- MC hadr. agrees with calc.
 - to varying degrees for range of algs
 - also in larger gluonic channels

MC UE \(\gg \) naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!) UE is \(\sim 10 \) GeV
Test NP results v. MC

MC hadr. agrees with calc.
- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation
- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!) UE is ~ 10 GeV

Jet, our window on partons (p. 36)

3. Understanding jet algs

1. R-dependence
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

$\langle \delta p_t \rangle_{\text{hadr}}$ [GeV]

UE in $qq \rightarrow qq$, Tevatron

- analytical

Cam/Aachen alg

MC hadr. agrees with calc.

- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!)

UE is ~ 10 GeV
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

- MC hadr. agrees with calc.
 - to varying degrees for range of algs
 - also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
 - UE is huge at LHC
 - largely indep. of scattering channel

Scale for (non-perturbative!) UE is ~ 10 GeV
3. Understanding jet algs

1. \(R \)-dependence

Test NP results v. MC

\[\langle \delta p_t \rangle_{hadr} \]

UE in \(qq \rightarrow qq, \) LHC

- analytical
- Pythia tune A
- Herwig+Jimmy

Cam/Aachen alg

MC hadr. agrees with calc.

▷ to varying degrees for range of algs
▷ also in larger gluonic channels

MC UE \(\gg \) naive expectation

▷ models tuned on same data behave differently
▷ UE is huge at LHC

Scale for (non-perturbative!)
UE is \(\sim 10 \) GeV
3. Understanding jet algs

1. R-dependence

Test NP results v. MC

MC hadr. agrees with calc.

- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!)
UE is ~ 10 GeV
3. Understanding jet alg

1. R-dependence

Test NP results v. MC

MC hadr. agrees with calc.

- to varying degrees for range of algs
- also in larger gluonic channels

MC UE \gg naive expectation

- models tuned on same data behave differently
- UE is huge at LHC
- largely indep. of scattering channel

Scale for (non-perturbative!)
UE is ~ 10 GeV
Dependence of jet $\langle \Delta p_t \rangle$ on

<table>
<thead>
<tr>
<th>'partonic' p_t</th>
<th>colour factor C_i</th>
<th>R</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pert. radiation</td>
<td>$\sim \alpha_s(p_t)p_t$</td>
<td>C_i</td>
<td>$\ln R + \mathcal{O}(1)$</td>
</tr>
<tr>
<td>hadronization</td>
<td>$-$</td>
<td>C_i</td>
<td>$-1/R + \mathcal{O}(R)$</td>
</tr>
<tr>
<td>UE</td>
<td>$-$</td>
<td>$-$</td>
<td>$R^2 + \mathcal{O}(R^4)$</td>
</tr>
</tbody>
</table>

To get best experimental resolutions, minimise contributions from all 3 components.

Here: sum of squared means

Better still: calculate fluctuations

NB: this is rough picture, but can still be used to understand general principles.
Dependence of jet $\langle \Delta p_t \rangle$ on

<table>
<thead>
<tr>
<th>'partonic' p_t</th>
<th>colour factor</th>
<th>R</th>
<th>\sqrt{s}</th>
</tr>
</thead>
<tbody>
<tr>
<td>pert. radiation</td>
<td>$\sim \alpha_s(p_t)p_t$</td>
<td>C_i</td>
<td>$\ln R + \mathcal{O}(1)$</td>
</tr>
<tr>
<td>hadroniz.</td>
<td>$-$</td>
<td>C_i</td>
<td>$-1/R + \mathcal{O}(R)$</td>
</tr>
<tr>
<td>UE</td>
<td>$-$</td>
<td>$-$</td>
<td>$R^2 + \mathcal{O}(R^4)$</td>
</tr>
</tbody>
</table>

To get best experimental resolutions, minimise contributions from all 3 components.

Here: sum of squared means

Better still: calculate fluctuations

NB: this is rough picture, but can still be used to understand general principles.
3. Understanding jet algs

Optimal R vs p_t, proc., collider

Basic messages

- higher $p_t \rightarrow$ larger R
 Most say opposite

- larger R for gluons than quarks
 Gluon jets wider

- smaller R at LHC than Tevatron
 UE larger
This last part of talk was an overview of *1 of several* recent jet topics

Others include

- **Subtraction of pileup**
 - Cacciari & GPS ’07

- **Jet areas ↔ sensitivity to UE/pileup**
 - Cacciari, GPS & Soyez prelim

- **“Optimising R” — cross checking with MC**
 - Cacciari, Rojo, GPS & Soyez, for Les Houches

- **Jet flavour — e.g. reducing b-jet theory uncertainties from $40 – 60\%$ to $10 – 20\%$.**
 - Banfi, GPS & Zanderighi ’06, ’07
Jets, our window on partons (p. 40)

4. Conclusions

Conclusions / Outlook

- Jets are the closest we can get to seeing and giving meaning to partons
- Play a pivotal role in experimental analyses, comparisons to QCD calculations
- Significant progress in past 2 years towards making them consistent (IR/Collinear safe) and practical
- The physics of how jets behave in a hadron-collider environment is a rich subject — much to be understood, and potential for significant impact in how jets are used at LHC

Link with computational geometry