Hiding the Higgs with Lepton Jets

Joshua T. Ruderman
Princeton University

February 2, 2010

Adam Falkowski, JTR, Tomer Volansky, and Jure Zupan
(1002.XXXX)
Talk Outline

1. Hiding the Higgs
2. A Light Hidden Sector and Lepton Jets
3. Higgs to Lepton Jets
4. Lepton Jet Monte Carlo and Existing Constraints
 - LEP I
 - LEP II
 - Tevatron
5. Benchmark Models with a Light Higgs
6. Future Searches
The LEP constraint on the SM Higgs, $m_h \gtrsim 114.4$ GeV, implies

- that the Higgs is heavy.
Higgs Decays in the SM

The LEP constraint on the SM Higgs, $m_h \gtrsim 114.4 \text{ GeV}$, implies

- that the Higgs is heavy.

- or, that the Higgs decays exotically! Note that the SM Higgs width is tiny below the $W^- W^+$ threshold.
A **Hidden Higgs** is light and has been produced at LEP, but was missed because of exotic decays.

There are a couple of reasons to find this scenario appealing.

1. The precision electroweak fit favors a light Higgs,
 \[m_h \sim 87 \pm^{35}_{26} \text{GeV}. \]

2. A heavy Higgs leads to the SUSY fine tuning problem.
A **Hidden Higgs** is light and has been produced at LEP, but was missed because of exotic decays.

There are a couple of reasons to find this scenario appealing.

1. The precision electroweak fit favors a light Higgs, \(m_h \sim 87 \pm 35 \text{ GeV} \).

2. A heavy Higgs leads to the SUSY fine tuning problem.

And most interestingly to me,

3. Its fun to think of dynamical alternatives to the standard scenario! By pondering exotic Higgs decays that would have been missed, we can learn to think more inclusively about new physics at colliders.
The most important constraints on a light Higgs come from LEP.

The LEP experiments each collected $\sim 400 \text{ pb}^{-1}$ at $\sqrt{s} = 195 - 209$ GeV.

At these energies, a 100 GeV Higgs has $\sigma_{hZ} \sim 0.2 - 0.3 \text{ pb}$.

Therefore, if the Higgs is light, LEP has produced $\sim \mathcal{O}(100)$ Higgstrahlung events.
model independent limit,

\[m_h \gtrsim 82 \text{ GeV} \]
1. model independent limit,
\[m_h \gtrsim 82 \text{ GeV} \]

2. \(h \to b\bar{b} \) limit,
\[m_h \gtrsim 115 \text{ GeV} \]

If \(m_h \sim 100 \text{ GeV} \), then \(\text{Br}_{h\to b\bar{b}} \lesssim 0.2 \)
1. Model independent limit,

\[m_h \gtrsim 82 \text{ GeV} \]

2. \(h \to b\bar{b} \) limit,

\[m_h \gtrsim 115 \text{ GeV} \]

If \(m_h \sim 100 \text{ GeV} \), then \(\text{Br}_{h \to b\bar{b}} \lesssim 0.2 \)

3. \(h \to E_T \) limit,

\[m_h \gtrsim 114 \text{ GeV} \]

If \(m_h \sim 100 \text{ GeV} \), then \(\text{Br}_{h \to E_T} \lesssim 0.15 \)
A well known example of a Hidden Higgs can occur in the NMSSM.

\[W \supset \lambda S H_u H_d + \kappa S^3 \]

There are two new Higgses beyond the MSSM, \(S = (s, a) \). The pseudoscalar \(a \) is naturally light in the R and PQ symmetric limits.

For \(m_a \lesssim 2m_b \) the dominant Higgs decay can be \(h \rightarrow 2a \rightarrow 4\tau \), which as of this summer was only constrained to \(m_h \gtrsim 85 \text{ GeV} \).

* R. Dermisek and J. Gunion, 0502105
A group* at (mostly) NYU has just resurrected the ALEPH analysis pipeline and searched for $h \rightarrow 2a \rightarrow 4\tau$.

They look for two “τ jets” each of which are required to have 2 or 4 tracks.

The new limit is $m_h \gtrsim 110$ GeV.

*K. Cranmer’s talk, 20 Years of Aleph Data, CERN, Nov. 3 2009, also with J. Beacham, I. Yavin, P. Spagnolo
There remain a couple of proposals that are nearly unconstrained. They involve the higgs decaying to more SM states than usual, resulting in final states which have been mostly overlooked.

- **RPV MSSM:** \(h \rightarrow 6j \).
 L. M. Carpenter, D. E. Kaplan, E.-J. Rhee, **0607204**

- **Burried Higgs and Charming Higgs:** \(h \rightarrow 4j \).
 B. Bellazzini, C. Csaki, A. Falkowski, A. Weiler, **0906.3026, 0910.3210**
There remain a couple of proposals that are nearly unconstrained.

They involve the higgs decaying to more SM states than usual, resulting in final states which have been mostly overlooked.

- **RPV MSSM:** \(h \rightarrow 6j. \)

- **Burried Higgs and Charming Higgs:** \(h \rightarrow 4j. \)

- **Higgs to Lepton Jets.**
Higgs decays provide an opportunity to probe the light spectrum, which may include a new light hidden sector.

- **Hidden Valleys**: Light hidden sectors can dramatically modify collider physics.
 M. Strassler and K. Zurek 0604261, M. Strassler 0607160

- **Dark Sector**: Dark matter may be charged under a light hidden sector as an explanation of the leptonic cosmic ray anomalies.
 N. Arkani-Hamed and N. Weiner, 0810.0714
The dark sector setup:

\[G_{\text{dark}} \supset U(1)_d \]

\[\epsilon \]

where \(G_d \) is broken at the GeV scale.

Our sector talks to their sector through the kinetic mixing portal:

\[\mathcal{L} \supset \frac{\epsilon}{2} b_{\mu\nu} B^{\mu\nu} \quad \epsilon \lesssim 10^{-3} \]
For the rest of this talk we can ignore dark matter...

Our sector talks to their sector through the kinetic mixing portal:

\[\mathcal{L} \supset \frac{\epsilon}{2} b_{\mu\nu} B^{\mu\nu} \quad \epsilon \lesssim 10^{-3} \]
And we’ll focus on the simplest case,

\[\mathcal{L} \supset \frac{\epsilon}{2} b_{\mu\nu} B^{\mu\nu} \quad \epsilon \lesssim 10^{-3} \]

C. Cheung, LT. Wang, JTR, and I. Yavin, 0902.3246
With kinetic mixing, we have the Lagrangian,

\[\mathcal{L}_{\text{gauge}} = -\frac{1}{4} b_{\mu \nu} b^{\mu \nu} - \frac{1}{4} F_{\mu \nu} F^{\mu \nu} + \frac{\epsilon}{2} \cos \theta_W b^{\mu \nu} F_{\mu \nu} \]

\[V \supset \frac{1}{2} m_b^2 b^2 + b_\mu J_{\text{dark}}^\mu + A_\mu J_{\text{EM}}^\mu \]

We remove the kinetic mixing by shifting the massless photon,

\[A_\mu \rightarrow A_\mu + \epsilon \cos \theta_W b_\mu \]

The dark photon couples to the electromagnetic current, \(\epsilon b_\mu J_{\text{EM}}^\mu \)
Supersymmetric kinetic mixing includes gaugino mixing:

\[\mathcal{L}_{\text{gaugino}} \supset -2i\epsilon \lambda_{\tilde{b}} \bar{\sigma}^{\mu} \partial_\mu \lambda_{\tilde{B}} + \text{h.c.} \]

We remove the mixing by shifting the lighter gaugino:

\[\lambda_{\tilde{b}} \rightarrow \lambda_{\tilde{b}} + \epsilon \lambda_{\tilde{B}} \]

And we have the new interaction:

\[V \supset \epsilon \lambda_{\tilde{B}} \bar{J}_b \]

This means that SM neutralinos can decay into the hidden sector,
When a hidden sector state is produced, it cascade decays through hidden sector interactions.
Lepton Jets

When a hidden sector state is produced, it cascade decays through hidden sector interactions.

The dark photons decay back to the SM through the kinetic mixing. The lepton jet can include missing energy.
Lepton Jets

When a hidden sector state is produced, it cascade decays through hidden sector interactions.

The dark photons decay back to the SM through the kinetic mixing. The lepton jet can include missing energy.

The last step can be prompt, and the decay products are all very boosted and collimated.

\[c\tau \sim 10^{-5} \text{ cm} \left(\frac{10^{-3}}{\epsilon} \right)^2 \quad \theta \sim \frac{m_{\gamma d}}{p_T} \]
It is possible that the Higgs decays into the hidden sector with a large branching fraction.

- **Higgs → Hidden Sector → Displaced Vertices**
 M. Strassler and K. Zurek, 0605193.

- **Higgs → Hidden Sector → \(l^+ l^- l^+ l^- \)**
 S. Gopalakrishnaa, S. Jungb, J. D. Wells, 0801.3456

They consider the operator \(|H|^2 |h_d|^2 \) which gives the decay \(h \rightarrow 2\gamma d \rightarrow l^+ l^- l^+ l^- \).

By coupling our Higgs to the hidden Higgs, this operator naturally leads to a weak scale mass for the dark sector, where the electromagnetic current includes both leptons and QCD jets.
Instead, we focus on decay channels where the hidden sector remains naturally light, and the lepton jets are fully leptonic, $m_{\gamma_d} \lesssim 500$ MeV.

This means that our Higgs should not couple directly to the hidden sector, and we now show three scenarios where the Higgs decays into weak-scale states that subsequently decay into the hidden sector.

1. Neutralino Channel
2. Sneutrino Channel
3. Singlet Channel
Neutralino Channel

One possibility, is that the Higgs decays to a pair of light MSSM neutralinos, $h \rightarrow 2 \tilde{N}_1$, which then decay into the dark sector.

If $m_{\tilde{N}_1} < m_Z/2$ then the Z also decays to neutralinos.

This is consistent with the LEP I measurement of Γ_Z if $\text{Br}_{Z \rightarrow 2\tilde{N}_1} < 10^{-3}$.

This is possible, with h dominantly decaying to neutralinos, for \tilde{N}_1 mostly bino, because,

$$\Gamma_{h \rightarrow 2\tilde{N}_1} \sim (\theta_{B\tilde{B}H})^2 \quad \text{and} \quad \Gamma_{Z \rightarrow 2\tilde{N}_1} \sim (\theta_{B\tilde{B}H})^4$$
The higgs can also decay to sneutrinos, through the D-term,

\[
D_1 = \frac{g_1}{2} (|H_u|^2 - |H_d|^2 - |\tilde{\nu}_i|^2 + \ldots)
\]

\[
D_2^a = \frac{g_2}{2} \left(H_u^a H_u^* + H_d^a H_d^* + \tilde{L}_i^a \tilde{L}_i^* \right)
\]

V \supset $\frac{1}{2} D_1^2 + \frac{1}{2} D_2^2$

In order to be consistent with Γ_Z, $m_Z/2 < m_{\tilde{\nu}} < m_h/2$.

The resulting decay rate dominates over $h \rightarrow b\bar{b}$,

\[
\Gamma_{h\rightarrow 2\tilde{\nu}_i} \sim \frac{m_4^4 \sin (\alpha + \beta)^2}{16\pi v^2 m_h}
\]

The $\tilde{\nu}$ decays to the hidden sector through the kinetic mixing.
Singlet Channel

Higgs decays can also be induced by the F-term of a singlet.

For example, consider the NMSSM, where S couples to χ and $\bar{\chi}$ with hidden sector charge ± 2.

$$W \supset S H_u H_d + S \chi \bar{\chi} + \chi h^2 + \bar{\chi} h^2$$

$\langle S \rangle$ gives a weak scale mass to χ and $\bar{\chi}$.

$$V \supset |F_S|^2 = |H_u H_d + \chi \bar{\chi}|^2$$

The last two operators of the superpotential cause χ to decay into the light scalars and fermions.
Sample Decay

An example Higgs decay might look like:

\[h \rightarrow \tilde{N}_1 \tilde{N}_1 \]

The Higgs can produce lots of leptons together with missing energy, even in the simplest U(1) model.
An example Higgs decay might look like:
An example Higgs decay might look like:

The Higgs can produce lots of leptons together with missing energy, even in the simplest $U(1)_d$ model.
We’ve simulated $h \rightarrow \text{Lepton Jets}$ to estimate the sensitivity of some existing LEP and Tevatron searches, using,

1. Madgraph for Higgs production and decay.
2. BRIDGE for hidden sector cascade.
3. SlowJet (our Mathematica code) for event analysis.

Caution: We do not simulate the detectors. The efficiency to reconstruct nearby tracks and leptons is important for setting real limits, and this requires full detector simulation.
Some Constraining Searches

Some of the searches which most constrain $h \rightarrow \text{Lepton Jets}$,

1. LEP I: Acoplanar Jets and Monojets (ALEPH)

2. LEP II: $h \rightarrow \not{E}_T$ (OPAL)
 0707.0373

3. LEP II: $h \rightarrow WW^*$ (ALEPH)
 0605079

4. LEP II: New NMSSM Hidden Higgs Search (ALEPH), $h \rightarrow 4\tau$
 K. Cranmer, talk at 20 Years of ALEPH Data, CERN, Nov. 3 2009

5. Tevatron: NMSSM Hidden Higgs Search (D0), $h \rightarrow 4\mu, 2\mu 2\tau$
 0905.3381

I’ll also comment on why Tevatron trilepton searches, and the D0 $\gamma + \gamma_d$ search are not very constraining for these scenarios.
LEP I: Monojets and Acoplanar Jets

- LEP I produced ~ 20 million Z’s, constraining the \tilde{N}_1 channel. With $\text{Br}_{Z\rightarrow 2\tilde{N}_1} \sim 10^{-4} - 10^{-3}$ there were 500-5000 lepton jet events per detector!

- ALEPH searched for acoplanar jets and monojets. Lepton jet events with these topologies must be suppressed by $\sim 10^{-3}$.

- The model is safe if the neutralino is light, $m_{\tilde{N}_1} \lesssim 5$ GeV. Then, the neutralinos are boosted and all events consist of two back-to-back Neutralino Jets, faking hadronic Z’s.
At LEP II, each detector searched for an invisible Higgs produced with a hadronic Z.

These searches can constrain lepton jets if they have too much \slashed{E}_T. They’re also sensitive to ($h \rightarrow$ lepton jets) produced with an invisible Z.

OPAL selects a wide window in visible mass around the Z, $50 \text{ GeV} < M_{\text{vis}} < 120 \text{ GeV}$.

We find that some missing energy helps to evade this search, and the least constrained models have $\slashed{E}_T \sim 50 \text{ GeV}$.
ALEPH searched for $h \rightarrow WW^*$, which is predicted to dominate in fermiophobic models.

They do a topological search, with mutually exclusive categories covering each decay mode of the Z, W, and W^*.

<table>
<thead>
<tr>
<th>Class and topology</th>
<th>Targeted Channel</th>
<th>(BR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Fully-Hadronic</td>
<td>No leptonic decay</td>
<td>0.422</td>
</tr>
<tr>
<td>1a: 6 jets</td>
<td>$qq qq qq qq$</td>
<td>0.328</td>
</tr>
<tr>
<td>1b: 4 jets and E_{miss}</td>
<td>$\nu \bar{\nu} qq qq$</td>
<td>0.094</td>
</tr>
<tr>
<td>2: Two-Hard-Leptons</td>
<td>Z leptonic decays</td>
<td>0.054</td>
</tr>
<tr>
<td>2a: plus jets</td>
<td>$\ell^+ \ell^- qq qq$</td>
<td>0.032</td>
</tr>
<tr>
<td>2t: plus jets and E_{miss}</td>
<td>$\ell^+ \ell^- \tau \nu qq$</td>
<td>0.003</td>
</tr>
<tr>
<td>2b: plus jets and 1 soft lepton</td>
<td>$\ell^+ \ell^- q\bar{q} \ell\nu$</td>
<td>0.010</td>
</tr>
<tr>
<td>2c: plus jets and 1 hard lepton</td>
<td>$\ell^+ \ell^- \ell q\bar{q}$</td>
<td>0.007</td>
</tr>
<tr>
<td>2d: plus 1 hard lepton and 1 track</td>
<td>$\ell^+ \ell^- \ell \nu \ell \nu$</td>
<td>0.003</td>
</tr>
<tr>
<td>3: One-Hard-Lepton (and E_{miss})</td>
<td>W leptonic decays</td>
<td>0.171</td>
</tr>
<tr>
<td>3a: plus jets</td>
<td>$q\bar{q} \ell \nu q\bar{q}$</td>
<td>0.101</td>
</tr>
<tr>
<td>3b: plus jets and 1 soft lepton</td>
<td>$q\bar{q} \ell \nu \ell \nu$</td>
<td>0.031</td>
</tr>
<tr>
<td>3c: plus 1 track and M_{miss}</td>
<td>$\nu \bar{\nu} \ell \nu \ell \nu$</td>
<td>0.029</td>
</tr>
<tr>
<td>3d: plus jets and M_{miss}</td>
<td>$\nu \bar{\nu} \ell \nu q\bar{q}$</td>
<td>0.008</td>
</tr>
<tr>
<td>4: One-Soft-Lepton</td>
<td>W^* leptonic decays</td>
<td>0.130</td>
</tr>
<tr>
<td>4a: plus jets</td>
<td>$q\bar{q} q\bar{q} \ell \nu$</td>
<td>0.101</td>
</tr>
<tr>
<td>4b: plus jets and M_{miss}</td>
<td>$\nu \bar{\nu} q\bar{q} \ell \nu$</td>
<td>0.029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subclass</th>
<th>E_{ℓ_1}</th>
<th>E_{ℓ_2}</th>
<th>E_{ℓ_3}</th>
<th>D_{14}</th>
<th>M_{tot}/\sqrt{s}</th>
<th>M_{miss}</th>
<th>E_{had}</th>
<th>N_{ch}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>< 25</td>
<td>< 13</td>
<td>< 60</td>
<td>> 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>< 25</td>
<td>< 13</td>
<td>> 60</td>
<td>> 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>> 25</td>
<td>> 20</td>
<td>< 8</td>
<td>< 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2b</td>
<td>> 25</td>
<td>> 20</td>
<td>> 8</td>
<td>> 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2c</td>
<td>> 25</td>
<td>> 20</td>
<td>> 8</td>
<td>< 60</td>
<td>> 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2d</td>
<td>> 25</td>
<td>> 20</td>
<td>> 8</td>
<td>< 60</td>
<td>> 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3a</td>
<td>> 25</td>
<td>< 10</td>
<td>> 0.4</td>
<td>< 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3b</td>
<td>> 25</td>
<td>[10, 20]</td>
<td>> 0.4</td>
<td>< 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3c</td>
<td>> 25</td>
<td>[10, 20]</td>
<td>< 0.4</td>
<td>> 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3d</td>
<td>> 25</td>
<td>< 10</td>
<td>< 0.4</td>
<td>> 95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4a</td>
<td>< 25</td>
<td>> 13</td>
<td>> 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>< 25</td>
<td>> 13</td>
<td>< 0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ALEPH searched for $h \rightarrow WW^*$, which is predicted to dominate in fermiophobic models.

They do a topological search, with mutually exclusive categories covering each decay mode of the Z, W, and W^*.

<table>
<thead>
<tr>
<th>Class and topology</th>
<th>Targeted Channel</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Fully-Hadronic</td>
<td>No leptonic decay</td>
<td>0.422</td>
</tr>
<tr>
<td>1a: 6 jets</td>
<td>$q\bar{q} q\bar{q} q\bar{q}$</td>
<td>0.328</td>
</tr>
<tr>
<td>1b: 4 jets and E_{miss}</td>
<td>$\nu \bar{\nu} q\bar{q} q\bar{q}$</td>
<td>0.094</td>
</tr>
<tr>
<td>2: Two-Hard-Leptons</td>
<td>Z leptonic decays</td>
<td>0.054</td>
</tr>
<tr>
<td>2a: plus jets</td>
<td>$e^+e^- q\bar{q} q\bar{q}$</td>
<td>0.032</td>
</tr>
<tr>
<td>2t: plus jets and E_{miss}</td>
<td>$e^+e^- \tau \nu q\bar{q}$</td>
<td>0.003</td>
</tr>
<tr>
<td>2b: plus jets and 1 soft lepton</td>
<td>$e^+e^- q\bar{q} \ell\nu$</td>
<td>0.010</td>
</tr>
<tr>
<td>2c: plus jets and 1 hard lepton</td>
<td>$e^+e^- l\nu q\bar{q}$</td>
<td>0.007</td>
</tr>
<tr>
<td>2d: plus 1 hard lepton and 1 track</td>
<td>$e^+e^- l\nu l\nu$</td>
<td>0.003</td>
</tr>
<tr>
<td>3: One-Hard-Lepton (and E_{miss})</td>
<td>W leptonic decays</td>
<td>0.171</td>
</tr>
<tr>
<td>3a: plus jets</td>
<td>$q\bar{q} \ell\nu q\bar{q}$</td>
<td>0.101</td>
</tr>
<tr>
<td>3b: plus jets and 1 soft lepton</td>
<td>$q\bar{q} \ell\nu l\nu$</td>
<td>0.031</td>
</tr>
<tr>
<td>3c: plus 1 track and M_{miss}</td>
<td>$\nu\bar{\nu} l\nu l\nu$</td>
<td>0.029</td>
</tr>
<tr>
<td>3d: plus jets and M_{miss}</td>
<td>$\nu\bar{\nu} q\bar{q} l\nu$</td>
<td>0.008</td>
</tr>
<tr>
<td>4: One-Soft-Lepton</td>
<td>W^* leptonic decays</td>
<td>0.130</td>
</tr>
<tr>
<td>4a: plus jets</td>
<td>$q\bar{q} q\bar{q} \ell\nu$</td>
<td>0.101</td>
</tr>
<tr>
<td>4b: plus jets and M_{miss}</td>
<td>$\nu\bar{\nu} q\bar{q} \ell\nu$</td>
<td>0.029</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subclass</th>
<th>Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>E_{ℓ_1} < 25, E_{ℓ_2} < 13, M_{tot}/\sqrt{s} < 60</td>
</tr>
<tr>
<td>1b</td>
<td>E_{ℓ_3} < 13, M_{miss}, E_{had}, N_{ch} > 60</td>
</tr>
<tr>
<td>2a</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 20, E_{ℓ_3} < 8</td>
</tr>
<tr>
<td>2b</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 20, E_{ℓ_3} > 8</td>
</tr>
<tr>
<td>2c</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 20, E_{ℓ_3} > 8, M_{miss}, E_{had}, N_{ch} > 60</td>
</tr>
<tr>
<td>2d</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 20, E_{ℓ_3} > 8, M_{miss}, E_{had}, N_{ch} < 60</td>
</tr>
<tr>
<td>3a</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} < 10</td>
</tr>
<tr>
<td>3b</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 10, E_{ℓ_3} > 0.4</td>
</tr>
<tr>
<td>3c</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} > 10, E_{ℓ_3} < 0.4</td>
</tr>
<tr>
<td>3d</td>
<td>E_{ℓ_1} > 25, E_{ℓ_2} < 10, E_{ℓ_3} < 0.4</td>
</tr>
<tr>
<td>4a</td>
<td>E_{ℓ_1} < 25, E_{ℓ_2} > 13</td>
</tr>
<tr>
<td>4b</td>
<td>E_{ℓ_1} < 25, E_{ℓ_2} > 13</td>
</tr>
</tbody>
</table>

We find that 2c is most constraining for our scenario. This category looks for 2 hard leptons, one softer lepton, and at least one additional track, and has very low SM background.
LEP II: $h \rightarrow WW^*$

- **$2c$** requires two leptons with E_T above 25 and 20 GeV.
- The leptons in lepton jets are softer than this, but this category is sensitive to a leptonic Z produced with lepton jets.
- They’re interested in the topology, $ZWW^* \rightarrow l^- l^+ \nu l j j$, with 5 well-separated objects.

They cut on $y_{45} > 2 \times 10^{-5}$ using Durham where,

$$y_{ij} = \frac{2 \text{Min}(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{\text{vis}}^2}$$

We find that this search strongly constrains models where the topology has more than 2 lepton jets, whereas $h \rightarrow 2$ Lepton Jets is safe.
The new ALEPH search for a Hidden Higgs in the NMSSM, discussed above, is also sensitive to lepton jets.

They look at events consistent with an invisible or leptonic Z, and they require the rest of the event to reconstruct as two jets using the JADE algorithm.

Each jet must have exactly 2 or 4 tracks. Their signal is $\tau^+\tau^-$ with 1 and 3-pronged τ's.

This search is sensitive to $h \rightarrow \text{Lepton Jets}$ when the lepton jets are sparse, and not sensitive to models where the lepton jets have more than 4 tracks.
The Tevatron is also a good place to look for $h \to$ Lepton Jets.

We simulate the three dominant channels for a light Higgs: gluon fusion and Higgstrahlung with a W or Z.

With 5 fb$^{-1}$, a 100 GeV higgs has been produced ~ 10500 times.
Trilepton searches are not sensitive to lepton jets because they demand well-isolated leptons.

The isolation definitions usually use cones of $\Delta R < 0.4$ and demand at least one of the following,

1. **Total Isolation**: from all other leptons, tracks, and jets.

2. **Track Isolation**:
 \[\Sigma_{\text{track}} p_T < p_T^{\text{max}} \]

3. **Calorimeter Isolation**
 \[\Sigma E \text{ or } \Sigma E_T < E^{\text{max}} \]

The isolated leptons produced by lepton jets are too soft to be detected by trilepton searches.
In 2009, D0 performed a search for the NMSSM process \(h \rightarrow 2a \rightarrow 4\mu, 2\mu 2\tau \).

They looked for muons accompanied by a nearby track within \(\Delta R < 1 \). The pair must be isolated in the tracker and calorimeter.

This search is sensitive to lepton jets that include muons, \(m_{\gamma_d} > 2m_\mu \).

Lepton jets with more than 2 leptons spoil the isolation definition and are safe. Lepton jets with exactly 2\(\mu \) must be suppressed by \(\sim 10^{-3} \).
In 2009, D0 performed a search for a photon and a lepton jet with 2 leptons.

The photon must be hard, $E_T > 30$ GeV, central, $|\eta| < 1.1$, and isolated.

Our scenario has no direct decays to photons, but photons can be produced with ISR/FSR.

Using Pythia, we find ~ 5 events with a hard central γ with $m_h = 100$ GeV and 4.1 fb$^{-1}$.

A 100 GeV Higgs is just below sensitivity for this search.
How Existing Searches Constrain the Dark Sector

To summarize, we have identified the characteristics of hidden sector cascades such that \(h \rightarrow \text{Lepton Jets} \) is the least constrained.

1. Lots of leptons, \(n_{\text{lep}} > 4 \), per lepton jet.

2. Some (but not too much) missing energy, \(\not{E}_T \sim 50 \text{ GeV} \).

3. A 2-lepton-jet topology.

4. Either no muons, \(m_{\gamma_d} < 2\mu \), or enough leptons per lepton jet such that 2\(\mu \) lepton jets are suppressed by \(10^{-3} \).
We have picked benchmark models for the neutralino and singlet channels. The benchmarks satisfy the above searches by 2σ.

For both benchmarks, $m_h = 100$ GeV.

The singlet benchmark includes muons.
For each model, the Higgs dominantly decays to the hidden sector for $m_h = 100$ GeV.

The branching ratio to $b\bar{b}$ is below the LEP limit of 20% for a 100 GeV Higgs.
Benchmark Lepton Count and Missing Energy

Number of Leptons

Tevatron Missing Energy

Tevatron 5.0 fb⁻¹

Neutralino

Singlet
Dedicated searches at LEP I, LEP II, and the Tevatron should be able to discover, or rule out, a light Higgs decaying to lepton jets.

The challenge is to differentiate lepton jets from QCD jets. There are two complimentary approaches:

1. Develop a set of cuts that select for lepton jets and not QCD jets, and look for some events. D0 is making great progress on this front right now!

2. Look for deviations from the SM in distributions that are sensitive to the differences between lepton jets and QCD jets.

It is probably best to combine these approaches.
Some properties of our benchmarks:

- Lepton jets are much narrower than QCD jets

Lepton/track pair invariant masses are spiked at the dark photon mass(es).

The ECAL/HCAL ratio is larger for lepton jets than QCD jets.
Conclusions

- The Higgs may be hiding below 114 GeV if it decays exotically.

- A GeV-scale hidden sector can produce lepton jets, and the Higgs can dominantly decay to lepton jets and be light, $m_h \lesssim 100$ GeV.

- The models that are least constrained are all electron, have many electrons per Higgs decay, some missing energy, and a 2-lepton-jet topology.

- There could be 20000 lepton jet events at LEP I, 100 lepton jet events at LEP II, and 10000 lepton jet events at the Tevatron awaiting discovery!

- The Higgs could also be heavy, $m_h > 114$ GeV, and still dominantly decay to the hidden sector. Then it may be up to the LHC to make discovery. We’ve begun thinking about LHC search strategies.
LEP II Cross-Sections and Luminosities

Table

<table>
<thead>
<tr>
<th>E_{CM} (GeV)</th>
<th>183</th>
<th>189</th>
<th>192</th>
<th>196</th>
<th>200</th>
<th>202</th>
<th>205</th>
<th>207</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\int \mathcal{L} dt$ (pb$^{-1}$)</td>
<td>56.82</td>
<td>174.21</td>
<td>28.93</td>
<td>79.83</td>
<td>86.30</td>
<td>41.90</td>
<td>81.41</td>
<td>133.21</td>
</tr>
</tbody>
</table>