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N = 2 superconformal theories in four dimensions.
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A new paradigm for 4d N' = 2 susy gauge theories
(Gaiotto, ...)

Compactification of the (2,0) 6d theory on a 2d surface X, with

punctures. =
N = 2 superconformal theories in four dimensions.

e Space of complex structures ¥ = parameter space of the 4d
theory.
e Moore-Seiberg groupoid of ¥ = (generalized) 4d S-duality

Vast generalization of “A/ = 4 S-duality as modular group of T2,

6=4+2: beautiful and unexpected 4d/2d connections. For ex.,

e Correlators of Liouville/Toda on ¥ compute the 4d partition
functions (on S*)
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In this talk we will uncover another surprising connection:
e A protected 4d quantity, the superconformal index, is computed
by topological QFT on X..
A “microscopic” 2d definition of the TQFT still lacking. We will
define it in terms of its abstract operator algebra.
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In this talk we will uncover another surprising connection:

e A protected 4d quantity, the superconformal index, is computed
by topological QFT on X..

A “microscopic” 2d definition of the TQFT still lacking. We will
define it in terms of its abstract operator algebra.

Index = twisted partition function on S® x S'. Independent of the
gauge theory moduli and invariant under S-duality.

It encodes the protected spectrum of the 4d theory. Useful tool.

e Computing the index in different duality frames gives very
non-trivial checks of Gaiotto’s dualities.

e Conversely, assuming S-duality we will explicitly compute the
index of 4d theories lacking a Lagrangian description.

e Surprising connection with elliptic hypergeometric function, an
active area of mathematical research.

Ao generalized quivers N = 4 index N =
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The Superconformal INdeXinomerberser: Kinnes. Matdacens Mimwatia, magn 2005]
The SC Index counts (with signs) the (semi)short multiplets, up to
equivalence relations that sets to zero &; Short, =Long.

I, v,y,...)= TT(—l)Ft2(A+j2)y2j1vf(T+R) e
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The Superconformal IndeXinomemerser: simney. Matdacens vinwata, raju 2005]

The SC Index counts (with signs) the (semi)short multiplets, up to
equivalence relations that sets to zero &; Short, =Long.

I(t,v,y,...)= Tr(—l)Ft2<A+j2)y2j1v7<T+R) e
Consider a 4d SCFT. On S° x R (radial quantization), QT = S.
e The superconformal algebra implies (taking Q = Q24)
2{5,Q} =A—2jo—2R+r=H>0.

where E is the conformal dimension, (j1,j2) the SU(2)1 ® SU(2)2
Lorentz spins, and (R,r) the quantum numbers under the
SU(2)r ® U(1), R-symmetry.

e The SC index is the Witten index
T =Tr(-1)" e PHTM

Here M is a generic combination of charges (weighted by chemical
potentials) which commutes with S and Q.

e States with H > 0 come in pairs, boson + fermion, and cancel out,so Z
is B-independent.
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The Index as a Matrix Integral
If the theory has Lagrangian description there is a simple recipe to compute the
index.
® One defines a single-letter partition function as the index evaluated on the
set of the basic objects (letters) in the theory with H = 0 and in a definite
representation of the gauge and flavor groups:

fRi(t,y,v),
where R labels the representation.

® Then the index is computed by enumerating the gauge-invariant words,

I(tvyvvvv) = / [dU] exXp Z ZfRJ (tnvy )'XRj(Unv Vn) )

n= 1

Here U is the matrix of the gauge group, V the matrix of the flavor group
and R; label representations of the fields under the flavor and gauge groups.

® XR; (U) is the character of the group element in representation R;.

® The measure of integration [d U] is the invariant Haar measure.

/ [dU] H X’R = #of singlets n R1 ® -+ @ Rn, -
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N =2: A; generalized quivers
S-duality for SU(2) theories
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S-duality for N' =2 SU(2) SYM with Ny =4

Im 7

e S-duality 7 — —% is accompanied by an

SO(8) triality transformation
e 2 ~ 2 and thus we have eight N =1 ysf
%4 in fundamental of SU(2).
e Generalized quivers: internal edges =
. gauge groups; external edges = flavour

. - o7 groups; vertices = Tri-Fundamental xsf.

e Triality permutes the four SU(2) flavor
factors.
On the diagrams this is implemented as
*D channel crossing.
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Generalized SU(2) quivers

Some examples:

5% OK

(b)

The generalized quivers in (a) arise from different pairs-of-paint
decomposition of the same Riemann surface. The corresponding 4d theories
are related by S-dualities. They must have the same superconformal index.
The same applies to (b).
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The index of the A; theories and TQFT interpretation.
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The index for the A; theories

The index is read off from the quiver

Ng
1= / H dUr eZIEEdgm S0 L faai (7Y™ 0™) Xaa; (UT)
I=1

1
{1, J,K}eVertices et w3 fund (™ Y™ V") X3 fund (UL UT UR)
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The index for the A; theories

The index is read off from the quiver

Ng
T = / H dU; eZIEEdgen S0 L faai (7Y™ 0™) Xaa; (UT)
I=1

1 I
{1, J,K}eVertices St wf3— funa(™ Yy 0" ) X3- funa (U U UR)

Define a “metric” and “structure constants”
oo 1 n n n n n n
— o=l nf3—fund(t™ Yy 0" ) X3 funa (U UYL U
Cu,u,uy = e=n=t nfs—jundl ) Xa— funa (U U UR)

nUIUJ — 6220:1 L faa; (™ Y™, 0™,) Xada; (UT) S(UI,UJ).
so that the index can be written as

I= H Cu,u,uk H nUMON

{I,J,K}eV {M,N}eg

where indices are contracted by integration over the Haar measure.
“Np—point correlator, with the quiver as a Feynman diagram”.
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TQFT interpretation

Jer)

18) o)

18)
(b)

TQFT interpretation of the structure constants C, 3, and of the metric 7,3
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TQFT interpretation

Jo)
18) |a)

1) 18)

(a) (0)

TQFT interpretation of the structure constants C, 3, and of the metric 7,3

® The structure constants and the metric have to satisfy a set of axioms, which
guarantee independence of correlators from the way one decomposes the
Riemann surface into “pairs of pants”.

® Most of the axioms are simply verified, they reduce to the statement that the
indices are lowered/raised with the metric.

|o)

(af

(s Ol

() (L)
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The one non-trivial condition is associativity of the algebra
5 € _ 5 €
Cap’® Csy" = Cpy° Csa
(Yo (Y

el O = « (Yo
‘ ) ‘ )
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The one non-trivial condition is associativity of the algebra

Caﬁé Coy = Cﬂvé Csa"

’ a) ‘ a)
(el ‘ 5 = ‘ 3)
o o8

Associativity of the algebra is equivalent to invariance of the index
under channel crossing of the graph and thus is implied by S-duality

o bl
a g
0 —
2
B §
5, §

Crucially depends on the field content.
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N =2: A; generalized quivers

Index as elliptic hypergeometric integral
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Index of a chiral superfield = elliptic Gamma function

e Mathematicians have a name for the index of the chiral superfield:
elliptic Gamma function

GH1 k41

_ 1-z""p""q
I'(z;p,q) = H T 1_zpigc
J,k20

e The index of a xsf is (Dotan and Osborn - 2008)

2

1 eni (kK & t 3 3 1
exp E = f (t,v,y) =I'\—=;pq), p=ty, qg=1t"y .
L_lk Vv
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Index of a chiral superfield = elliptic Gamma function

e Mathematicians have a name for the index of the chiral superfield:
elliptic Gamma function

GH1 k41

_ 1-z""p""q
I'(z;p,q) = H T 1_zpigc
J,k20

e The index of a xsf is (Dotan and Osborn - 2008)

2

chi o [ .3 3 -1
eXp[Z f (,v, )}F<%,p,q>, p=ty, q=t"y .

e The Elliptic Beta integral is a generalization of the celebrated Euler
Beta integral (spiridonov - 2001)

dz TIS_, T(t: 2% p,q) a—1 s—1_ D(@)T(B)
R e P = [ttt f a0 Tt o)
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Elliptic Cookbook

Recall the character of the (anti)fundamental representation of SU(n)
n n 1 n
= 5 - -, =1,

e The index of a chiral multiplet in fundamental of SU(n)

ﬁ 4
F(—ai ;p,q)
=1 \/5
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Elliptic Cookbook

Recall the character of the (anti)fundamental representation of SU(n)
n n 1 n
= 5 - -, =1,

e The index of a chiral multiplet in fundamental of SU(n)

n 2

o4
[[r(—=a
i=1 (\/1—}041 7177(])

e When an SU(n) symmetry is gauged we add a vector multiplet and
integrate over the gauge group

{2 (t%v; p,

t va;/a
]{ Hdu (as) H /z/ ]7p7)¢1)
Tr—1 j=1 i#] al 45;P> 4 ;Llalfl
* For brevity we will often omit the parameters p and ¢ from the expression
of the Gamma function.
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The index of the SU(2) generalized quivers in terms of
elliptic Gamma functions

The index of Ny = 4 SU(2) gauge theory can be written as

K,F(tQU)?{ dz F(t2vzi2) r( 12

2riz  [(2%2)

t2
ailbilzil) F(—Cildilzil).

Vo Vv
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The index of the SU(2) generalized quivers in terms of
elliptic Gamma functions

The index of Ny = 4 SU(2) gauge theory can be written as

dz T(t*vz%?) % 41 41 49 411 4
——— 2 T(—=a" b T'(—=cd .
2z D(2%2) (\/1_}& =) (ﬁc =)
This integral was recently shown to be invariant under exchanging a and ¢
(more generally, under the Weyl group of F4) (van de Bult 2009)

kT (tQU)

This checks associativity of the A; TQFT, or equivalently,
S-duality for the index of the A; theories
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Ag generalized quivers

® Generalized quivers: internal edges = SU(3) gauge
groups; external edges = flavour groups, either U(1)
or SU(3); vertices = hypermultiplets.

® Basic example Ny = 6 SU(3) SYM

® S-duality group generated by 7 — —% and
T—T+2.

r® Three possible degenerations of the four-punctured

sphere: different types of punctures collide (2
possibilities), or two like punctures collide.

e “Usual” S-duality is the equivalence of the two
degenerations when different types of punctures
collide (interchange of the two flavor U(1) or SU(3)
factors)

® Argyres-Seiberg duality brings us to the frame when
two like punctures collide. The theory consists of an
SU(2) vector multiplet coupled to a fundamental
hyper and to a strongly coupled rank-one SCFT
with Eg flavor symmetry.
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Weakly-coupled frame

SU(3), SU(3)y SU(3), SU(3)y
Ui Lo | [, Ui,
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Weakly-coupled frame

SU(3), SU(3)y SU(3), SU(3)y
U, Lo | [, U,
3 t az; \ T (2, V41 x;
z = 2200202 74 IEI ari iljl jljlr (\/_27 ( 7 ) >r ( s i) ) il;[jF (t% :>
azby = 3 ) Jr2 L oniay, - (2) '
11;17 T

S-duality implies symmetry under a < b

Checked perturbatively in ¢ and analytically proved for ¢t = v.

Using (Rains 2003)
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Strongly-coupled frame

SU@G) ECmEs
U, Lvn | [sve),

The Es SCFT has no Lagrangian description
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Strongly-coupled frame

SU@), ECmEs
TRES St
Ui, B | sue),

The Es SCFT has no Lagrangian description
Let C(Fe) (x,¥,2) denote the index of rank one Eg SCFT.
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Strongly-coupled frame

SU@), ECmEs
2 o) (o
U(1)a ‘ ULy ‘ SU3)y

The Es SCFT has no Lagrangian description

Let C'F) (x,y,z) denote the index of rank one Eg SCFT.
e In the strongly-coupled frame, the index reads
2, 2 2
t +
de T ve )p L o1 i1) o) (e, 1), y,2) .

1(s,r;y,2z) = kD (t%) ﬁ%ﬁem NG

e Argyres-Seiberg duality implies

j(s,r;y, z) =Zazpy 5= (a,/b)3/2, r=(a b)71/2 .

where Z, 2.5,y is the index in the weakly-coupled frame.
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Inverting the SU(2) integral

F(ieil Sil)
de _ V¥ T(20e*2) O (¢, 1), y,2) .

i’s,r; ,2) = /-;7{ -
( y.2) o 2mie F(%)F(e:&)
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Inverting the SU(2) integral

2 k1 1

- de TCme™'s™) , o, (Be)
7 (s,7; - It C®o) ((e, 1),y,2) .
(s,m;y,2) K  Sric F(f)l“(eﬁ) (t"ve™ ) ((e, r),y,2)

Inversion formula: Under certain assumptions the following holds:
(Spiridonov-Warnaar 2004)
p ds 2\ de 2\

= — i — = — ;— .
fwy=nf i <w (&) ) 1= 1) = f 525 (e 02 ) feo

The integration contour C, is a deformation of the unit circle
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The index of the Eg SCFT

Using the inversion formula we obtain the index of the Fg SCFT
C(EG) (( ) ) QKBF(t2v)2 f. ds F(gwil Sil)
W, T),Y,Z) = ——————or —_—

Y 3T (120 wt2) 2mis  T(, s12)

w

9 1 +1 5 1 +1
o (3 (o ()
Ty

xjr VU r bty

2 da; i=1j=1
Xf- H '7, J
T2 -t 2mi X F(ﬁ)

i#j J
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Spectrum of protected operators from the index

O =3 ap ik
k=0

1

4

t
ag =1, ait= a2t2 = a3t3 =0, a4t4 = —ng, a5t5 =0, a6t6 = —t6xf86 — 1% 153
v
t7 1\ & t7 1 1
art’ =— (y+ 7) X78 + — (y+ 7) — 702 (y+ *)
v Yy v Yy Yy
tsiﬁ( Eg _ EBs _1)+t8 +t8
ast =75 (Xeym2(7s) ~ X650 v v
1\ & 1 1
agt® = —t° <y+ 7) X7o —2t? <y+ 7> +t%0° (er 7>
Yy Yy Y
10 Y pe B E, 10 2 1 E
aiot’” = — T(X-/sﬁ X7s — Xeso — 1) + o (3/ +1+ y_2> X78
10 1\ 2 1\2
S d) e (ed)
v Yy Yy

The index is Ey covariant
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Spectrum of protected operators from the index

_ F2(E+j2),271,—(r+R
Z(t,v,y,...)="Tr(-1) 12 )y v ( ).
t* g E .
ag =1, art=agt? =agt® =0, agt? = —x7F, a5t® =0, agt® = —tOx % 041607,
v
7 8
¢ 1 t7 1\ . 1 t
7 Eg 7.2 8 ( Eg Eg ) 8 8
art v+ —|x — v+ =)=t [y + — ], agt” = — - X —1)+tTvtt o,
T v ( y) 8 ( r,) ( y) 8 02 Xsym?2(78) 650
1\ g 1 1
0919 = <y+—)x786 2¢9 ( —)+f <y+—>
Y y Y
10 410 10 2 2
1 t 2 1 Eg ! ! 10 2 1
agptt® = - — (X-,s x-,se’ x650 1)+7 (y +1+7)x7§ 7([77) —t v (y+ — ] .
Y \ Yy ) Y
7
t4/v — 16 608 —4To2(y + 1) + 180 0+ D+ 802w+ D)
X s u— L 1 : v,
1 —t3y)(1 —t3/y) (1 —3y)(1 — 3/y) (1 —3y)(1 — 3/y)
E T R J1 J2
X 2 0 T 0 0
W 3 —3 0 0 0
i 2 0 0 0 0
=o, X®u=0, XQT =0.

Constraints : X®X)lesom1 =
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SU(3) TQFT

333 133 113
C( ) Ca(’)x)y) C(S/,b,}()

xX,y,z

rank 1 : C2%): Index of Eg SCFT.

rank 0 : C{2%): Index of a hypermultiplet.

a, X,y

“rank -17 : ((111}:1) An auxiliary construct to write the Argyres-Seiberg

theory .
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S-duality checks of the Ey index

® ®
Y Y

(a) (0) (©)

(a) Ny =6 SU(3) theory (in either of two S-dual frames), or
Argyres-Seiberg theory.

(b) Two Es theories “joined” by gauging an SU(3) subgroup of the flavor

symmetry.
(c) Ee SCFT joined to hypers by an SU(3) gauging.

‘We checked associativity perturbatively in t.
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Higher rank

e Can in principle generalize the discussion to quivers with higher rank
gauge groups.

o Get many intrinsically strongly coupled theories: E7 SCFT, Tn
theories ...

e To obtain the index of these higher rank theories have to learn to
invert the superconformal tails.
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32 supersymmetries: S-duality SO(2n + 1)/Sp(n)

® The index on root system X

dz; Ft2e°‘;, 3
IN4N%H J ( pq),

2miz; ex T'(e*;p,q)

where we formally identify z; = e®i.
® The root systems of SO(2n + 1) and

Sp(n) are
SO(2n+1) : X ={xe;, te; Xe;,i<j}
Sp(n) : X ={£2e;, te; te;,i<j},

and they define dual polyhedra.
® n =2 S0O(5) and Sp(2) are both
squares.

® n =3 SO(7) gives a cube and Sp(3)
is an octahedron.
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8 Supersymmetries

Curious recipe : compute the index by counting the states in the UV, but
with the IR charge assignments (romelisberger)

Can be justified interpreting the index as the Witten index of the
non-conformal theory on S% x R interpolating betweeen UV and IR fixed
points.

e Several Seiberg-dual pairs turn out to have the same index.

(Romelsberger, Dolan Osborn, Spiridonov Vartanov)

e Remarkably, setting v = ¢ in the N’ = 2 index gives the A/ = 1 index of
the SCFT obtained (in the IR) integrating out the chiral adjoints.

e We consider /' =1 SCFTs that have an AdS5 dual.
Closed formulas for the index of the SCFTs dual to AdSs X Ypq.

e We check toric duality of these theories
e We match the index of conifold gauge theory to gravity on AdS x T**

x

N

1
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Y P4 quiver gauge theory

o YPP is Zo, orbifold of N' = 4
e Y79 is 7, orbifold of the conifold Y©
e 4 types of field in Y?? theory

U(1)r Arrows
Ull-2(=+y) R
Vilti@—y) | — =¥ —-
VA x —_———)——
Y y —_—— ==

1
Yra = 33 {—4172 +2pq +3¢° + (2p — q)V/4p? — 3q2} ,
1
Tha = 35 {—4172 —2pq +3q” + (2p + q)/4p® — 3q2} .
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Toric duality

e Example of toric duality

_._<.__.

Figure: Different quiver diagrams for Y42,

e Indices of toric-dual quivers are equal using Rains’ identity
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Toric duality

\\ \\\
S ‘ﬂt,\ R
s . .'/"
A KT
’ £

Figure: Action of Seiberg duality

——(—— -l - - il =
e 7. AU
f . 1,_ ,.r' > W, , 3 |

I\

R S Sl

Figure: Example of the Y*? quiver. Middle: Seiberg duality on node 1.
Right: swap nodes 1 and 2.
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Index of the conifold gauge theory and AdS x T

e In the large N limit, we can compute quiver gauge theory index by
saddle point approximation

T =— Z @Ef) log[det(1 — i(tk, yk))] »(n) = Euler Phi function
k=1

e i(x), index valued adjacency matrix of the quiver

e (Conifold index:
3b 31 31
g 2 t’y y

t3ab 3¢ n n B
I—tab 1133  1-32 1135 1-ty 1-¢

7=

a, b are potentials of SU(2), x SU(2) global symmetry
e KK reduction on TH!, spectrum of scalar laplacian (vakayama)

e On gravity side, contribution from graviton, gravitino and vector
multiplets, exactly matches with gauge theory result
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Outlook

e Many possible extensions to theories with 16 supercharges (higher

rank, ADE)
e Possible to add line and surface operators

1 index N =1
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Outlook

e Many possible extensions to theories with 16 supercharges (higher
rank, ADE)

e Possible to add line and surface operators

e Relation to the partition function of three dimensional theories on S°



Outlook

Many possible extensions to theories with 16 supercharges (higher
rank, ADE)

Possible to add line and surface operators
Relation to the partition function of three dimensional theories on S*

It must be possible to obtain a “microscopic” Lagrangian description of
the 2d TQFT by reduction of the twisted 6d (2,0) theory on S x S*.
This would give a uniform description of the index for all A,, theories.

Relation to Liouville/Toda?

More systematic understanding of the connection with elliptic
hypergeometric mathematics?
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Outlook

e Many possible extensions to theories with 16 supercharges (higher
rank, ADE)

e Possible to add line and surface operators
e Relation to the partition function of three dimensional theories on S°

e [t must be possible to obtain a “microscopic” Lagrangian description of
the 2d TQFT by reduction of the twisted 6d (2,0) theory on S x S*.
This would give a uniform description of the index for all A,, theories.

e Relation to Liouville/Toda?

e More systematic understanding of the connection with elliptic
hypergeometric mathematics?

Thank You
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