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BPS-states constitute a discrete subsector which is “stable”

BPS-states physical states ⇢
“small” (non-generic) representations of the super-Poincaré algebra

The (weighted) degeneracies of BPS-states are often captured 
by the Fourier coefficients of some automorphic form

Experimental fact: BPS-states in string theory are 
intimately connected with automorphic forms 

f(�g) = f(g) � 2 G(Z) g 2 G(R)



Knowledge of these degeneracies is important for many reasons, 
some of which are:

black hole entropy calculations

determining exact effective actions

wall-crossing phenomena

mathematical applications (e.g. topological invariants 
of Calabi-Yau manifolds, moonshine phenomena etc.)
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Some natural questions which arise in physics:

How do we single out which automorphic form is relevant 
for different physical situations?

Can we obtain explicit formulas for the Fourier coefficients 
of higher rank Lie groups?

Could we use physical reasoning to give new mathematical 
predictions?

To address these questions we (as physicists) have to learn 
some seemingly abstract mathematics!

In this talk I will give my perspective on this fascinating story.
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1. Eisenstein Series on SL(2)

- Math versus Physics-
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Perturbative quantum effects (weak-coupling limit                )

[Green, Gutperle]
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For certain values of     this has a physical interpretations

Perturbative quantum effects (weak-coupling limit                )

[Green, Gutperle]

Non-perturbative quantum effects

instanton action
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Why does this Eisenstein series show up in string theory?

S-duality: SL(2, Z) -invariance

Supersymmetry: Laplacian eigenfunction (with fixed eigenvalue)

But this is just the tip of the iceberg!

The process of “compactification” leads to enhanced symmetries 
called U-duality

discrete Lie group
(U-duality group)

Physical observables should be invariant under U-duality

This implies that automorphic forms on higher rank Lie groups 
occur naturally in string theory

[Green, Gutperle][Green, Sethi]

SL(2,Z) ⇢ G(Z)



For example, in the case of maximal supersymmetry, we have the 
following list of U-duality groups occurring in different spacetime dimensions D

[Cremmer, Julia][Hull, Townsend][Witten]

Automorphic forms have been extensively studied in this context:

[Kiritsis, Pioline][Obers, Pioline][Basu][Green, Russo, Vanhove][Green, Miller,  Russo, Vanhove]
[Green, Miller, Vanhove][Pioline][Fleig, Kleinschmidt][Bao, Carbone]



For example, in the case of maximal supersymmetry, we have the 
following list of U-duality groups occurring in different spacetime dimensions D

[Cremmer, Julia][Hull, Townsend][Witten]

But much more remains to be done! Explicit Fourier coefficients 
for exceptional groups, non-BPS protected quantities, non-maximally 

supersymmetric compactifications...

To this end we must understand the mathematics better 



-Eisenstein series revisitedSL(2, Z)

H ⇠= SL(2, R)/SO(2)

Using the isomorphism

SO(2) = Stab(i)

we can think of the Eisenstein series as a function on                                via SL(2, Z)\SL(2, R)

where we used the Iwasawa decomposition
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H ⇠= SL(2, R)/SO(2)

Using the isomorphism

SO(2) = Stab(i)

we can think of the Eisenstein series as a function on                                via SL(2, Z)\SL(2, R)

Es(g) = Es(nak) = Es
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y

1/2

y
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◆
k
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The function            is then a (spherical) automorphic form on Es(g) SL(2, R)

Es(�gk) = Es(g)

� 2 SL(2, Z) k 2 SO(2)
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We can now recast the Fourier expansion more group-theoretically: 

Es(g) = Econst

s (g) +
X

 generic

W (g)

Constant term (zeroth Fourier coefficient): 

Econst

s (g) =
Z

N(Z)\N(R)

Es(ng)dn

Non-constant term

W (g) =
Z

N(Z)\N(R)
Es(ng) (n)dn

This is an example 
of a (spherical) 

Whittaker vector:

W (ngk) =  (n)W (g)

The Whittaker vector is determined by its restriction to    :      

W (g) = W (nak) =  (n)W (a)

A



We can now recast the Fourier expansion more group-theoretically: 

Es(g) = Econst

s (g) +
X

 generic

W (g)

Constant term (zeroth Fourier coefficient): 

Econst

s (g) =
Z

N(Z)\N(R)

Es(ng)dn

Non-constant term

W (g) =
Z

N(Z)\N(R)
Es(ng) (n)dn

These formulas now have a natural 
generalization to higher rank Lie groups!

This is an example 
of a (spherical) 

Whittaker vector:

W (ngk) =  (n)W (g)



Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

Econst
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⇠(2s� 1)

⇠(2s)
y1�s



Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

p
⇡

�(s� 1/2)
�(s)

⇣(2s� 1)
⇣(2s)

Econst

s (g) = ys +
⇠(2s� 1)
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p

⇡
�(s� 1/2)

�(s)

Y
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1� p�2s

1� p�2s+1

One can incorporate the prefactor as the              part of the Euler product p =1

These observations form the basis of Langlands’ general constant term formula



Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

For the non-constant coefficients we have a similar behaviour:

W (g) = W1(g)
Y

p<1
Wp(1)



Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

For the non-constant coefficients we have a similar behaviour:

W (g) = W1(g)
Y
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“real Whittaker vector”: W1(g) =
2⇡s
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Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

For the non-constant coefficients we have a similar behaviour:
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Y
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Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

For the non-constant coefficients we have a similar behaviour:

W (g) = W1(g)
Y
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Euler products

Before we proceed with the higher rank case we mention some further properties of 
the Fourier expansion, namely that it decomposes into Euler products

For the non-constant coefficients we have a similar behaviour:

W (g) = W1(g)
Y

p<1
Wp(1)

p“    -adic Whittaker vector” 

This implies that the instanton measure in string theory is 
completely determined by  a     -adic Whittaker vector! p

[Kazhdan, Pioline, Waldron][Neitzke, Gunaydin, Pioline, Waldron][Pioline][Pioline, D.P.]
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2. Langlands Eisenstein Series 

and Automorphic Representations



Eisenstein series on semi-simple Lie groups

� : B(Z)\B(R)! C⇥
semi-simple Lie group in its split real formG(R) = B(R)K(R)

(quasi-)character

defined by 

�(b) = �(na) = �(a) = eh�+⇢|H(a)i

H : A(R)! h = Lie A(R)

H(a) = H
⇣
e
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↵2⇧ y↵H↵

⌘
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Eisenstein series on semi-simple Lie groups

� : B(Z)\B(R)! C⇥
semi-simple Lie group in its split real formG(R) = B(R)K(R)

(quasi-)character

defined by 

�(b) = �(na) = �(a) = eh�+⇢|H(a)i

H : A(R)! h = Lie A(R)

H(a) = H
⇣
e

P
↵2⇧ y↵H↵

⌘
=

X

↵2⇧

y↵H↵

Extend to the whole group by: �(g) = �(nak) = �(na)



Eisenstein series on semi-simple Lie groups

Given this data the Langlands Eisenstein series is defined by:

E(�, g) =
X

�2B(Z)\G(Z)

eh�+⇢|H(�g)i
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Eisenstein series on semi-simple Lie groups

Given this data the Langlands Eisenstein series is defined by:

E(�, g) =
X

�2B(Z)\G(Z)

eh�+⇢|H(�g)i

Converges absolutely on a subspace of h? ⌦ C

Can be continued to a meromorphic function on all of h? ⌦ C

Automorphic form: E(�, �gk) = E(�, g)

Satisfies a functional equation in �

Eigenfunction of the Laplacian: �G/KE(�, g) =
1

2
(h�|�i � h⇢|⇢i)E(�, g)

Godement’s domain
{�| h�,↵i > 1, 8↵ 2 ⇧}
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Eisenstein series are attached to the (non-unitary) principal series:

I(�) = IndG
B� = {f : G! C | f(bg) = �(b)f(g), b 2 B}

The theory of Eisenstein series then defines a map

E : I(�)! A(G(Z)\G(R))

from the principal series to the space of automorphic forms on G(R)

G acts on                           by right-translation:A(G(Z)\G(R))

[⇢(h)f ](g) = f(gh)

The irreducible constituents in the decomposition of A(G(Z)\G(R))

under this action are called automorphic representations

Automorphic representations

[Gelfand, Graev, Piatetski-Shapiro][Langlands]...
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Automorphic representations

There is an important notion of “size” of an automorphic 
representation, called the Gelfand-Kirillov dimension. 

“smallest number of variables on which the functions depend”GKdim =

For the principal series we have:

GKdim(I(�)) = dimRB\G = dimRN

This is important for physics, since we have the rough correspondence:

number of independent physical 
charges (e.g. electric, magnetic) 

Gelfand-Kirillilov 
dimension of the associated 
automorphic representation
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For example, consider again the non-holomorphic Eisenstein series 

E(s, g) =
X
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ys
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Automorphic representations

For example, consider again the non-holomorphic Eisenstein series 

� + ⇢ = 2s⇤

H(a) = H(eyH↵) = yH↵

⇤ = ↵/2(fundamental weight:                 )

h⇤|H↵i = 1

E(s, g) =
X

(c,d)=1

ys

|c⌧ + d|2s =
X

�2B(Z)\SL(2,Z)
eh�+⇢|H(�g)i



Automorphic representations

This is attached to the representation I(s) = IndSL(2,R)
B e2sh⇤|Hi

GKdimI(s) = dimRB\SL(2, R) = 1

For example, consider again the non-holomorphic Eisenstein series 

E(s, g) =
X

(c,d)=1

ys

|c⌧ + d|2s =
X

�2B(Z)\SL(2,Z)
eh�+⇢|H(�g)i



Automorphic representations

This is attached to the representation I(s) = IndSL(2,R)
B e2sh⇤|Hi

GKdimI(s) = dimRB\SL(2, R) = 1

This equals the number of summation variables in the Fourier expansion

E(s, g) =
X

 :N(Z)\N(R)!U(1)

W (g) =
X

m2Z
Wm(g)

For                 this is also the number of instanton charges in string theorys = 3/2

For example, consider again the non-holomorphic Eisenstein series 

E(s, g) =
X

(c,d)=1

ys

|c⌧ + d|2s =
X

�2B(Z)\SL(2,Z)
eh�+⇢|H(�g)i
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E(�, g) = Eab(�, g) + Enab(�, g)

Abelian term: 

This is the constant term with respect to the derived subgroup

N 0 = [N,N ]
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Z
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Non-abelian Fourier expansions

SL(2,R) N

E(�, g) = Eab(�, g) + Enab(�, g)

Abelian term: 

= Econst(a) +
X

 6=1

W (g)Eab(�, g)

  is trivial on      and so restricts to a character on the abelianization:N 0

Nab = N 0\N

Beyond                the unipotent radical       is no longer abelian 



Non-abelian Fourier expansions

SL(2,R) N

E(�, g) = Eab(�, g) + Enab(�, g)

Abelian term: 

= Econst(a) +
X

 6=1

W (g)Eab(�, g)

Beyond                the unipotent radical       is no longer abelian 

W (g) =

Z

N(Z)\N(R)
E(�, ng) (n)dn

Therefore the Whittaker vector is given by the same formula as before:

This can be evaluated 
locally at each prime!



Non-abelian Fourier expansions

SL(2,R) N

E(�, g) = Eab(�, g) + Enab(�, g)

Abelian term: 

= Econst(a) +
X

 6=1

W (g)Eab(�, g)

Beyond                the unipotent radical       is no longer abelian 

The non-abelian term is more tricky and will be discussed in 
more detail later for specific examples. 

[Piatetski-Shapiro][Shalika][Vinogradov,Takhtajan][Miller, Sahi]

[Pioline, D.P][Bao, Kleinschmidt, Nilsson, D.P., Pioline][Alexandrov, D.P., Pioline]



3. BPS-States in N=2 Theories 
and Special Automorphic Representations



In the remainder of the talk I want to focus on a specific physical 
setting which is largely unexplored from the automorphic perspective

R1,3⇥

Type II string theory on a Calabi-Yau threefold

Can we use automorphic techniques also in this setting?



BPS-states arise geometrically from D3-branes wrapping special 
Lagrangian 3-cycles inside the CY 3-fold X

Lattice of electric-magnetic charges � = H3(X, Z)

� = (p⇤, q⇤) 2 �“charge vector” ⇤ = 0, 1, . . . , h2,1

BPS-index ⌦ : �! Q
appropriate “count” of BPS-states with charge �

Mathematically,  this index should coincide with the generalized Donaldson-
Thomas invariants defined by Joyce & Kontsevich-Soibelman

[Denef, Moore][Gaiotto, Moore, Neitzke]
[Alexandrov, Saueressig, Pioline, Vandoren][Alexandrov, D.P., Pioline]



We wish to study the “partition function” of these BPS-states.
Schematically this would be a formal generating function:

X

�2�

⌦(�)e2⇡i(q⇤⇣⇤�p⇤⇣̃⇤)

where we introduce “chemical potentials”

Could one “resum” this series?

[Ooguri, Strominger, Vafa][de Wit, Kappeli, Lopes Cardoso, Mohaupt][Denef, Moore]...

(⇣⇤, ⇣̃⇤) 2 �? ⌦ R/(2⇡Z)



We wish to study the “partition function” of these BPS-states.
Schematically this would be a formal generating function:

X

�2�

⌦(�)e2⇡i(q⇤⇣⇤�p⇤⇣̃⇤)

where we introduce “chemical potentials”

[Ooguri, Strominger, Vafa][de Wit, Kappeli, Lopes Cardoso, Mohaupt][Denef, Moore]...

Or, rather, does the theory exhibit a discrete U-duality symmetry 
G(Z) such that the BPS-index           arises as the Fourier coefficient 

of some automorphic form?

(⇣⇤, ⇣̃⇤) 2 �? ⌦ R/(2⇡Z)

Could one “resum” this series?

⌦(�)



We know that the theory is invariant under the Jacobi group

should contain the monodromy group of X

discrete Heisenberg group 

GJ(Z) = G4(Z)n U(Z)

U(Z)

G4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



�

MX

(⇣⇤, ⇣̃⇤)

[Alexandrov, D.P., Pioline]

We know that the theory is invariant under the Jacobi group

GJ(Z) = G4(Z)n U(Z)

U(Z)

this comes from the structure 
of the moduli space as a torus 

fibration

discrete Heisenberg group 

should contain the monodromy group of XG4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



Let us now assume that these symmetries combine into a bigger duality group

We know that the theory is invariant under the Jacobi group

discrete Heisenberg group 

GJ(Z) = G4(Z)n U(Z)

U(Z)

G3(Z) � G4(Z)n U(Z)

Supersymmetry suggests that this should be a discrete subgroup 
of a Lie group             in its quaternionic real formG3(R)

should contain the monodromy group of XG4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



Let us now assume that these symmetries combine into a bigger duality group

Can we construct a           -invariant automorphic form whose G3(Z)
abelian Fourier coefficients give the degeneracies          ? ⌦(�)

We know that the theory is invariant under the Jacobi group

discrete Heisenberg group 

GJ(Z) = G4(Z)n U(Z)

U(Z)

G3(Z) � G4(Z)n U(Z)

should contain the monodromy group of XG4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



classical symmetryU-duality

G4(R)

G3(Z)

G4(Z)

G3(R)

terminology
and motivation 

comes from 
compactification

D = 4

D = 3

S1

We know that the theory is invariant under the Jacobi group

discrete Heisenberg group 

GJ(Z) = G4(Z)n U(Z)

U(Z)

should contain the monodromy group of XG4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



We know that the theory is invariant under the Jacobi group

discrete Heisenberg group 

GJ(Z) = G4(Z)n U(Z)

U(Z)

Examples of groups that we know occur in this context are

G3(R) = SU(2, 1) G2(2)(R)or

should contain the monodromy group of XG4(Z) ⇢ Sp(2h2,1 + 2;Z)
SL(2,Z)and the S-duality group



What singles out the candidate automorphic form?

Use constraints from supersymmetry 
combined with representation theory!



Any semi-simple Lie algebra     exhibits a 5-grading:g

g = g�2 � g�1 � g0 � g1 � g2



Any semi-simple Lie algebra     exhibits a 5-grading:g

g = g�2 � g�1 � g0 � g1 � g2

g2 = RE↵ ↵ = highest root

g0 = m� RH↵ Levi subalgebra

p = g0 � g1 � g2 Heisenberg parabolic subalgebra

Heisenberg subalgebra [g1, g1] = g2u = g1 � g2

[Kazhdan, Savin]



Any semi-simple Lie algebra     exhibits a 5-grading:g

g = g�2 � g�1 � g0 � g1 � g2

g2 = RE↵ ↵ = highest root

g0 = m� RH↵ Levi subalgebra

p = g0 � g1 � g2 Heisenberg parabolic subalgebra

Heisenberg parabolic subgroup:

Heisenberg subalgebra [g1, g1] = g2u = g1 � g2

P = LU = MAU

U is the unipotent radical of P
[Kazhdan, Savin]



Physical interpretation: the 5-grading adapted to the 
decompactification limit R!1

Any semi-simple Lie algebra     exhibits a 5-grading:g

g = g�2 � g�1 � g0 � g1 � g2



gLet      be the Lie algebra of the symmetry group G3(R)

Physical interpretation: the 5-grading adapted to the 
decompactification limit R!1

is the Cartan generator associated with the radial directionH↵ R

is the Lie algebra of the 4d symmetry group  m G4(R)

g1 � g2 is the Lie algebra of the Heisenberg group   

m� g1 � g2 is the Lie algebra of the Jacobi group   GJ(R)

Any semi-simple Lie algebra     exhibits a 5-grading:g

g = g�2 � g�1 � g0 � g1 � g2

U(R)



Degenerate principal series

Introduce a quasi-character on the Heisenberg parabolic

�s : P (Z)\P (R) ! C⇥

Adefined by its restriction to    : 

Extend to all of        :G3 �s(g) = �s(pk) = �s(p) k 2 K3(R)

�s(p) = �s(mau) = �s(a) = �s(e
yH↵) = ys

s 2 C



Associated with this character we have the degenerate principal series 

IndG3
P �s

and the Eisenstein series

E(�s, P, g) =
X

�2P (Z)\G3(Z)
�s(�g)

The Gelfand-Kirillov dimension is 

GKdim IndG3
P �s = dimR P\G3 = dimR g1 + dimR g2



The Gelfand-Kirillov dimension is 

GKdim IndG3
P �s = dimR P\G3 = dimR g1 + dimR g2

The functional dimension gives a measure of the number of independent 
summation variables occurring in the Fourier expansion of the automorphic form



The Gelfand-Kirillov dimension is 

GKdim IndG3
P �s = dimR P\G3 = dimR g1 + dimR g2

The functional dimension gives a measure of the number of independent 
summation variables occurring in the Fourier expansion of the automorphic form

(p⇤, q⇤)

number of vector fields in
the original 4d theory
e.g. 

D-brane charges
e.g. (p⇤, q⇤) 2 H3(X, Z)

Physically, these are the charges of the BPS-states!

dimR g1 = 2(n+ 1) ⇤ = 0, 1, . . . , n

n = h2,1(X)



The Gelfand-Kirillov dimension is 

GKdim IndG3
P �s = dimR P\G3 = dimR g1 + dimR g2

The functional dimension gives a measure of the number of independent 
summation variables occurring in the Fourier expansion of the automorphic form

(p⇤, q⇤)

Physically, these are the charges of the BPS-states!

dimR g1 = 2(n+ 1) ⇤ = 0, 1, . . . , n

k

The total number of physical charges                   corresponds 
to the functional dimension of 

(p⇤, q⇤, k)
IndG3

P �s

NS5-brane chargedimRg2 = 1



Does the Eisenstein series                 have the right properties for E(�s, P, g)

an instanton partition function that captures all these effects?



Does the Eisenstein series                 have the right properties for E(�s, P, g)

an instanton partition function that captures all these effects?

Compute the non-abelian Fourier expansion!

First extract the Fourier coefficients along the center Z = [U,U ]1.

W Z (g) =

Z

Z(Z)\Z(R)
E(�s, P, zg) Z(z)dz



Does the Eisenstein series                 have the right properties for E(�s, P, g)

an instanton partition function that captures all these effects?

Compute the non-abelian Fourier expansion!

First extract the Fourier coefficients along the center Z = [U,U ]1.

W Z (g) =

Z

Z(Z)\Z(R)
E(�s, P, zg) Z(z)dz

Then expand the constant term along 

Z

Z(Z)\Z(R)
E(�s, P, zg)dz =

X

 :Uab(Z)\Uab(R)!U(1)

W (g)

Uab = Z\U2.



+
X

k 6=0

 k(s; z,R, ⇣, ⇣̃)ei⇡k�

The result is of the general form:

E(�s, P, g) = E
const

(s) +
X

�2�

Cs(�)W�(s; z,R)e2⇡i(q⇤⇣⇤�p⇤
˜⇣⇤)

[Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline][Fleig, Gustafsson, Kleinschmidt, D.P.]



+
X

k 6=0

 k(s; z,R, ⇣, ⇣̃)ei⇡k�

BPS-instantons
(D-brane instantons)

W�(s; z,R) ⇠ e⇡R|Z(�,z)|

The result is of the general form:

E(�s, P, g) = E
const

(s) +
X

�2�

Cs(�)W�(s; z,R)e2⇡i(q⇤⇣⇤�p⇤
˜⇣⇤)

[Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline][Fleig, Gustafsson, Kleinschmidt, D.P.]

|Z(�, z)| = Mass

R ! 1



+
X

k 6=0

 k(s; z,R, ⇣, ⇣̃)ei⇡k�

gravitational instantons
(NS5-instantons)

 k(s; z,R, ⇣, ⇣̃) ⇠ cke
⇡R2|k|

[Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline][Fleig, Gustafsson, Kleinschmidt, D.P.]

The result is of the general form:

E(�s, P, g) = E
const

(s) +
X

�2�

Cs(�)W�(s; z,R)e2⇡i(q⇤⇣⇤�p⇤
˜⇣⇤)

R ! 1



The result is of the general form:

The numbers           should follow from the    -adic Whittaker vector p

on the unipotent radical     : U

Unfortunately there is no general formula for W U,p(s; 1)

+
X

k 6=0

 k(s; z,R, ⇣, ⇣̃)ei⇡k�

E(�s, P, g) = E
const

(s) +
X

�2�

Cs(�)W�(s; z,R)e2⇡i(q⇤⇣⇤�p⇤
˜⇣⇤)

Cs(�)

Cs(�) =
Y

p<1
W U,p(s; 1)



Example: rigid Calabi-Yau 3-folds

rigidX h2,1 = 0

H3(X,R)/H3(X,Z) = C/Od

Od ⇢ Q(
p�d)

When the intermediate Jacobian is of the form

ring of integers: d > 0(            and square-free)

the group             is conjectured to be the Picard modular group:

PU(2, 1;Od) := U(2, 1) \ PGL(3,Od)

G3(Z)

[Bao, Kleinschmidt, Nilsson, D.P., Pioline]



 The abelian Fourier coefficients of the Eisenstein series

E(�s, P, g) =
X

�2P (Od)\PU(2,1;Od)

�s(�g)

are given by the double divisor sum

[Bao, Kleinschmidt, Nilsson, D.P., Pioline]

What is the physical interpretation of these numbers? 

Cs(�) =
X

!2Od
�/!2O?

d

���
�

!

���
2s�2 X

z2Od
�/(z!)2O?

d

|z|4�4s



We expect that for some fixed value                we should have:s = s0

Cs0(�) = ⌦(�) BPS-index

But there are additional physical constraints on the numbers ⌦(�)



We expect that for some fixed value                we should have:s = s0

Cs0(�) = ⌦(�) BPS-index

But there are additional physical constraints on the numbers ⌦(�)

is the charge of a black hole with Bekenstein-Hawking entropy:

Q(�) = quartic             -invariantG4(Z)

S(�) = log ⌦(�) ⇠ ⇡
p
Q(�) + · · ·

�



We expect that for some fixed value                we should have:s = s0

Cs0(�) = ⌦(�) BPS-index

But there are additional physical constraints on the numbers ⌦(�)

is the charge of a black hole with Bekenstein-Hawking entropy:

Q(�) = quartic             -invariantG4(Z)

BPS constraint: Q4(�) � 0

S(�) = log ⌦(�) ⇠ ⇡
p
Q(�) + · · ·

�

⌦(�) = 0 unless

[Ferrara, Maldacena]



1/2 BPS constraint: Q4(�) � 0

To summarize, we need to satisfy the two constraints:

GKdim = 2n+ 3



For groups              in their quaternionic real form, Gross & Wallach       

have constructed a unitary representation       called the 

Quaternionic Discrete Series.

1/2 BPS constraint: Q4(�) � 0

To summarize, we need to satisfy the two constraints:

GKdim = 2n+ 3

G3(R)
⇡⌫

it depends on a single integral parameter ⌫

GKdim⇡⌫ = 2n+ 3

it is a submodule of the degenerate principal series

⇡⌫ ⇢ IndG3
P �s

��
s=⌫�3/2



Q4(�) � 0

BPS constraint: Q4(�) � 0⌦(�) = 0 unless

So this takes care of the constraint:

W U (g) =

Z

U(Z)\U(R)
f(ug) U (u)du

Moreover,  Wallach has shown that the Fourier coefficients 

f 2 ⇡⌫

in the automorphic realization of       have support only on charges:⇡⌫



[Günaydin, Neitzke, Pioline, Waldron][Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline]

Conjecture:  When a “U-duality” symmetry              is present in an G3(Z)
              theory, the associated BPS-instanton effects are captured by 
the Fourier coefficients of an automorphic form attached to the
quaternionic discrete series of  

N = 2

G3

This leads to the following:



[Günaydin, Neitzke, Pioline, Waldron][Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline]

If correct, this would also have interesting mathematical implications:

New connection between Donaldson-Thomas invariants of 
Calabi-Yau 3-folds and automorphic representations

Prediction on the growth of the Fourier coefficients:

� ! 1
⌦(�) ⇠ e⇡

p
Q4(�)

Conjecture:  When a “U-duality” symmetry              is present in an G3(Z)
              theory, the associated BPS-instanton effects are captured by 
the Fourier coefficients of an automorphic form attached to the
quaternionic discrete series of  

N = 2

G3

This leads to the following:



4. Conclusions and Future Prospects



General arguments suggest that there should exist a U-duality group also 
in N=2 theories

Constraints from N=2 susy points to a connection between instanton 
partition functions in D=3 and automorphic representations of G3

Preliminary results obtained for                    and SU(2, 1) SL(3)
[Pioline, D.P.][Bao, Kleinschmidt, Nilsson, D.P., Pioline]

Automorphic techniques connected to U-duality symmmetries extremely 
useful for counting BPS-states in theories with a large amount of susy

G3(Z) � GJ(Z) = G4(Z)n U(Z)



Future Prospects

Interesting example is type II string theory CY3‘s with h1,1(X) = 1

classical symmetry:

U-duality?

[Bodner, Cadavid]G2(2)(R)
G2(2)(Z)
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do they contain information about BPS-degeneracies/DT-invariants?
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Quaternionic discrete series automorphic forms on twistor space

[Alexandrov, D.P., Pioline][Alexandrov, Manschot, Pioline]

work in progress: [Fleig, Gustafsson, Kleinschmidt, Nilsson, D.P.]



Automorphicity + wall-crossing mock modularity
[Dabholkar, Murthy, Zagier] [Alexandrov, Manschot, Pioline]

Quaternionic discrete series automorphic forms on twistor space

[Alexandrov, D.P., Pioline][Alexandrov, Manschot, Pioline]
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[Bodner, Cadavid]G2(2)(R)
G2(2)(Z)

work in progress: [Fleig, Gustafsson, Kleinschmidt, Nilsson, D.P.]



Automorphicity + wall-crossing mock modularity
[Dabholkar, Murthy, Zagier] [Alexandrov, Manschot, Pioline]

Quaternionic discrete series automorphic forms on twistor space

Compactification to D=2 automorphic forms on affine KM-groups!
[Garland][Kapranov][Braverman, Kazhdan][Fleig, Kleinschmidt][Garland, Miller, Patnaik]
[Bao, Carbone][Fleig, Kleinschmidt, D.P] (to appear)

[Alexandrov, D.P., Pioline][Alexandrov, Manschot, Pioline]

Future Prospects

Fourier coefficients of automorphic forms in the quaternionic 
discrete series of            have been studied by Gan, Gross, Savin;G2(2)

do they contain information about BPS-degeneracies/DT-invariants?

Interesting example is type II string theory CY3‘s with h1,1(X) = 1

classical symmetry:

U-duality?

[Bodner, Cadavid]G2(2)(R)
G2(2)(Z)

work in progress: [Fleig, Gustafsson, Kleinschmidt, Nilsson, D.P.]



Secret Slides



For the    -adic Whittaker function there exists a remarkable 
formula due to Casselman-Shalika (and Shintani,Kato):

p

Wp(1) = e�hw0�+⇢|H(a)i
Y

↵>0

1� p�(h�|↵i+1)

1� ph�|↵i

⇥
X

w2W (g)

(detw)
Y

↵>0
w↵<0

ph�|↵iehw�+⇢|H(a)i

a = e
P

↵2⇧(log v↵)H↵

Wp(1) =
Z

N(Qp)
�(w0n) (n)dn

where

Casselman-Shalika formula



Wp(1) = e�hw0�+⇢|H(a)i
Y

↵>0

1� p�(h�|↵i+1)

1� ph�|↵i

⇥
X

w2W (g)

(detw)
Y

↵>0
w↵<0

ph�|↵iehw�+⇢|H(a)i

a = e
P

↵2⇧(log v↵)H↵

From a physics perspective the “instanton charges” are captured by 

m↵ =
Y

�2⇧

v
A↵�
↵

[Fleig, Gustafsson, Kleinschmidt, D.P.] (to appear)



Example: 

⇧ = {↵1,↵2}

E(s1, s2, g) =
X

�2B(Z)\SL(3,Z)

eh2s1⇤1+2s2⇤2|H(�g)i

Simple roots Fundamental weights {⇤1,⇤2}

SL(3,R)



Example: 

⇧ = {↵1,↵2}

E(s1, s2, g) =
X

�2B(Z)\SL(3,Z)

eh2s1⇤1+2s2⇤2|H(�g)i

Simple roots Fundamental weights {⇤1,⇤2}

This Eisenstein series occurs in string theory in a variety of places:

The automorphic membrane (M-theory on      )  [Pioline, Waldron]T 3

Type IIB string theory on         T 2 [Kiritsis, Pioline]

Type IIB string theory on a Calabi-Yau 3-fold         [Pioline, D.P.]

Of key physical interest are the numerical Fourier coefficients, 
a.k.a.     -adic Whittaker function!p

SL(3,R)



 (e

x1E↵1+x2E↵2
) = exp (2⇡i[m1x1 +m2x2])

Generic character on 

N(Z)\N(R) m1, m2 6= 0

The     -adic Whittaker function is defined by the integralp

Wp(1) =
Z

N(Qp)
�(w0n) (n)dn



 (e

x1E↵1+x2E↵2
) = exp (2⇡i[m1x1 +m2x2])

Generic character on 

N(Z)\N(R) m1, m2 6= 0

The Casselman-Shalika formula gives

The     -adic Whittaker function is defined by the integralp

Wp(1) =
Z

N(Qp)
�(w0n) (n)dn

Wp(1) = ⌥(p)
⇣
|m1|2s1+2s2�2|m2|2s1+2s2�2 � p2s1�1|m1|2s1�1|m2|2s1+2s2�2

�p2s2�1|m1|2s1+2s2�2|m2|2s1�1 + p4s1+2s2�3|m1|2s2�1

+p2s1+4s2�3|m2|2s1�1 � p4s1+4s2�4
⌘



The “instanton measure” is then given by the Euler product:

�↵,�(n, m) =
X

m=d1d2d3
d1,d2,d3>0,gcd(d3,n)=1

d↵
2 d�

3

where we defined the “double divisor sum” [Bump][Vinogradov, Takhtajan]

⌦(m1, m2) :=
Y

p<1
Wp(1) = |m1|s1+2s2�1|m2|2s1+s2�1�1�3s2,1�3s1(|m1|, |m2|)

For                                   it was proposed in                  that (s1, s2) = (3/2,�3/2) [Pioline, D.P.] ⌦(m1, m2)
captures the BPS-degeneracies of D-branes on Calabi-Yau 3-folds with 

electric-magnetic charges (p, q) = (m1, m2)


