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The (exact) WKB method:
a little bit of history

Shortly after the discovery of quantum mechanics, it was
clear that the one-dimensional Schroedinger equation

i (z) + (V(z) — E) () =0
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can be solved in closed form only in very few cases. One
needs approximation methods.

One such method was introduced as early as 1926 by
Wentzel, Kramers and Brillouin.



The idea of the WKB method is to solve for the
wavefunction as an asymptotic expansion in powers of f

One considers the following ansatz

(@, ) ~ m(l%h) exp (% / x p(a:’,h)daz’)

and solves it with p(x, ) + Z (2 hzn

— \/2m(E - V(2))

This defines a “quantum” Liouville one-form  p(z, h)dx



The WKB method quickly became a central tool in quantum
mechanics.

As a first application, the WKB method explained the Bohr-
Sommerfeld quantization condition as the leading approximation
to a more complicated quantization condition, involving

corrections in 7




However, in the period 1930-1970 the understanding of the
method was plagued with ambiguities and difficulties.
A particular vexing issue was the “connection problem” relating
WKB wavefunctions on the two sides of a turning point.

two principles outlined in §3.1. The method has two main drawbacks: certain

quantities (eg y in (3.23) and 6 in (3.57)) cannot be determined, and we are left in
complete ignorance of the behaviour of wave functions in the neighbourhood of
turning points. It was to remedy these defects that the method of ‘uniform

Berry-Mount, 1972



The situation was only clarified in 1980-1990 thanks to the

work of Voros and Silverstone (building up on previous work
by Dingle). This led to the “exact” WKB method.
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The traditional version of the JWKB connection formula at a linear turning point is incorrect.

The heritage of the previous confusions is that (almost) all
standard textbooks and courses on quantum mechanics are
incorrect when it comes to the WKB method!



WKB becomes exact and complex

The reformulation of WKB in the 1980s-1990s was based on
two (related) ideas:

|) the right objects to consider are Borel resummations of
asymptotic expansions
2)  one should extend the Schroedinger equation to the
complex realm

This reformulation (at least in its French version) was heavily
influenced by Ecalle’s theory of resurgence. Let me now

present the basic ingredients of this exact or “resurgent”
WKB method



WKB curve and quantum periods

The starting point of the method is to regard the classical

Hamiltonian as defining a complex curve, which | will call the
WKB curve

Y(x,p) =H(x,p) — F =0
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We can integrate the quantum one-form against the one-
cycles of the curve to obtain quantum periods (aka Voros
symbols), which are formal power series in /A~

I,(h) = § pla W)do ~ Y TR

a n >0

We can think about the different quantum periods as
different “sectors’ of the theory

It is well-known that these series are asymptotic and
do not define functions: their coefficients grow as
(2n)! Can we make sense of them?



The Borel triangle

The Borel method is a systematic (and traditional) way of
making sense of factorially divergent formal power series
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Borel resummation




The Borel transform ©(() is analytic at the origin.Very
often it can be analytically continued to the complex
plane, displaying singularities (poles, branch cuts).
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Singularities along the positive real line are obstructions to
Borel resummation




Resurgence

Don’t be afraid of Borel singularities: do lateral resummations!
A

s1a(9)(2) = /C e B(20)dC 4

Stokes discontinuity

(or Stokes automorphism) disca (@) = stalp) = 5-alp)

A quantum theory is resurgent if the Stokes discontinuity of
the perturbative series in a given sector is a function of the
series in other sectors (and nothing else).
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In the case of the symmetric double-well in quantum mechanics,
we have

5¢(I) — 5 (Iy) = —ifi log (14 e~ *(12)/")

The Borel singularities of the Borel transform of 1l are located
at multiples of the instanton action Héo)

The perturbative sector knows about the non-perturbative
sector!



Exact quantization conditions

What is the use of quantum periods? One beautiful consequence
of the exact WKB method is that exact quantization conditions
(EQC) for the spectrum can be obtained as vanishing

conditions for Borel-resummed quantum periods
[Voros, Zinn-Justin]

In the case of the double-well potential, one finds
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perturbative instantons

This requires the exact version of the connection formula due
to Voros and Silverstone



Complex quantum periods turn out to be crucial in the exact
WKB method, as shown b)’ [Balian-Parisi-Voros,Voros] In the case of the
pure quartic oscillator

H = p2 + x*
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real cycle: only The exact spectrum requires
approximate the real and the complex cycle:
spectrum “complex tunneling”



Insights from strings and gauge theories

The basic ingredients of the exact WKB method are quantum
versions of periods of complex curves. Periods of curves play
an important role in other contexts.

N=2 susy _ Seiberg-Witten 5 Py — ()
gauge theory (SW) curve (z,€)
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These periods determine the masses of BPS solitons
in the gauge theory



toric Calabi-Yau mirror T P\ __
manifold X curve (e, ef) =0

In this case, the periods determine the prepotential of
topological string theory on X, which contains

information about the counting of curves of genus zero
on X
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Quantum curves

How do we quantize this classical picture?
We can obtain a quantum curve by promoting x, p to
Heisenberg operators

Example:
SWV curve for SU(2), Z(:E, ep) — 2A2 COSh(p) + % — u
N=2 SYM l

(2A% cosh(p) + x° — u) |[¢) = 0

X, p| = ih



By using a WKB ansatz for the wavefunction, one obtains
again a quantum Liouville one-form

p(z, h)dx

This gives quantum versions of the periods appearing in
gauge theory/topological strings, as in the conventional WKB
method

a;(h) = Z agk)h% ap.i(h) = Z agﬁ’)ih%

k>0 k>0



What is the meaning of this quantization!?

It turns out that it is related to the “Omega background”
for the gauge/string theory, which involves two parameters

€1, €2

Quantization corresponds to the so-called Nekrasov-
Shatashvili (NS) limit
€1 =h, e =0

Note that we have formulated the correspondence by using
WKB quantization of a one-dimensional curve [cf. Mironov-
Morozov]. T his might be more fundamental than approaches

based on the quantization of a higher-dimensional integrable

system.



The correspondence between the Omega background and
quantization is not fully understood. To complicate matters,
we note that the self-dual Omega background,

€1 — —€2 = (g

which gives the conventional genus expansion of topological

string, corresponds to a dual quantization [Kallen-M.M.,Grassi-
Hatsuda-M.M,, ...]
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We will not develop this, however, and will restrict ourselves
to the original story



The NS correspondence leads to some surprising
consequences for the conventional WKB method. It
suggests to define a “quantum prepotential”

_ 9F(a(h), )

ap(h) da(h)

This “quantum prepotential” satisfies a version of the
holomorphic anomaly equations (HAE) of topological string
theory [Huang-Klemm,Krefl-Walcher]

It follows that the the quantum periods of the WKB
method (even in ordinary quantum mechanics) are formal
series of quasi-modular forms on the WKB
curve, governed by the HAE [Codesido-M.M]



In some cases the quantum periods can be computed by
instanton calculus in the N=2 gauge theory. This expresses
them as convergent series in an “instanton counting”

parameter

A4
SUQR),N=2SYM  a(u,h) = u (1 STETaR >

This can be regarded as a different resummation of
the quantum periods. The relation to the standard Borel
resummation is non-trivial [Kashani-Poor-Troost, Grassi-Gu-M.M ]



GMN

An important recent development in the interface of WKB/
string-gauge theory is the monumental work of Gaiotto-
Moore-Neitzke (GMN) on BPS states in N=2 gauge
theories.

It turns out that many ingredients in their theory are
related in a precise way to the resurgent VWKB method



From WKB to GMN

[E(x,p) = @

quantize V \gauge/siring theory

quantum periods BPS states
WKB GMN
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Stokes discontinuities KS morphisms



Voros’ analytic bootstrap

Some of the tools introduced by GMN make it possible
to solve old problems in the theory of resurgence. | will
focus here on the “analytic bootstrap”, an approach to
quantization proposed by Andre Voros in 1983.

Suppose we have a resurgent quantum theory and we
know () the Stokes discontinuities of the perturbative
series in all sectors, and (2) their classical limit.

Can we then reconstruct the exact (resummed) series!?

The analytic bootstrap is in fact a typical Riemann-Hilbert
problem, of the type studied by GMN.



A solvable example

The analytic bootstrap can be solved with the tools of GMN in
an important example: the exact WKB method in QM with
polynomial potentials

T
Viz) =a2"T — Z wx T
i=1

“minimal” /\ /\
chamber in I
moduli space \/ 7o \/

114 115




The Stokes discontinuities in this case are given by the
Delabaere-Pham formula:

s+(Ia) — s—(Il,) = —ihlog (1 T e_S(Ha‘l)) — ihlog (1 + e_S(Ha“))

+classical limit II,(Rh) ~ Hgo), h— 0

As in GMN, one can solve this Riemann-Hilbert problem
in terms of TBA-like equations [ito-M.M.-shu]

O =t [ Lot [ Laa(@) a7
: . g cosh(0 — 6") 27 g cosh(6 — 6") 2x

h = 6_9 eq(0) = =s(1l,)(h) L,(0) = log (1 -+ e_ea(e))



This provides a “resurgent’” derivation and generalization of a
conjecture by Gaiotto. It extends the ODE/IM
correspondence of Dorey-Tateo (which was derived for
monic potentials) to arbitrary polynomial potentials

As we move in moduli space to different “chambers”, one has
to consider additional quantum periods and include them in
the TBA equations. This is the well-known wall-crossing
phenomenon.
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This picture can be extended to the quantum versions of
general SW curves: the resurgent properties of the
corresponding quantum periods can be deduced from
the BPS spectrum and its wall-crossing
[Gaiotto, Grassi-Gu-M.M.]



Conclusions and outlook

* WKB is alive and well. Renewed interest in the theory of
resurgence, and recent developments in string theory and
gauge theory, have provided new insights and fresh solutions of
old problems in the theory

* Many open problems! We are still lacking e.g. an exact WKB
method for local mirror curves (difference equations).This
would be potentially very useful to understand topological
strings and BPS states on local Calabi-Yau threefolds

*GMN-like arguments give us the exact resummed quantum
periods, but not the quantization conditions. Is there a natural
meaning for these in the framework of GMN?



More conceptually, we need a deeper understanding of why
many problems in gauge/string theory can be solved by
quantizing the underlying curve



Thank you for your attention!



