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BASED ON:

* arXiv:0805.4182 with E. Kapit, J. Phys. A. 42(2009)
(so(5) symmetry, d-wave gap eqn.)

* H. Tye arXiv:0804.4200 (pseudogap)

* arXiv:0903.2484 with E. Kapit (pseudogap)

* with D. Robinson, to appear. (resistivity)

* JHEP 10 (2007) 027 with M. Neubert (2-loop RG)

* preliminary work: AL, arXiv:cond-mat/0610639,
0610816 (unpublished).




Outline

e Review of what we know about HTSC.

e Our model of scalar ~“symplectic” fermions.
e Renormalization group and doping.

e Pseudogap

e Resistivity

e Specific heat

e d-wave gap equation and Tc




Schematic phase diagram of hole-doped cuprates

4 Cr AE
120 apsll
= 1 [E g

d-wave superconductor
(dSC)

0.10 0.15
P
ECG 3-d metal

(courtesy of Seaumus Davis)




Numerical solutions to Tc and T:

T,/ To, T /T

we get a dome!

pseudogap
competes
with SC, no
preformed
pairs etc.
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La, ,Ba,CuO,

Antiferromagnetic
Mo+t Insulator

Z. Phys. Rev. B 64 189 (1986)




Mott Insulator: Repulsive Coulomb U~3eV

No double
occupancy
allowed..

N.F. Mott, Proc. Phys. Soc A62, 416 (1949)

(courtesy Seamus Davis)




Antiferromagnetic: Superexchange J~0.14eV

..except as
a virtual
process.
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P. W. Anderson, Phys. Rev. 115,2 (1959)

AF order preferred since it allows virtual hopping




How could this state become superconducting?




The SC energy gap A(k)
has four nodes.

The SC gap has d-wave symmetry




MANY OPEN
QUESTIONS

e What is the basic mechanism that leads to
d-wave pairing from repulsive interactions?

e What is the pseudogap? Pre-formed pairs?
Intrinsic to 1-particle density of states?

* Does the pseudogap compete or help
superconductivity?

e What sets the scale of Tc?




Where to begin?

Schematic phase diagram of hole-doped cuprates

Hypothesize a gas of
particles that SC condenses
3d AF MI EICIG ; —SU.JL ) —U..:efa Out Ofo
* assume rotational invariance at long wavelengths.
(lattice effects absent in the basic model.)

* Need a new kind of non-Fermi liquid with a

quantum field theory description. (Like Luttinger in
1d)




Basic requirements on models

® Purely electronic: only repulsive quartic
interactions (like the Hubbard model).

e intrinsically 2 dimensional.
e d-wave pairing (attractive).

e non-Fermi liquid properties of normal state:
pseudogap in resistivity, specific heat. Most
important clues are here.

e prediction of Ic.

Difhicult to obtain all in a single model....



THE MODEL

4 fundamental fermionic fields:
+, - = electric charge
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THE MODEL
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4 fundamental fermionic fields: X
RN

Interaction is unique by Fermi statistics: \
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H = /d2 ( 8tXa atX T /UFVX(X vXa +m? Xa Xa) + 87T2g XTX?Xle>

O‘Tl Y,

>

T

Novelty: the kinetic term second order in time derivatives,
with emergent Lorentz symmetry:.

Phenomenological motivation: m = pseudogap,
specific heat proportional to T2 at low temperatures.




Motivation from O(3) sigma model description of AF.

non-linear sigma model: S = / dt d'x 9,6 - 09

constraint on phi follows from a constraint on chi:

b= 3(><><)

Imposing:
i 5 X1 XT il Xl — constant

(9ug;-(3’ugz§ x Od,x 0,x" +irrelevant operators

* explains the second order in time derivatives.




Unitarity, spin statistics!?

e spin is a flavor here and thus does not need to
be embedded in the Lorentz group.

* The issue is really: can one consistently
quantize a fermionic theory that is second
order in time derivatives?




Canonical quantization:

The momentum expansion of the free fields is

d*k . _
~(x,t) = ( T _—ik-x b zk-:c)
X (x,1) /(zﬂ)zm ay.€ + ke

| il 2k
X (th) i1 /(ZW)zm

(_bl]le—ik-:c 2 akez’k-az)

The free theory is perfectly hermitian and unitary
In momentum Space.
Note: m is a gap in the single particle density of states.




Introduce unitary operator that distinguishes particles
from holes:

CaC = a, CbC

Then:

pseudohermiticity of o' — CHC

interacting theory:

Generally one can prove a pseudohermitian
hamiltonian has real eigenvalues and has a unitary
time evolution with a suitably defined C-inner
product.  C-inner product gives negative norm
states in the b-particle sector. Low energy effective
theory has no negative probabilities since no
transitions between states of mixed norm.




SO(5) symmetry

N-component version has Sp(2IN) symmetry
Sp(4) = SO(5). SO() is hidden, accidental,

and due to the fermionic statistics.

5-vector of bilinears can serve as order
parameters for both spontaneous symmetry

breaking of spin SU(2) (AF) and the charge

U() for superconductivity:
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SO(5) symmetry

N-component version has Sp(2IN) symmetry
Sp(4) = SO(5). SO() is hidden, accidental,

and due to the fermionic statistics.

5-vector of bilinears can serve as order
parameters for both spontaneous symmetry

breaking of spin SU(2) (AF) and the charge
U() for superconductivity:
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magnetic  electric

Singlet: i = DAL X - pseudogap



Energy scales

There are two zero temperature energy scales in the
model, the cut-off and the mass m. Since we will be

computing temperature dependence, we convert these
to equivalent temperatures:

Cllt‘OE: E() — hUFAC — ]-CBT()
T, will turn out to be comparable to AF
exchange energy, around 1000K.

Mass or “pseudogap:” hvpm = kgT™




Renormalization group

The interaction is relevant, in constrast to Dirac fermions.

A, =upper cutoft A = running RG scale

g(A) = AG(A) L5

fermionic quantum
critical point.

Define: =il pLil=8

fixed point: g, =1/8

Integrate the
RG flow:

linear!

Initial condition: g ( A C) —




Hole doping

We vary the doping p by varying the cut-off. One

can argue that it is related to a 1-point function:

o Ai UhTham S R ED I

The constant c can be estimated by comparing to
Heisenberg model:
a

~

p(x)%@@—A) Zﬂ(x_%> linear!

T2 A, 72 \ 2, — Zg

\ _J

Main point: plots as a function of p or x simply
related by a shift of the origin and overall scale.

Near the critical point, p = 0.14



Dynamical pseudogap generation

If the mass were classicallv zero. a non-zero mass is
y 9
generated by quantum fluctuations.

L

(Gap equation for the mass m:
B 1

2 PR

— 872
oty |

Result: E, T

L

where m” satisfies the transcendental equation:

M = 4G tan~ 1/




Plot of pseudogap as function of “doping” x:

Quantum critical point

FIG. 3: The pseudogap T™ as a function of x for o = 4 and z¢ = 16.

Pseudogap has entirely different origin than SC.




Resistivity

As an approximation: compute resistivity in the free
theory, a reasonable approximation near the critical point
where T™ is small.

Kubo formula gives the following dc conductivity:

{2 tanh(wy /2T") — %rsech2 (wk/QT)}

O)_€2—7T/Ac A% k2
- Td (27)% w3

There is a linear regime in the resistivity at low T:

p-e/h
14505
T%=1400K

1.0 -

(T, =1000K)

0.5




For a stack of 2-dim’l conducting layers, in the linear regime:

~

T 1+ 2t
resistivity: p=.08b|— T 2t m{cm]
1o 1+ 2

b= interlayer spacing in angstroms=6.4 G =TT T,

This formula works surprisingly well, a zero parameter fit!

doping || T* |pexp (300K ) [ mQcml|| ptheory (300K ) [mQem]

0.24 0.15 0.15
0.20 0.18 0.21
0.15 0.28 0.33
0.10 0.68 0.02
0.075 1.4 0.65




Fit the pseudogap data to a straight line:

Linear
regime
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Electronic specific heat

Approximation: same as before, in the free theory with
a dynamically generated mass.

Ac d2k
o (2m)

Free energy density: F = —4AT /

5 log (1 -+ e_“’k/T)

wr = Vk2 + m?

There is a cross-over behavior of the specific heat
at the temperature T = m.

LU s o o ot

For a Fermi liquid: v 1s a constant.



Specific heat coefthicient: v = C/T

Calculation: . .
N linear in T,

k! depends on doping

|




Specific heat coefthicient: v = C/T (not the same x)

= e b e
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d-wave Superconductivity

superconductivity implies spontaneous symmetry breaking
of the electro-magnetic U(1). We thus consider the charge
2 Cooper pair order parameters:

q— = <X$:X':> q(k) = Fourier transform

l

One can derive the gap equation:

B dwd?k’ , q(K’)
09 =~ | 2y SR LT T g

The kernel G(k,k’) represents the scattering of Cooper
pairs.




Expand in circular harmonics:

G(k, k') = i G(k, k") cos (6 — 0"

f==1)

q(k) = qu(k) cos (6

s-wave SC (I=0) doesn’t occur because the coupling is
repulsive.

d-wave SC (I=2) is the first attractive channel in our model,
based on momentum dependence of 1-loop scattering.




1- loop scattering

s
Ll y\

g1ves: Ga(k, k') = —8n° g2k’ k'

This gives a solution precisely of the d-wave form:

q(k) = 6*(ki — k) = 6°k* cos(20)




Finite temperature d-wave gap equation:

1
6% = gy / dkdO k* cos(20)Im (Ia tanh (%))

Wi§ = \/wf{ — 102k?2 cos 20

Tc is where the gap goes to zero:
(1)

0.25
0.20
015
0.10

Yiti - (T./E)=0.07




Numerical solutions to Tc and T:

T,/ To, T /T

we get a dome!

pseudogap
competes
with SC, no
preformed
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Conclusions and open
problems

e A simple model that appears to capture the
main features of HTSC in a calculable way.

e Clearly identified mechanisms for pseudogap,
d-wave superconductivity:

e (Gives good quantitative results for resistivity;
Tc.

e How to get the model from lattice fermions?

e | attice effects?




