Flux and Freund-Rubin Superpotentials in M-Theory

Neil Lambert
King’s College London

Rutgers, April 12, 2005

hep-th/0502200
Contents

Introduction

The KK Reduction

The Superpotential

Applications

Comments
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
Introduction

For obvious and varied reasons we are interested in "realistic" string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology

String Theory apparently predicts a vast "Landscape" of vacua

Moduli stabilized by fluxes

Two key questions:

- Is the Standard Model there at all?
- How special or generic is it?
- i.e. How much choice did god have?
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes

Two key questions:

- Is the Standard Model there at all?
- How special or generic is it?
- i.e. How much choice did god have?
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- \(D = 4 \)
- Standard Model/MSSM/GUT particle physics
- Cosmology
- \(N = 1 \) supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes

Two key questions:
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes

Two key questions:

- Is the Standard Model there at all?
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes

Two key questions:

- Is the Standard Model there at all?
- How special or generic is it?
 - i.e. How much choice did god have?
Introduction

For obvious and varied reasons we are interested in “realistic” string vacua.

- $D = 4$
- Standard Model/MSSM/GUT particle physics
- Cosmology
- $N = 1$ supersymmetry?

String Theory apparently predicts a vast “Landscape” of vacua

Moduli stabilized by fluxes

Two key questions:

- Is the Standard Model there at all?
- How special or generic is it?
 - *i.e.* How much choice did god have?

A major program has been the statistical analysis of the Landscape [Douglas et al.].
Introduction

Here we are interested in M-theory vacua $M_4 \times X$. Statistics were recently discussed by [Acharya, Denef and Valandro]... $N=1$ Minkowski vacua $\rightarrow X$ is G_2 non-Abelian gauge theories from co-dimension 4 singularities \rightarrow chiral Fermions from co-dimension 7 singularities... Over 20 years ago Freund and Rubin introduced a class of M-theory "compactifications"... \rightarrow Spacetime is $AdS_4 \times X$... Four-form flux $G=\hat{M}dvol$... $N=1$ supersymmetry $\rightarrow X$ is weak G_2... \rightarrow Only realistic in that $D=4$ (and even then...) \rightarrow Now seen as near horizon AdS duals to 3D CFT's.
Introduction

Here we are interested in M-theory vacua $\mathbb{M}_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]
Introduction

Here we are interested in M-theory vacua $M_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\rightarrow X$ is G_2
Introduction

Here we are interested in M-theory vacua $\mathbb{M}_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\rightarrow X$ is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
Introduction

Here we are interested in M-theory vacua $M_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\rightarrow X$ is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
- chiral Fermions from co-dimension 7 singularities
Introduction

Here we are interested in M-theory vacua $\mathbf{M}_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\rightarrow X$ is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
- chiral Fermions from co-dimension 7 singularities

Over 20 years ago Freund and Rubin introduced a class of M-theory “compactifications”
Introduction

Here we are interested in M-theory vacua $\mathbb{M}_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua \rightarrow X is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
- chiral Fermions from co-dimension 7 singularities

Over 20 years ago Freund and Rubin introduced a class of M-theory “compactifications”

- Spacetime is $adS_4 \times X$
- Four-form flux $G = M\text{dvol}_4$
- $N = 1$ supersymmetry \rightarrow X is weak G_2
Introduction

Here we are interested in M-theory vacua $M_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\to X$ is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
- chiral Fermions from co-dimension 7 singularities

Over 20 years ago Freund and Rubin introduced a class of M-theory “compactifications”

- Spacetime is $adS_4 \times X$
- Four-form flux $G = M \text{vol}_4$
- $N = 1$ supersymmetry $\to X$ is weak G_2
- Only realistic in that $D = 4$ (and even then...)

Now seen as near horizon adS duals to 3D CFT's.
Introduction

Here we are interested in M-theory vacua $\mathbb{M}_4 \times X$.

Statistics were recently discussed by [Acharya, Denef and Valandro]

- $N = 1$ Minkowski vacua $\rightarrow X$ is G_2
- non-Abelian gauge theories from co-dimension 4 singularities
- chiral Fermions from co-dimension 7 singularities

Over 20 years ago Freund and Rubin introduced a class of M-theory “compactifications”

- Spacetime is $adS_4 \times X$
- Four-form flux $G = M \text{vol}_4$
- $N = 1$ supersymmetry $\rightarrow X$ is weak G_2
- Only realistic in that $D = 4$ (and even then...)
- Now seen as near horizon adS duals to 3D CFT’s.
In a paper with B. Acharya, F. Denef and C. Hofman we revisited Freund-Rubin solutions of M-theory with a view to making them “realistic”:

The Good:
- chiral Fermions and non-Abelian gauge fields from singularities
- easier to construct examples
- supersymmetric brane configurations without orientifolds
- adS duals to phenomenological models

The Bad:
- adS vacua - but that is generic to supersymmetric vacua
- imagine some kind of KKLT mechanism

The Ugly:
- KK scale = cosmological scale
Introduction

In a paper with B. Acharya, F. Denef and C. Hofman we revisited Freund-Rubin solutions of M-theory with a view to making them “realistic”:

▶ The Good:
 ▶ chiral Fermions and non-Abelian gauge fields from singularities
 ▶ easier to construct examples
 ▶ supersymmetric brane configurations without orientifolds
 ▶ adS duals to phenomenological models
In a paper with B. Acharya, F. Denef and C. Hofman we revisited Freund-Rubin solutions of M-theory with a view to making them “realistic”:

- **The Good:**
 - chiral Fermions and non-Abelian gauge fields from singularities
 - easier to construct examples
 - supersymmetric brane configurations without orientifolds
 - adS duals to phenomenological models

- **The Bad:**
 - adS vacua - but that is generic to supersymmetric vacua
 - imagine some kind of KKLT mechanism
Introduction

In a paper with B. Acharya, F. Denef and C. Hofman we revisited Freund-Rubin solutions of M-theory with a view to making them “realistic”:

- **The Good:**
 - chiral Fermions and non-Abelian gauge fields from singularities
 - easier to construct examples
 - supersymmetric brane configurations without orientifolds
 - adS duals to phenomenological models

- **The Bad:**
 - adS vacua - but that is generic to supersymmetric vacua
 - imagine some kind of KKLT mechanism

- **The Ugly:**
 - KK scale = cosmological scale
Our goals here:

- Study the effective potential for weak G^2 compactifications of M-theory.
- Include topological fluxes [c.f. Beasley and Witten].
- Look for mechanisms to lift the cosmological constant.
- Look for mechanisms to set KK scale greater than cosmological scale.
Our goals here:

- study the effective potential for weak G_2 compactifications of M-theory
Our goals here:

- study the effective potential for weak G_2 compactifications of M-theory
- include topological fluxes [c.f. Beasley and Witten]
Introduction

Our goals here:

▶ study the effective potential for weak G_2 compactifications of M-theory
▶ include topological fluxes [c.f. Beasley and Witten]

Our wish list:
Introduction

Our goals here:

- study the effective potential for weak G_2 compactifications of M-theory
- include topological fluxes [c.f. Beasley and Witten]

Our wish list:

- Look for mechanisms to lift the cosmological constant
Our goals here:

▶ study the effective potential for weak G_2 compactifications of M-theory
▶ include topological fluxes [c.f. Beasley and Witten]

Our wish list:

▶ Look for mechanisms to lift the cosmological constant
▶ Look for mechanisms to set KK scale $>>$ cosmological scale
The KK Reduction

Bosonic sector of the low energy effective action of M-theory

\[S = \frac{1}{2\kappa^9} \int \sqrt{-g} R - \frac{1}{2} G \wedge \ast G - \frac{1}{6} C \wedge G \wedge G \]

where

\[G = dC \]

metric ansatz:

\[g = V_0 \text{Vol}(X)^{-1} g_4(M) + g_7(X) \]

where

\[\text{Vol}(X) = \int_X \sqrt{g_7} \]

Fluxes

\[G = Mdx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 + G_X \]
The KK Reduction

Bosonic sector of the low energy effective action of M-theory

\[S = \frac{1}{2\kappa^9} \int \sqrt{-g} R - \frac{1}{2} G \wedge \star G - \frac{1}{6} C \wedge G \wedge G \]

where

\[G = dC \]

metric anstaz:

\[g = V_0 \text{Vol}(X)^{-1} g_4(M) + g_7(X) \]

where

\[\text{Vol}(X) = \int_X \sqrt{g_7} \]

Fluxes

\[G = M dx^0 \wedge dx^1 \wedge dx^2 \wedge dx^3 + G_X \]

N.B. The Freund-Rubin parameter \(M \) is not in general a constant
The KK Reduction

$N = 1$ supersymmetry comes from a spinor on X with

\[\nabla_i \eta = \frac{i}{2} \lambda_7 \gamma_i \eta \]

Hence

\[R_{ij}(X) = 6 \lambda_7^2 g_{ij}(X) \]

and

\[d_7 \Phi = 4 \lambda_7 \ast_7 \Phi, \quad d_7 \ast_7 \Phi = 0 \]

where

\[\Phi = \frac{i}{3!} \tilde{\eta} \gamma_{ijk} \eta dx^i \wedge dx^j \wedge dx^k \]

This is the so-called weak G_2 condition.
The KK Reduction

What are the light modes?
The KK Reduction

What are the light modes?

- harmonic 3-forms ω_i give rise to massless axions C^i
The KK Reduction

What are the light modes?

- harmonic 3-forms ω_i give rise to massless axions C^i
- massless metric deformations arise from [House and Micu]

$$\delta \Phi = s^I \phi_I \quad d \phi_I = -\lambda_7 \ast_7 \phi_I$$
The KK Reduction

What are the light modes?

- harmonic 3-forms ω_i give rise to massless axions C^i
- massless metric deformations arise from [House and Micu]

$$\delta \Phi = s^I \varphi_I \quad d \varphi_I = -\lambda_7 \ast_7 \varphi_I$$

These are not in a 1-1 correspondence.

To obtain chiral supermultiplets we need Bosonic superpartners for these modes.
The KK Reduction

What are the light modes?

- harmonic 3-forms ω_i give rise to massless axions C^i
- massless metric deformations arise from [House and Micu]

$$\delta \Phi = s^I \varphi_I \quad d \varphi_I = -\lambda_7 \ast_7 \varphi_I$$

These are not in a 1-1 correspondence.

To obtain chiral supermultiplets we need Bosonic superpartners for these modes

- KK axion modes $\delta C = \tilde{C}^I \varphi_I$
 - massive - $m^2 \sim \lambda_7^2$
The KK Reduction

What are the light modes?

- harmonic 3-forms ω_i give rise to massless axions C^i
- massless metric deformations arise from [House and Micu]

$$\delta \Phi = s^I \varphi_I \quad d \varphi_I = -\lambda_7 \ast_7 \varphi_I$$

These are not in a 1-1 correspondence.

To obtain chiral supermultiplets we need Bosonic superpartners for these modes

- KK axion modes $\delta C = \tilde{C}^I \varphi_I$
 - massive - $m^2 \sim \lambda_7^2$
- non-weak G_2 metric deformations $\delta \Phi = \tilde{s}^i \omega_i$
 - tachonic $m^2 \sim -\lambda_7^2$
The KK Reduction

So we introduce two sorts of light multiplets:

1. $z^i = C^i + i\tilde{s}^i + \text{Fermions}$
2. $z^I = \tilde{C}^I + is^I + \text{Fermions}$
The KK Reduction

So we introduce two sorts of light multiplets:

- $z^i = C_i + i\tilde{s}^i + $ Fermions
- $z^l = \tilde{C}^l + i s^l + $ Fermions

Note that if we take $\lambda_7 \to 0$ then we obtain two copies of the massless supermultiplet.

- origin: ω_i and φ_I are orthogonal modes if $\lambda_7 \neq 0$

$$\int_X \omega_i \wedge \star_7 \varphi_I \sim \lambda_7^{-1} \int \omega_i \wedge d\varphi_I = 0$$
The KK Reduction

So we introduce two sorts of light multiplets:

- $z^i = C^i + i\tilde{s}^i + $ Fermions
- $z^l = \tilde{C}^l + is^l + $ Fermions

Note that if we take $\lambda_7 \to 0$ then we obtain two copies of the massless supermultiplet.

- origin: ω_i and φ_l are orthogonal modes if $\lambda_7 \neq 0$

$$\int_X \omega_i \wedge *_7 \varphi_l \sim \lambda_7^{-1} \int \omega_i \wedge d\varphi_l = 0$$

Thus we wish to expand

- $C = C_0 + C_X + \sum C^i \omega_i + \sum_l \tilde{C}^l \varphi_l$
- $\Phi = \sum_i \tilde{s}^i \omega_i + \sum_l s^l \varphi_l$

set $\tilde{s}^i = 0$ for now
So we introduce two sorts of light multiplets:

- \(z^i = C^i + i\tilde{s}^i + \text{Fermions} \)
- \(z^l = \tilde{C}^l + i\tilde{s}^l + \text{Fermions} \)

Note that if we take \(\lambda_7 \rightarrow 0 \) then we obtain two copies of the massless supermultiplet.

- origin: \(\omega_i \) and \(\varphi_I \) are orthogonal modes if \(\lambda_7 \neq 0 \)
 \[
 \int_X \omega_i \wedge \ast_7 \varphi_I \sim \lambda_7^{-1} \int \omega_i \wedge d\varphi_I = 0
 \]

Thus we wish to expand

- \(C = C_0 + C_X + \sum C^i \omega_i + \sum \tilde{C}^l \varphi_I \)
- \(\Phi = \sum_i \tilde{s}^i \omega_i + \sum_l s^l \varphi_I \)
 - set \(\tilde{s}^i = 0 \) for now
The KK Reduction

Substituting into the action gives

\[S_{\text{eff}} = \frac{1}{\kappa_4^2} \int \sqrt{-g_4} \left(\frac{1}{2} R_4 - g_{ij} \partial_\mu z^i \partial^{\mu} \bar{z}^j - g_{IJ} \partial_\mu z^I \partial^{\mu} \bar{z}^J - V \right) + T \]

where

\[g_{ij} = \frac{1}{4 \text{Vol}(X)} \int_X \omega_i \wedge \ast_7 \omega_j \quad \quad g_{IJ} = \frac{1}{4 \text{Vol}(X)} \int_X \varphi_I \wedge \ast_7 \varphi_J \]

\[V = 16 \lambda_7^2 \frac{V_0}{\text{Vol}(X)} \tilde{C}^I \tilde{C}^J g_{IJ} - \frac{21 V_0 \lambda_7^2}{\text{Vol}(X)} + \frac{\text{Vol}(X)^3}{4 V_0^3} M^2 \]

\[+ \frac{1}{4} \frac{V_0}{\text{Vol}(X)^2} \int_X G_X \wedge \ast_7 G_X \]

\[T = - \frac{1}{4 V_0} M C^i \int_X \omega_i \wedge G_X - \frac{1}{4 V_0} M \tilde{C}^I \tilde{C}^J \int \varphi_I \wedge d\varphi_J \]

\[- \frac{1}{4 V_0} M \int_X C_X \wedge G_X \]
The KK Reduction

Note that we can’t think of either V or $V - T$ as a potential.
The KK Reduction

Note that we can’t think of either V or $V - \mathcal{T}$ as a potential.

- even if $G_X = \tilde{C}' = 0$, it does not have the correct Freund-Rubin extremum
The KK Reduction

Note that we can’t think of either V or $V - T$ as a potential.

- even if $G_X = \tilde{C}^I = 0$, it does not have the correct Freund-Rubin extremum
- T is topological - doesn’t contribute to $T_{\mu\nu}$
The KK Reduction

Note that we can’t think of either V or $V - \mathcal{T}$ as a potential.

- even if $G_X = \tilde{C}^I = 0$, it does not have the correct Freund-Rubin extremum
- \mathcal{T} is topological - doesn’t contribute to $T_{\mu\nu}$

M cannot be a constant parameter in the presence of fluxes:

$$d \star G + \frac{1}{2} G \wedge G = 0 \rightarrow d \star G_X + MG_X = 0$$

i.e. a constant M implies the fluxes are topologically trivial
The KK Reduction

Note that we can’t think of either V or $V - \mathcal{T}$ as a potential.

- even if $G_X = \tilde{C}' = 0$, it does not have the correct Freund-Rubin extremum
- \mathcal{T} is topological - doesn’t contribute to $T_{\mu\nu}$

M cannot be a constant parameter in the presence of fluxes:

$$d \star G + \frac{1}{2} G \wedge G = 0 \rightarrow d \star G_X + MG_X = 0$$

i.e. a constant M implies the fluxes are topologically trivial

In addition we see that if $M \neq 0$ then the fluxes are a source for the axions:

$$\frac{\partial \mathcal{T}}{\partial C^i} = \frac{1}{4V_0} M \int_X \omega_i \wedge G_X$$
To correctly reproduce the M-theory dynamics we can remove M by using the C-field equation of motion:

$$\int_{X} \omega^i \wedge G_X + \frac{1}{2} \int_{X} \tilde{C} I \wedge C J \int_{X} \phi^I \wedge d \phi^J$$
The KK Reduction

To correctly reproduce the M-theory dynamics we can remove M by using the C-field equation of motion:

- conservation of Page charge

\[
P_0 = \int_X \star G + \frac{1}{2} C \wedge G
\]

\[
= - \frac{\text{Vol}(X)^3}{V_0^2} M + \frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \int_X C_X \wedge G_X
\]

\[
+ \frac{1}{2} \tilde{C}^I \tilde{C}^J \int_X \varphi_I \wedge d\varphi_J
\]
The KK Reduction

To correctly reproduce the M-theory dynamics we can remove M by using the C-field equation of motion:

- conservation of Page charge

\[
P_0 = \int_X \star G + \frac{1}{2} C \wedge G
\]

\[
= - \frac{\text{Vol}(X)^3}{V_0^2} M + \frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \int_X C_X \wedge G_X
\]

\[
+ \frac{1}{2} \tilde{C}^l \tilde{C}^j \int_X \varphi_l \wedge d\varphi_j
\]

- use this to remove M in terms of P_0, $\text{Vol}(X)$, C^i and \tilde{C}^l in the remaining equations of motion
The KK Reduction

All this leads to a system of equations for the other fields which come from the action

\[S_{\text{eff}} = \frac{1}{\kappa_4^2} \int \sqrt{-g_4} \left(\frac{1}{2} R_4 - g_{ij} \partial_\mu z^i \partial^\mu \bar{z}^j - g_{IJ} \partial_\mu z^I \partial^\mu \bar{z}^J - U \right) \]

\[U = \frac{16 \lambda_7^2 V_0}{\text{Vol}(X)} \tilde{C}^I \tilde{C}^J g_{IJ} - \frac{21 V_0 \lambda_7^2}{\text{Vol}(X)} \int_X G_X \wedge \ast_7 G_X \]

\[+ \frac{V_0}{4 \text{Vol}(X)^3} \left(\frac{1}{2} C^k \int_X \omega_k \wedge G_X + \frac{1}{2} \tilde{C}^I \tilde{C}^J \int_X \varphi_I \wedge d\varphi_J - \tilde{P}_0 \right)^2 \]

\[\tilde{P}_0 = P_0 - \frac{1}{2} \int_X C_X \wedge G_X \]
The KK Reduction

Two cases to consider:

If $G_X = 0$

\rightarrow extremum at $\tilde{C}_I = 0$

\rightarrow effective potential for the volume is

$U = -2V_0^2V_0^2\lambda^27Vol(X) + V_0^2\tilde{P}_0^24Vol(X)^3$

\rightarrow $Vol(X) \sim \lambda^{-\frac{1}{7}}P_0$

\rightarrow Freund-Rubin

If P_0 is big enough then there is a solution with $\tilde{C}_I \neq 0$

\rightarrow Englert-type solution with topologically trivial flux
The KK Reduction

Two cases to consider:

If $G_X = 0$

- extremum at $\tilde{C}' = 0$
- effective potential for the volume is

$$U = -\frac{21V_0\lambda_7^2}{\text{Vol}(X)} + \frac{V_0\tilde{P}_0^2}{4\text{Vol}(X)^3}$$

- $\text{Vol}(X) \sim \lambda_7^{-1}P_0$
- Freund-Rubin

If P_0 is big enough then there is a solution with $\tilde{C}' \neq 0$
The KK Reduction

Two cases to consider:

If $G_X = 0$

- extremum at $\tilde{C}' = 0$
- effective potential for the volume is

$$U = -\frac{21V_0\lambda_7^2}{\text{Vol}(X)} + \frac{V_0\tilde{P}_0^2}{4\text{Vol}(X)^3}$$

- $\text{Vol}(X) \sim \lambda_7^{-1}P_0$
- Freund-Rubin

If P_0 is big enough then there is a solution with $\tilde{C}' \neq 0$

- Englert-type solution with topologically trivial flux
The KK Reduction

If $G_X \neq 0$
The KK Reduction

If $G_X \neq 0$

- can set $\tilde{P}_0 = 0$ by a large gauge transformation
- minimum for C^i occurs at $M = 0$
- minimum is at $\tilde{C}^I = 0$
- effective potential for the volume is

$$U = -\frac{21 V_0 \lambda_7^2}{\text{Vol}(X)} + \frac{1}{4} \frac{V_0}{\text{Vol}(X)^2} \int_X G_X \wedge *_7 G_X$$

- $\text{Vol}(X) \sim \lambda_7^{-2} \int_X G_X \wedge *_7 G_X$
The Superpotential

We want to find a superpotential (and Kahler potential) to reproduce U

$$U = e^K (g^{I\bar{J}} D_I W \bar{D}_J \bar{W} + g^{i\bar{j}} D_i W \bar{D}_{\bar{j}} \bar{W} - 3 W \bar{W})$$
We want to find a superpotential (and Kahler potential) to reproduce U

$$U = e^K(g^{I\bar{J}} D_I W \bar{D}_J \bar{W} + g^{i\bar{j}} D_i W \bar{D}_j \bar{W} - 3 W \bar{W})$$

There is a general form for the Kahler potential (at large volume)

$$K = -3 \ln \left(\frac{\text{Vol}(X)}{V_0} \right)$$

We assume that

$$\text{Vol}(X) = \frac{1}{7} \int_X \Phi \wedge \ast_7 \Phi$$
The Superpotential

Next we need to give the form of the superpotential.
The Superpotential

Next we need to give the form of the superpotential.

For $\lambda_7 = P_0 = 0$ Beasley and Witten use (cf. Gukov-Vafa-Witten)

$$W = \frac{1}{4V_0} \int_X \left(\frac{1}{2} C + i\Phi \right) \wedge G$$

but this is not holomorphic if $d\Phi \neq 0$.

A natural generalization is

$$W = -\frac{1}{4V_0} P_0 + \frac{1}{8V_0} \int_X \left(C + i\Phi \right) \wedge d\left(C + i\Phi \right)$$

clearly holomorphic

reduces to the above when $d\Phi = 0$ and $P_0 = 0$

must take P_0 to be a constant (not dependent on C).
The Superpotential

Next we need to give the form of the superpotential.

For $\lambda_7 = P_0 = 0$ Beasley and Witten use (cf. Gukov-Vafa-Witten)

$$W = \frac{1}{4V_0} \int_X \left(\frac{1}{2} C + i\Phi \right) \wedge G$$

but this is not holomorphic if $d\Phi \neq 0$.

\triangleright clearly holomorphic

\triangleright reduces to the above when $d\Phi = 0$ and $P_0 = 0$

\triangleright must take P_0 to be a constant (not dependent on C).
The Superpotential

Next we need to give the form of the superpotential.

For $\lambda_7 = P_0 = 0$ Beasley and Witten use (cf. Gukov-Vafa-Witten)

$$W = \frac{1}{4V_0} \int_X \left(\frac{1}{2} C + i\Phi \right) \wedge G$$

but this is not holomorphic if $d\Phi \neq 0$.

A natural generalization is

$$W = -\frac{1}{4V_0} P_0 + \frac{1}{8V_0} \int_X (C + i\Phi) \wedge d(C + i\Phi)$$
Next we need to give the form of the superpotential.

For $\lambda_7 = P_0 = 0$ Beasley and Witten use (cf. Gukov-Vafa-Witten)

$$W = \frac{1}{4V_0} \int_X \left(\frac{1}{2} C + i\Phi \right) \wedge G$$

but this is not holomorphic if $d\Phi \neq 0$.

A natural generalization is

$$W = -\frac{1}{4V_0} P_0 + \frac{1}{8V_0} \int_X (C + i\Phi) \wedge d(C + i\Phi)$$

clearly holomorphic

reduces to the above when $d\Phi = 0$ and $P_0 = 0$

must take P_0 to be a constant (not dependent on C).
The Superpotential

Explicit calculation shows that

\[U = \frac{16 V_0 \lambda^2}{\text{Vol}(X)} \tilde{C}^I \tilde{C}^J g^I_J + \frac{V_0}{4 \text{Vol}(X)^2} \int_X G_X \wedge \ast G_X \]

\[+ \frac{V_0}{4 \text{Vol}(X)^3} \left(\frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \tilde{C}^I \tilde{C}^J \int_X \varphi_I \wedge d\varphi_J - \tilde{P}_0 \right)^2 \]

\[- \frac{21 \lambda^2 V_0}{\text{Vol}(X)} - \frac{16 \lambda_7^2 V_0}{\text{Vol}(X)} \left(g_{i\bar{j}} \tilde{s}^i \tilde{s}^j - (g_{i\bar{j}} \tilde{s}^i \tilde{s}^j)^2 \right) \]
The Superpotential

Explicit calculation shows that

\[U = \frac{16 V_0 \lambda^2}{\text{Vol}(X)} \tilde{C}' \tilde{C}^J g_{i'j'} + \frac{V_0}{4 \text{Vol}(X)^2} \int_X G_X \wedge \ast G_X \]

\[+ \frac{V_0}{4 \text{Vol}(X)^3} \left(\frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \tilde{C}' \tilde{C}^J \int_X \varphi_I \wedge d \varphi_J - \tilde{P}_0 \right)^2 \]

\[- \frac{21 \lambda^2 V_0}{\text{Vol}(X)} - \frac{16 \lambda^2 V_0}{\text{Vol}(X)} \left(g_{ij} \tilde{s}^i \tilde{s}^j - (g_{ij} \tilde{s}^i \tilde{s}^j)^2 \right) \]

▶ reproduces the KK reduction calculation if \(\tilde{s}^i = 0 \)
The Superpotential

Explicit calculation shows that

\[
U = \frac{16 V_0 \lambda^2}{\text{Vol}(X)} \tilde{C}^I \tilde{C}^J g_{I\bar{J}} + \frac{V_0}{4 \text{Vol}(X)^2} \int_X G_X \wedge \ast G_X \\
+ \frac{V_0}{4 \text{Vol}(X)^3} \left(\frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \tilde{C}^I \tilde{C}^J \int_X \varphi_I \wedge d \varphi_J - \tilde{P}_0 \right)^2 \\
- \frac{21 \lambda^2 V_0}{\text{Vol}(X)} - \frac{16 \lambda^2 V_0}{\text{Vol}(X)} \left(g_{i\bar{j}} \tilde{s}^i \tilde{s}^j - (g_{i\bar{j}} \tilde{s}^i \tilde{s}^j)^2 \right)
\]

- reproduces the KK reduction calculation if \(\tilde{s}^i = 0 \)
- obtain a potential for \(\tilde{s}^i \) and see that they are tachyonic about \(\tilde{s}^i = 0 \)
The Superpotential

Explicit calculation shows that

\[
U = \frac{16V_0\lambda^2}{\text{Vol}(X)} \tilde{C}^I \tilde{C}^J g_{IJ} + \frac{V_0}{4\text{Vol}(X)^2} \int_X G_X \wedge \ast G_X \\
+ \frac{V_0}{4\text{Vol}(X)^3} \left(\frac{1}{2} C^i \int_X \omega_i \wedge G_X + \frac{1}{2} \tilde{C}^I \tilde{C}^J \int_X \varphi_I \wedge d\varphi_J - \tilde{P}_0 \right)^2 \\
- \frac{21\lambda^2 V_0}{\text{Vol}(X)} - \frac{16\lambda^2 V_0}{\text{Vol}(X)} \left(g_{ij} \tilde{s}^i \tilde{s}^j - \left(g_{ij} \tilde{s}^i \tilde{s}^j \right)^2 \right)
\]

- reproduces the KK reduction calculation if \(\tilde{s}^i = 0 \)
- obtain a potential for \(\tilde{s}^i \) and see that they are tachyonic about \(\tilde{s}^i = 0 \)
- global minimum at \(M = 0, \tilde{C}^I = 0 \) and \(g_{ij} \tilde{s}^i \tilde{s}^j = \frac{1}{2} \)
Consider supersymmetric vacua: $D_i W = D_I W = 0$
The Superpotential

Consider supersymmetric vacua: \(D_i W = D_I W = 0 \)

- no solutions if \(G_X \neq 0 \)
Consider supersymmetric vacua: $D_i W = D_I W = 0$

- no solutions if $G_X \neq 0$
- if $G_X = 0$ then Freund-Rubin (including Minkowski space if $P_0 = 0$) is the only solution
Consider supersymmetric vacua: $D_i W = D_I W = 0$

- no solutions if $G_X \neq 0$
- if $G_X = 0$ then Freund-Rubin (including Minkowski space if $P_0 = 0$) is the only solution
- global minimum at $M = \tilde{C}^I = 0$ is non-supersymmetric
- Englert-type solution at $\tilde{C}^I \neq 0$ is non-supersymmetric
Applications

We would like to break the relation: KK scale = cosmological scale and lift to de Sitter solutions.
Applications

We would like to break the relation: KK scale = cosmological scale and lift to de Sitter solutions.

The problem is that in a vacuum (choosing $V_0 = \text{Vol}(X(vacuum))$)

\[U = -\lambda_4^2 = -\frac{21\lambda_7^2 V_0}{\text{Vol}(X)} + \ldots \]

\[= -\lambda_7^2 (21 + \ldots) \]
Applications

We would like to break the relation: KK scale = cosmological scale and lift to de Sitter solutions.

The problem is that in a vacuum (choosing $V_0 = \text{Vol}(X(vacuum))$)

\[U = -\lambda^2_4 = -\frac{21\lambda^2_7 V_0}{\text{Vol}(X)} + \ldots \]
\[= -\lambda^2_7 (21 + \ldots) \]

▶ But we expect that $\text{Vol}(X) \sim \lambda^{-7}_7$
Applications

We would like to break the relation: KK scale = cosmological scale and lift to de Sitter solutions.

The problem is that in a vacuum (choosing $V_0 = \text{Vol}(X(vacuum))$)

$$U = -\lambda_4^2 = -\frac{21\lambda_7^2 V_0}{\text{Vol}(X)} + \ldots$$

$$= -\lambda_7^2 (21 + \ldots)$$

- But we expect that $\text{Vol}(X) \sim \lambda_7^{-7}$
- Thus

$$\lambda_4 \sim \text{Vol}(X)^{\frac{1}{7}} + \ldots$$

i.e. cosmological scale \sim KK scale
Applications

We would like to break the relation: KK scale = cosmological scale and lift to de Sitter solutions.

The problem is that in a vacuum (choosing $V_0 = \text{Vol}(X(vacuum)))$

$$U = -\lambda_4^2 = -\frac{21\lambda_7^2 V_0}{\text{Vol}(X)} + \ldots$$

$$= -\lambda_7^2 (21 + \ldots)$$

- But we expect that $\text{Vol}(X) \sim \lambda_7^{-7}$
- Thus

$$\lambda_4 \sim \text{Vol}(X)^{\frac{1}{7}} + \ldots$$

i.e. cosmological scale \sim KK scale

To break this one needs to fine-tune the potential so that additional contributions cancel the $-21\lambda_7^2$ term
Applications

Let us try to model supersymmetry breaking by the gauge theory sector localized at co-dimension 7 singularities of X_7.

$$S_{susy} = -2 \sum_A \Lambda_A \int d^4x \sqrt{-g}$$

Leads to

$$U \rightarrow U + 2 \sum_A \frac{\Lambda_A \kappa^{9} V_0}{Vol(X)^2}$$
Let us try to model supersymmetry breaking by the gauge theory sector localized at co-dimension 7 singularities of X_7.

\[S_{\text{susy}} = -2 \sum_A \Lambda_A \int d^4x \sqrt{-*g} \]

Leads to

\[U \to U + 2 \sum_A \frac{\Lambda_A \kappa^{9} V_0}{\text{Vol}(X)^2} \]

- $\Lambda_{\text{susy}} = \sum_A \Lambda_A \kappa^{9}$ acts like fluxes
 - but no tadpole for axions
Applications

Let us try to model supersymmetry breaking by the gauge theory sector localized at co-dimension 7 singularities of X_7.

\[S_{\text{susy}} = -2 \sum_A \Lambda_A \int d^4x \sqrt{-g} \]

Leads to

\[U \rightarrow U + 2 \sum_A \frac{\Lambda_A \kappa^9 V_0}{\text{Vol}(X)^2} \]

\[\Lambda_{\text{susy}} = \sum_A \Lambda_A \kappa^9 \] acts like fluxes

\[\text{but no tadpole for axions} \]

\[\text{still only adS Vacua.} \]
Applications

Let us try to model supersymmetry breaking by the gauge theory sector localized at co-dimension 7 singularities of X_7.

$$S_{\text{susy}} = -2 \sum_A \Lambda_A \int d^4x \sqrt{-\star g}$$

Leads to

$$U \rightarrow U + 2 \sum_A \frac{\Lambda_A \kappa^9 V_0}{\text{Vol}(X)^2}$$

$\Lambda_{\text{susy}} = \sum_A \Lambda_A \kappa^9$ acts like fluxes

\rightarrow but no tadpole for axions

\rightarrow still only adS Vacua.

\rightarrow does not allow for fine tuning $U \sim 0$
Applications

Next consider including the (complex) Chern-Simons invariant [Acharya]

\[W \rightarrow W + \frac{c_1 + ic_2}{4V_0} \]

if \(\lambda_7 = 0 \) this leads to a stabilized flux vacuum with \(G_X \neq 0 \)
Next consider including the (complex) Chern-Simons invariant [Acharya]

\[W \rightarrow W + \frac{c_1 + ic_2}{4V_0} \]

- if \(\lambda_7 = 0 \) this leads to a stabilized flux vacuum with \(G_X \neq 0 \)
- Englert-type of solution with \(\tilde{C}' \neq 0 \) can be made supersymmetric
Applications

Next consider including the (complex) Chern-Simons invariant [Acharya]

\[W \rightarrow W + \frac{c_1 + ic_2}{4V_0} \]

- If \(\lambda_7 = 0 \) this leads to a stabilized flux vacuum with \(G_X \neq 0 \)
- Englert-type of solution with \(\tilde{C}' \neq 0 \) can be made supersymmetric
- Still no fine tuning of \(U \sim 0 \)
Comments

What we have done:

- We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
- Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
- No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)
- Looked at methods to lift cosmological constant and KK scale but with no success.

What we'd like to do:

- Consider cosmological constant issues in more detail
- Consider non-topological fluxes à la Englert

\[\mathcal{D}_G X = \lambda G X \]
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.

What we'd like to do:

▶ Consider cosmological constant issues in more detail
▶ Consider non-topological fluxes à la Englert
▶ $d^\star G X = \lambda G X$
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
▶ Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
▶ Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
▶ No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)

What we’d like to do:

▶ Consider cosmological constant issues in more detail
▶ Consider non-topological fluxes à la Englert

$\star \quad G_X = \lambda^7 G_X$
Comments

What we have done:

- We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
- Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
- No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)
- Looked at methods to lift cosmological constant and KK scale but with no success.

[\text{\textit{G}}_X = \lambda \text{\textit{G}}_X]
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
▶ Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
▶ No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)
▶ Looked at methods to lift cosmological constant and KK scale but with no success.

What we’d like to do:

▶ Consider cosmological constant issues in more detail
▶ Consider non-topological fluxes à la Englert
▶ $\mathcal{G}_X = \lambda^7 G_X$
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
▶ Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
▶ No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)
▶ Looked at methods to lift cosmological constant and KK scale but with no success.

What we’d like to do:

▶ consider cosmological constant issues in more detail
Comments

What we have done:

▶ We constructed the effective potential and superpotential for Freund-Rubin compactifications in the presence of topological fluxes.
▶ Turning on fluxes drives the Freund-Rubin parameter to zero and results in a non-supersymmetric minimum.
▶ No supersymmetric vacua except pure Freund-Rubin or pure G_2 (need $SU(3)$ structure?)
▶ Looked at methods to lift cosmological constant and KK scale but with no success.

What we’d like to do:

▶ consider cosmological constant issues in more detail
▶ consider non-topological fluxes à la Englert
 ▶ $d \star G_X = \lambda_7 G_X$