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Takeaway 

✤ Many jet substructure analyses employ trees

✤ But, more than one tree can plausibly be associated with a jet

✤ Typically, we use kT or C/A to chose the “best” tree

✤ However, if we force ourselves to only consider a single tree for each 
jet, we make ourself more susceptible arbitrary choices of the jet 
algorithm

✤ By looking at many trees for each jet, we can decrease random 
fluctuations and create a more powerful analysis



Review of Jets & Jet Substructure



Types of Algorithms

✤ There are two main classes of jet algorithm

✤ Sequential recombinations

✤ Combine four-momenta one by one

✤ Cone algorithms

✤ Stamp out jets as with a cookie cutter

Focus on these



Sequential Recombination

✤ Define a distance measure between every pair of four-momenta in an 
event (jet-jet distances)

✤ Define a distance measure for each four-momenta individually (jet-
beam distances)

dij

diB



✤ If smallest distance at any stage in clustering is jet-jet, add together 
corresponding four-momenta

✤ Otherwise take jet with smallest jet-beam distance and set it aside

✤ Repeat till all jets are set aside

✤ In this way, jets are constructed by pairwise recombinations - get a 
tree-like sequence at the end.
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Standard Recombination 
Algorithms

✤ kT algorithm

✤ C/A algorithm

✤ anti-kT algorithm
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A BABAB

anti−kT kTC/A

Approximate Jet Behavior:

pTA > pTB

Hard to Soft Soft to HardNear to Far



Tradeoffs

✤ kT & C/A

✤ Pro: Cluster near to far (both) & soft to hard (kT).  Allows us to use 
parton shower heuristics to understand behavior.

✤ Con: Jets can have perverse shapes, weird areas

✤ anti-kT

✤ Pro: Jets are cone-like.  Area relatively well defined.

✤ Con: The ordering of the shower has little or no physical 
significance.



Jet-Parton Correspondence

✤ Jets allow us to make the connection between what we calculate 
(feynman diagrams) and what we measure in the detector.

✤ For instance, we’d expect to see two jets for each h->b bbar decay.



Event picture from http://atlas.ch/photos/events.html

What we calculate What we measure

Jets make this 
correspondence

Hadrons

Hadrons

http://atlas.ch/photos/events.html
http://atlas.ch/photos/events.html


✤ However, this heuristic correspondence between jets and 
partons breaks down when things become collimated. 



Kinematics of Boosted Particles

✤ The cone containing the decay products of a particle scales as

✤ At LHC energies, even the heaviest particles we know of (Top, W, Z, 
Higgs) become can become collimated.  

✤ When this happens we say that they’re “boosted”.

✤ So we find that EW scale particles are clustered as a single jet as soon 
as their pT exceeds a few hundred GeV.

R � 2mX

pT



Here one can see the effect - as we boost more and more (i.e. go 
to higher pT), the particles become more collimated.



Figure source:  http://www.pha.jhu.edu/groups/particle-theory/seminars/talks/F08/Yumiceva.pdf
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Boosted Collider Physics

✤ This can be a problem!

✤ Most new physics models include heavy states at the TeV scale

✤ If these decay down to W/Z/t, what do we do if everything’s 
collimated?

✤ Traditional answer: use the leptonic decays to avoid this mess.

✤ Modern answer: look inside the jet and make use of QCD to see if the 
jet came from a boosted heavy object.



Tools

✤ QCD jets look really different than the jets of boosted heavy objects.

✤ QCD has soft/collinear singularities.

✤ If we start with a high energy gluon/quark, it wants to emit soft/
collinear gluons:

✤ Here P(z) measures how much a particle wants to emit another 
with energy fraction “z” (Altarelli-Parisi splitting fcns.).  

For unpolarized measurements, the φ-dependence is uniform, so the phase space of M → AB
is characterized by two independent quantities QM and cos θ. In order to study the QCD soft
singularity, the natural variables for fat jets are the invariant mass QM and some energy sharing
variable z = EA/EM ,13 and in general there will be a Jacobian d cos θ/dz in the transformation
from cos θ to z.

If z is interpreted strictly as EA/EM , then two-body kinematics restricts the range for z to
be
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where βM is the boost magnitude from the M center-of-mass frame to the lab frame. Because
these limits depend on QA and QB , in a parton shower with multiple emissions, the correct z
limits on M → AB can only be determined after one knows how A and B will split which sets
the values of QA and QB. In particular, a value of z that satisfies Eq. (20) for QA,B = 0 might
be invalid for QA,B > 0. There are various ways to deal with this ambiguity [23], and most
parton showers employ some kind of momentum reshuffling procedure, but it means that the
interpretation of z in dfM→AB can depend on QA and QB in a non-trivial and algorithm-specific
way.

We can now compare the differential distributions dfM→AB between the narrow width ap-
proximation and QCD radiation. In the narrow width approximation, the mother M is exactly
on-shell:

dfNWA
M→AB =

dQ2
M

2π

dΦM→AB
2

V2
Br(M → AB)δ(Q2

M − m2
M ), (21)

where V2 ≡
∫

dΦ2 is the volume of two-body Lorentz invariant phase space, which depends on
the masses of A and B. Note that dfNWA is uniform in cos θ.

In the soft-collinear QCD case, one can use a parton shower language [23] where the nat-
ural variables are the evolution variable µ and the energy sharing variable z, both of which
are functions of {Q2

M , cos θ}. Unlike the narrow width approximation, the parton M is never
on-shell, and its off-shellness is determined by the evolution variable µ(Q2

M , cos θ). Using unpo-
larized splitting functions defined in terms of the energy sharing variable z(Q2

M , cos θ), the QCD
splitting is described by

dfQCD
M→AB = d log µ2 dφ

2π
dz

αs(µ)

2π
PM→AB(z)∆(µstart, µ), (22)

where PM→AB(z) are the usual Altarelli-Parisi splitting functions [20]
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and ∆(µstart, µ) is a Sudakov factor [35]
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[

−
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13In the main body of the text, we define z as min(EA, EB)/EM since A and B are indistinguishable. Here, A
and B have meaningful quantum numbers, so it makes sense to talk about z = EA/EM .

24



✤ However, a high energy heavy particle (W/Z/t/h) just 
decays - it has no singularity.
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Figure 4: Comparison of a jet formed from the decay of a boosted heavy particle (left) with one
from the showering of light flavor/gluons (right). Specifically, the left hand panel shows the jet
formed from h � bb̄ while the right is a gluon jet. The (x, y)-axes are (y, ⇥)-distances as measured
from the jet center and the area of each calorimeter cell is proportional to its pT .

comparable pT s) we are limited to Rsub . R0/2 under the assumption that the initial jet

was chosen to be just large enough to encompass the entire decay of the heavy particle.

The situation changes when we consider jets from light quarks or gluons (compare

the two panels in Fig. 4). The first di�erence is that there is only one hard final state at

lowest order in �s. Softness is therefore more naturally established directly via a cut on

subjet pT rather than by restricting to a fixed number of subjets. Later we will establish

di�erent subjet pT cuts for di�erent kinematic regimes. The second di�erence is that there

is no natural size for the subjets as this depends upon the the pT cut for the subjets; a

larger/smaller subjet size will necessitate a harder/softer subjet pT cut. With these two

di�erences in mind, we can now define our jet trimming procedure.

3. Implementation

In this section, we present an explicit algorithm implementing the jet trimming technique

outlined above.10 Our choice of algorithm is motivated primarily by simplicity and the

ability to re-use existing jet finding procedures. Many more sophisticated choices could

easily be imagined, but these are beyond the scope of the present work.

Since our jet trimming procedure will make use of well-known sequential recombination

jet algorithms, we will briefly review how these work. Recall that in a recursive jet algorithm

one begins with an initial set of four-momenta (these could be tracks, calorimeter cells, etc.),

assigning every pair a “jet-jet distance measure” dij and every individual four-momenta a

10Our implementation is available as a plug-in to the FastJet package [20, 21], which is available from

the authors upon request.
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✤ Moreover, QCD jets have a continuum mass distribution, while the 
jets of boosted heavy particles have a fixed mass.

✤ These will form our main tools.

1. Jet radiation distribution

2. Jet mass                                                                                                                                                                                                                                                                                                    

5

signal(B) tt+ jets W+ jets Wbb+ jets

generated 6,000 80,995 138,801 19,053
∑

pT > 1800 GeV 2,610 21,272 44,175 6,197

lepton pT > 100 GeV 864 2,791 12,634 1,548

pT/ > 100 GeV 745 2,035 8,857 1014

at least one b-tag 387 1,009 483 302

∆Rlj > 1.0 246 182 314 210

ST > 0.1 210 96 149 117

TABLE II: For the B portion of the signal and the dominant
background processes, the numbers of events that pass the
successive cuts, scaled to an integrated luminosity of 100 fb−1.
For the background processes the first row gives the number
of events after the generator-level cut described in the text.
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FIG. 1: Jet mass distributions for jets with pT > 350 GeV,
for events that pass the cuts described in the text. We take
100 fb−1 for the integrated luminosity.

(187) as a background value to compare with the total
number of jets in the 60–90 GeV bins (281), giving a 6.9σ
excess. More conservatively, taking the total number of
jets in the 30–60 GeV bin (218) as the background value
gives a 4.3σ excess. Finally, taking the total number of
jets in the 40–70 GeV bin (200) as the background value
for the total number of jets in the 70–100 GeV bins (280)
gives a 5.7σ excess. For each of these three measures, the
standard model contribution to the number of events in
the peak is smaller than the standard model contribution
to the estimated background value.

The PGS detector simulator does not include particle
deflection by the magnetic field, but to get a rough idea
of how sensitive our results are to this effect, we follow
[26] and impose a shift in azimuthal angle for charged
particles in the signal samples,

|δφ| = sin−1(0.45/pT ), (9)

where the sign of the shift depends on the charge of the
particle. We find that our results are not dramatically
affected by this shift. The significance estimates above
change to 6.8σ, 4.2σ, and 5.9σ, respectively.

The T quarks do contribute somewhat to the signal,
because their decays can produce Z bosons, which are
not resolved from W ’s using this method. However, this
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FIG. 2: Jet mass distributions for the signal plus total back-
ground and for total background alone, for events that pass
the cuts described in the text. As before, only jets having
pT > 350 GeV are included for each qualifying event, and we
take 100 fb−1 for the integrated luminosity.

contribution is relatively small. Recalculating the signifi-
cance in each of the three ways described previously, this
time including only the B contribution to the signal, we
find excesses of 6.3σ, 3.5σ, and 4.5σ, respectively.

We have seen that the jet mass distribution for the sig-
nal is peaked around the W mass and less so around the
top mass, due to the presence of highly boosted W ’s and
tops. Because the B quark decays as B → tW− (and
the T quark decays as T → tZ half of the time), one
might hope to observe a peak in the invariant mass dis-
tribution of pairs of jets whose masses are near mW and
mt, respectively. So, for each event passing our cuts, we
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FIG. 3: Invariant mass distribution for pairs of W and top
candidates, after 100 fb−1 of integrated luminosity.

identify as W candidates all jets with masses satisfying
|mjet − mW | < 20 GeV, and we identify as top candi-
dates all jets with masses satisfying |mjet − mt| < 30
GeV. Then, for each event we pair up the W candidates
with the top candidates in all possible ways, and calcu-
late the invariant mass for each pairing. A histogram of

Figure source: Using jet mass to discover vector quarks at the LHC, W. Skiba, D. Tucker-Smith, [hep-ph/0701247]  Phys.Rev. 
D75 (2007) 115010

http://arxiv.org/abs/hep-ph/0701247
http://arxiv.org/abs/hep-ph/0701247


Qjets



Two Basic Approaches to 
Substructure

1. Consider only the two-dimensional distribution of energy in a jet

✤ Examples: Trimming & Filtering, N-Subjettiness, Jet substructure 
w/o trees

2. Try to associate a tree structure with a jet

✤ Allows one to use heuristic pictures of parton shower & decay 
chains.

✤ Examples: Pruning, energy sharing variables, mass drop

✤ However, the current procedure for constructing a tree is not ideal.



The energy distribution 
for a particular tree is 
unambiguous

ηΔ
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

φ
Δ

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

ηΔ
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

φ
Δ

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 4: Comparison of a jet formed from the decay of a boosted heavy particle (left) with one
from the showering of light flavor/gluons (right). Specifically, the left hand panel shows the jet
formed from h � bb̄ while the right is a gluon jet. The (x, y)-axes are (y, ⇥)-distances as measured
from the jet center and the area of each calorimeter cell is proportional to its pT .

comparable pT s) we are limited to Rsub . R0/2 under the assumption that the initial jet

was chosen to be just large enough to encompass the entire decay of the heavy particle.

The situation changes when we consider jets from light quarks or gluons (compare

the two panels in Fig. 4). The first di�erence is that there is only one hard final state at

lowest order in �s. Softness is therefore more naturally established directly via a cut on

subjet pT rather than by restricting to a fixed number of subjets. Later we will establish

di�erent subjet pT cuts for di�erent kinematic regimes. The second di�erence is that there

is no natural size for the subjets as this depends upon the the pT cut for the subjets; a

larger/smaller subjet size will necessitate a harder/softer subjet pT cut. With these two

di�erences in mind, we can now define our jet trimming procedure.

3. Implementation

In this section, we present an explicit algorithm implementing the jet trimming technique

outlined above.10 Our choice of algorithm is motivated primarily by simplicity and the

ability to re-use existing jet finding procedures. Many more sophisticated choices could

easily be imagined, but these are beyond the scope of the present work.

Since our jet trimming procedure will make use of well-known sequential recombination

jet algorithms, we will briefly review how these work. Recall that in a recursive jet algorithm

one begins with an initial set of four-momenta (these could be tracks, calorimeter cells, etc.),

assigning every pair a “jet-jet distance measure” dij and every individual four-momenta a

10Our implementation is available as a plug-in to the FastJet package [20, 21], which is available from

the authors upon request.
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Figure 4: Comparison of a jet formed from the decay of a boosted heavy particle (left) with one
from the showering of light flavor/gluons (right). Specifically, the left hand panel shows the jet
formed from h � bb̄ while the right is a gluon jet. The (x, y)-axes are (y, ⇥)-distances as measured
from the jet center and the area of each calorimeter cell is proportional to its pT .

comparable pT s) we are limited to Rsub . R0/2 under the assumption that the initial jet

was chosen to be just large enough to encompass the entire decay of the heavy particle.

The situation changes when we consider jets from light quarks or gluons (compare

the two panels in Fig. 4). The first di�erence is that there is only one hard final state at
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subjet pT rather than by restricting to a fixed number of subjets. Later we will establish
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is no natural size for the subjets as this depends upon the the pT cut for the subjets; a

larger/smaller subjet size will necessitate a harder/softer subjet pT cut. With these two

di�erences in mind, we can now define our jet trimming procedure.

3. Implementation

In this section, we present an explicit algorithm implementing the jet trimming technique

outlined above.10 Our choice of algorithm is motivated primarily by simplicity and the

ability to re-use existing jet finding procedures. Many more sophisticated choices could

easily be imagined, but these are beyond the scope of the present work.

Since our jet trimming procedure will make use of well-known sequential recombination

jet algorithms, we will briefly review how these work. Recall that in a recursive jet algorithm

one begins with an initial set of four-momenta (these could be tracks, calorimeter cells, etc.),

assigning every pair a “jet-jet distance measure” dij and every individual four-momenta a

10Our implementation is available as a plug-in to the FastJet package [20, 21], which is available from
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But, more than one tree 
can correspond to the 
same energy distribution

{
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Unnecessary Choices

✤ How do we assign a particular tree to an energy distribution?

✤ Standard answer: Use a well motivated algorithm like C/A or kT

✤ Ideally, since both are well motivated algorithms they’ll give the same 
answer:
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✤ However, sometimes the answers are very different.

✤ Considering only the kT or C/A tree introduces an element of 
randomness into this process, resulting in unnecessary fluctuations in 
the final state observable.

✤ Intuitively it makes sense that defining an observable in a way which 
reflects the  ambiguity of this clustering should yield better results.
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Solution: Sum over Trees

✤ We propose that rather than assigning a single number to each event, 
instead each event should contribute a distribution obtained by 
summing the observable over many trees.

✤ When we sum these together, the result is much more stable than the 
histogram we would have had if we just considered one number per 
event.
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Weights

✤ The only question is: when we add together the result obtained from 
different trees, how should we weight each tree’s contribution?

✤ Surely they should not all count equally.  If they did, then why would 
we use kT or C/A to find our trees in the first place?

✤ In theory, one could weight each tree by the product of splitting 
functions and Sudakovs one would obtain from a parton shower.

✤ Work in progress.



Implementation

✤ Instead, we find a simpler Monte-Carlo procedure works quite well.
✤ As in a sequential recombination algorithm, assign every pair of 

proto-jets a distance measure dij.
✤ However, unlike a normal sequential algorithm (where the pair 

with the smallest measure is selected clustered), here we suggest 
that a given pair be randomly selected for merging with probability 

✤ Thus, paths which deviate from the CA or kT behavior are less 
likely to occur

✤ Repeat many (~100) times, till the distribution stabilizes

⌦ij ⌘
1

⌦

exp

 
�↵

dij
dmin
ij

!
, ↵ = rigidity parameter



✤ The result is that you get many trees

✤ The probability of finding a given tree decreases as it 
becomes less kT or C/A like

✤ Available as a Fastjet plugin:

http://jets.physics.harvard.edu/Qjets

http://jets.physics.harvard.edu/Qjets
http://jets.physics.harvard.edu/Qjets


IR/Collinear Safety

✤ As long as the rigidity variable (alpha) is non-zero, then infinitely soft 
or collinear particles will not change the observable at hand.

✤ How will this affect real analytical calculations?

✤ Still unknown

✤ Perhaps there is a better, more theory-friendly weight?



Example: Boosted W-Jets with 
Pruning



Pruning

✤ Pruning was introduced to look for boosted heavy objects (e.g., tops, 
higgses, W’s, etc) by cleaning up their mass.

✤ Intuition: QCD has soft/collinear singularities.  Wide-angle emissions 
should come from hard decays.

✤ Remove all parts of the jet which are both soft and wide angle.

✤ Two main advantages:

✤ Boosted objects see their mass reconstruction improved

✤ Massive QCD jets (a large background) see their mass substantially 
decreased -> lower backgrounds

Pruning (Ellis, Vermilion, Walsh - 0903.5081, 0912.0033)



Pruning in Practice

✤ To run pruning:

✤ Take the constituents of an ordinary jet (formed using any 
algorithm).

✤ Recluster them using a modified version of C/A and kT

✤ When C/A or kT says that a pair of subjets should be recombined, 
ask: are the two subjets separated by more than a fixed amount 
(dcut) and is one much softer than the other (pT1/pT2 < zcut)?

✤ If so, set aside the softer particle and don’t merge it with the main 
jet.



A Pruned Tree



Defining Reconstructed Tops – Search Mode
 A jet reconstructing a top will have a mass within the top mass window, and a 

primary subjet mass within the W mass window - call these jets top jets

 Defining the top, W mass windows:
• Fit the jet mass and subjet mass distributions with (asymmetric) Breit-Wigner 

plus continuum  widths of the peaks

• The top and W windows are defined separately for pruned and not pruned -
test whether pruning is narrowing the mass distribution

pruned
unpruned

sample
mass fit

25US ATLAS Hadronic Final State Forum     
S.D. Ellis 4/09/09Figure source: http://www.phys.washington.edu/users/ellis/USATLAS.pdf

Top 
jets

http://www.phys.washington.edu/users/ellis/USATLAS.pdf
http://www.phys.washington.edu/users/ellis/USATLAS.pdf


✤ Let’s see what happens when we modify pruning so 
that it runs over trees generated via the Qjet procedure.  



Example 1/3: Mass Measurement

✤ As an example, let’s take a sample 
of boosted W jets (pt>500), clean 
them up via jet pruning, and ask 
for the average jet mass.

✤ The uncertainty in this 
measurement goes down by ~1/3 
when the technique described is 
applied.

✤ Need roughly half the luminosity 
to make a measurement of the 
same precision

α

0 1.32

0.01 1.31

0.1 1.25

1.0 1.10

100 1.03
�hmi / 1/

p
N

4

Vol. Rigidity

cut (Vcut) ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 100

hSi/�B|Q
hSi/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)

0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)

0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)

0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)

None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

�hmi|cl
�hmi|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)

0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)

0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)

0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)

None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

hSi/hBi|Q
hSi/hBi|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)

0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)

0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)

0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)

None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|

cl

/�hmi|
Q

(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.
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V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
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On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V
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, leads to the signal and background
e�ciencies, compared to the classical results, shown in
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While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V
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, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
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tion of the Qjets that yield a pruned mass in the mass
bin. The parameter being varied along the curves (for



<m> [GeV]
72 74 76 78 80 82 84 86 88

Pr
ob

ab
ili

ty
/b

in
 [%

]

0

5

10

15

20

25

<m> [GeV]
72 74 76 78 80 82 84 86 88

Pr
ob

ab
ili

ty
/b

in
 [%

]

0

5

10

15

20

25

<N>=10 <N>=20

PI Jets

kT Jets



Example 2/3: Signal Discovery 
&Exclusion
✤ Signal = boosted W-jets, pT > 500

✤ BG = light QCD jets, pT > 500

✤ Measure the signal size in a bin 
(here 70-90 GeV) and compare it 
to the size of the BG fluctuations 
(Poisson stats included)

✤ Need only ~70% the luminosity 
to have the same significance

α

0.0 1.07

0.01 1.13

0.1 1.18

1.0 1.14

100 1.06S/�B /
p
N

4

Vol. Rigidity

cut (Vcut) ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 100

hSi/�B|Q
hSi/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)

0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)

0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)

0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)

None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

�hmi|cl
�hmi|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)

0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)

0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)

0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)

None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

hSi/hBi|Q
hSi/hBi|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)

0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)

0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)

0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)

None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|

cl

/�hmi|
Q

(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|

cl

/�hmi|
Q

(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
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repetitions of the pseudo-experiment and expect at most
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The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.
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can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
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(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
bin. The parameter being varied along the curves (for
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FIG. 1. Typical jet mass distribution obtained for a jets clus-
tered using pruning operating on a single tree (left), and with
path-integral jets (right) with ↵ = 0.1, for boosted W jets
(top) and QCD jets (bottom). The distribution obtained
using path-integral jets is noticeably smoother, with smaller
fluctuations.

light partons for our background. We will consider mea-
surements sensitive to the accuracy of a measured mean
jet mass, �hmi, and typical of signal discovery/exclusion
analyses:4 S/�B, for S and B the signal and background
rates, respectively. Here � denotes the RMS fluctuation
of a given quantity. Now, �hmi scales with the number of
events considered as �hmi / 1/

p
N , while S/�B scales as

S/�B /
p
N . For a given observable, we will quantify the

improvement obtained by employing path-integral jets by
fitting our results to these parametric scalings, and de-
termining the equivalent decrease in luminosity.

Before we proceed, a note on our simulation tools.
All events are generated using Pythia v6.422 [13] as-
suming a 14 TeV LHC. We employ the “DW” tune for
ISR and multiple interactions. While we do not present
results with pileup, we have investigated its e↵ect and
find that its presence does not e↵ect the improvement
found using the path integral procedure. Fully showered
and hadronized events are grouped into 0.1 ⇥ 0.1 cells
(⌘,�) cells between �5 < ⌘ < 5, which are clustered
in Fastjet v2.4.2 [14] using the anti-kT algorithm [15]
with R = 0.7. The constituents of these jets are then

4 The correct quantity relevant for signal exclusion is technically
S/�(S + B), but the improvement we obtain for this is so close
to that which we obtain using S/�B that we only discuss S/�B.
The interested reader can compute S/�(S+B) using the data in
Table I.

used to compute the substructure observables below. The
path-integral jets are constructed according to the pro-
cedure outlined in Sec. II via a Fastjet plugin5. To com-
pute the RMS size of the fluctuations in each measure-
ment we employ a brute force approach, considering the
RMS distribution of an observable obtained from many
(104) pseudo-experiments. Note that the sample size for
each pseudo-experiment is chosen according to a pois-
son distribution centered upon some mean value (e.g.
hNi = 10, 20, 40). Thus, one should not expect further
broadening of the reported RMS from Poisson fluctua-
tions in the production rate.
First, let us consider a measurement of S/�B. We

will define our signal/background rate to be the sum of
pruned jet masses which fall in a window around the true
W mass: 70 GeV < mJ < 90 GeV, and �B to be the vari-
ance of this distribution for background events. A typi-
cal distribution of the signal and background processes is
shown in Fig. 1. There one can see the e↵ect of the path-
integral procedure – both the signal and background dis-
tributions (right) have become noticeably smoother than
they were using the standard pruning procedure (left).
Numerical results are presented in Table I, where one
can see that the decrease found in �B implies that an
analysis performed using path-integral jets can achieve
similar discriminating power to a standard one while us-
ing only ⇠ 70% of the luminosity. Finally, it should be
noted that the improvement is not greatly sensitive to
the choice of rigidity parameter ↵.
Finally, let us consider a measurement of jet mass,

where we look to see how precisely a given algorithm can
find the mean mass using only a limited set of events.
Here we consider only signal events and look at the av-
erage pruned mass within the range 70 GeV < mJ <
90 GeV. The results for this can again be seen in Ta-
ble I. As before we see that the typical size of the fluctu-
ation in hmi is much smaller when one employs the path
integral approach, here allowing an analysis performed
using path integral jets to perform equivalently to one
with twice the luminosity.

IV. CONCLUSION

The parton shower provides a very useful heuristic,
allowing one to construct substructure observables by
thinking of jets as tree-like structures. However, while
a given tree yields a fixed distribution of radiation in a
detector, the reverse is not true: a given distribution of
radiation does not map onto a single tree, not even clas-
sically.
Typically one partially overcomes this ambiguity by

selecting one of the candidate trees based upon the prob-
ability that the QCD parton shower would produce it.

5 The plugin can be downloaded at XXX
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✤ When there’s a “right answer” for a jet’s mass, most of the trees tend 
to center around that value.

✤ There’s a “right answer” for the pruned mass of a boosted 
particle’s jet, but not for a background QCD jet

✤ The width of a mass distribution serves as a good signal to 
background discriminant!

Example 3/3: Signal vs. 
Background Discriminant





Width to Mass Distribution

✤ volatility = width of pruned mass distribution 4

Vol. Rigidity

cut (Vcut) ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 100

hSi/�B|Q
hSi/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)

0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)

0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)

0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)

None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

�hmi|cl
�hmi|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)

0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)

0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)

0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)

None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

hSi/hBi|Q
hSi/hBi|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)

0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)

0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)

0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)

None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|

cl

/�hmi|
Q

(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.

4

Vol. Rigidity

cut (Vcut) ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 100

hSi/�B|Q
hSi/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)

0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)

0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)

0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)

None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

�hmi|cl
�hmi|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)

0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)

0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)

0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)

None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

hSi/hBi|Q
hSi/hBi|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)

0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)

0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)

0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)

None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
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repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|
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(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

4

Vol. Rigidity

cut (Vcut) ↵ = 0 ↵ = 0.01 ↵ = 0.1 ↵ = 1 ↵ = 100

hSi/�B|Q
hSi/�B|cl

0.02 1.28(5) 1.24(3) 1.28(3) 1.36(3) 1.13(1)

0.03 1.51(2) 1.45(3) 1.37(4) 1.35(2) 1.10(1)

0.04 1.51(4) 1.45(4) 1.39(3) 1.29(3) 1.10(1)

0.05 1.43(4) 1.44(3) 1.39(3) 1.27(1) 1.08(1)

None 1.07(1) 1.13(1) 1.18(1) 1.14(1) 1.06(1)

�hmi|cl
�hmi|Q

0.02 0.48(7) 0.49(7) 0.50(7) 0.77(2) 0.95(1)

0.03 0.56(4) 0.57(5) 0.60(4) 0.87(1) 0.98(1)

0.04 0.62(3) 0.69(3) 0.71(2) 0.93(1) 1.00(1)

0.05 0.80(1) 0.80(1) 0.81(1) 0.96(1) 1.01(1)

None 1.32(2) 1.31(2) 1.25(2) 1.10(2) 1.03(1)

hSi/hBi|Q
hSi/hBi|cl

0.02 14(2) 13(1) 11(1) 3.1(1) 1.44(2)

0.03 8.6(5) 7.7(4) 5.6(3) 2.4(1) 1.30(2)

0.04 5.3(2) 4.9(2) 3.9(1) 2.00(4) 1.19(2)

0.05 3.6(1) 3.5(1) 3.1(1) 1.75(4) 1.14(2)

None 0.67(1) 0.74(1) 0.89(1) 1.01(2) 1.00(1)

TABLE I. The improvement found in various measurements
performed using the Qjet procedure compared to the classical
pruning result, for a range of values of the rigidity parameter
(↵) and subject to a set of volatility cuts (V  Vcut). The
first set of rows exhibit the discovery potential hSi/�B, while
the second shows the average jet mass fluctuation �hmi. The
last set of rows shows the change in the signal to background
ratio S/B. In all cases results greater than unity indicate im-
provement over the classical pruning procedure (see the text
for further discussion). For all quantities, the approximate
statistical uncertainty for the last digit is shown in parenthe-
sis.

repetitions of the pseudo-experiment and expect at most
O(1%) statistical e↵ects from this procedure.

The first set of rows in Table I display measurements
of the discovery potential hSi/�B compared to the re-
sults with classical pruning. Since this quantity scales aspL, the square of the number in the Table can be in-
terpreted as an e↵ective luminosity improvement due to
employing the Qjet procedure. For example, for ↵ = 0.1
(with no volatility cut) the number 1.18 means an e↵ec-
tive increase in the luminosity by (1.18)2 � 1 = 0.39 or
39%. Larger ↵ values confine the range of trees and yield
results very near the classical pruning results. Smaller
↵ values (with a much broader range of trees) tend to
degrade (decrease) the discovery measure.

The second set of rows exhibit the average jet mass
fluctuation �hmi|

cl

/�hmi|
Q

(note classical over Qjets
here). Values greater than unity mean that the mass
can be measured more precisely with the Qjet proce-
dure for the same luminosity, or the same precision can
be obtained with a smaller luminosity, compared to the
classical case. For this quantity (with no volatility cut)
there is continuing improvement as ↵ decreases and the
range of trees probed grows. The third set of rows show
the usual signal to background ratio, S/B, for pruned
Qjets compared to classical pruning. For this quantity
(and again no volatility cut) the best case occurs for large
↵ with all trees being essentially the classical tree. Note
that the fact that we get sensible results for ↵ = 0 (with
no weighting of the trees) is testament to the amount of
physics contained in the act of pruning, which often gives
the right mass even for IR sensitive clusterings.
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FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass

FIG. 2. Upper: the distribution of volatility for signal
(boosted W -jets) and background (QCD jets) using a rigidity
↵ = 0.01. Lower: the background versus signal e�ciencies
(fraction in the mass bin) obtained for various ↵’s obtainable
from a cut on volatility and compared to the classical pruning
result.

While the discussion above certainly suggests that us-
ing Qjets is helpful statistically by reducing fluctuations,
we can use the single-jet pruned mass distributions that
arise from the N

Qjet

di↵erent prunings more directly. We
introduce the volatility of a jet, defined as

V = �/hmi , (4)

where � ⌘ phm2i � hmi2 and hmi are the RMS devia-
tion and the mean of the pruned jet mass distribution for
a single jet.

The distribution of volatility for signal and background
Qjets with ↵ = 0.01 is shown in the upper panel of Fig. 2.
On simple physical grounds one expects that signal jets,
i.e., jets that contain an intrinsic mass scale, will ex-
hibit a lower volatility than QCD jets with no intrin-
sic mass scale. This expectation is confirmed by our
simulations, as can be seen in the figure. Cutting on
volatility, V  V

cut

, leads to the signal and background
e�ciencies, compared to the classical results, shown in
the bottom panel of Fig. 2. The numerical values are
defined as in the Table, i.e., e�ciency refers to the frac-
tion of the Qjets that yield a pruned mass in the mass
bin. The parameter being varied along the curves (for



Future Directions

✤ Perhaps we should consider “summing” over multiple parameters, 
not just trees.

✤ Jet radii, trimming parameters, etc.

✤ We’ve only looked at considering multiple tree structures for the 
radiation inside a jet.

✤ Can this procedure be extended to an entire event?

✤ Could this help with precision quantities like y23?



Qanti-kT

✤ Work in progress (w/ D. Kahawala, M. Schwartz)

✤ Take anti-kT and perturb around it as with Qjets

✤ Final state is now different

✤ Different jet four-momenta

✤ Different jet multiplicities
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Significant Improvement in 
Stability 

✤ S/delta(B) is much larger than with traditional anti-kT.

✤ Still have more optimizations to play with

✤ Larger improvements as jet multiplicity increased

✤ Can make discoveries/exclusions much sooner!



Conclusion

✤ When we use C/A or kT to associate a tree with a jet this is really just 
our “best guess” for the showering history.

✤ Sometimes these two algorithms return very different answers for the 
event at hand.  

✤ By choosing, e.g. the kT answer over the C/A one, we introduce 
randomness into the picture, and the statistics are degraded.

✤ We propose that all trees be considered, each with a set weight, and a 
distribution obtained for each event (rather than a single number).

✤ The results obtained from this are much less susceptible to 
unwanted fluctuations: equivalent to a ~2x increase in luminosity.
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1. INTRODUCTION

2. QJETS: THE GENERIC ALGORITHM

TODO
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tim
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PRL!!

(TODO)
The idea we have described – associating a weighted set of trees to a jet – would not be feasible if one had

to consider every tree which could be formed from a given set of final state four-momenta in a jet. Fortunately,
good approximations to such weighted distributions obtained using every tree can be captured through a procedure
analogous to Monte-Carlo integration, allowing us to use a very small fraction of the trees. This can be achieved
since infrared and collinear safe jet observables must be insensitive to small reshu✏ings of the momenta, implying
that large classes of trees give very similar information.

The algorithm we propose, which assembles a tree via a series of 2 ! 1 mergings, functions as follows:

1. At every stage of clustering, a set of weights !ij for all pairs hiji of the four-vectors is computed, and a probability
⌦ij = !ij/N , where N =

P
hiji !ij is assigned to each pair.

2. A random number is generated and used to choose a pair hiji with probability ⌦ij . The chosen pair is merged,
and the procedure is repeated until all particles all clustered.

This algorithm directly produces trees distributed according to their weight
Q

mergings ⌦ij . To produce a distribution
of the observable for each jet, this algorithm is simply repeated a number of times, yielding a di↵erent tree (essentially)
every time. Note that any algorithm which modifies a tree during its construction (e.g., jet pruning) can be adapted
to work with this procedure as demonstrated below.

One particularly interesting class of weights !(↵)
ij , parametrized by a continuous real number ↵ we term rigidity is

given by

!
(↵)
ij ⌘ exp

⇢
�↵

(dij � dmin)

dmin

�
. (1)

Here, dij is the jet distance measure for the hiji pair, e.g.,

dij =

(
dkT ⌘ min{p2Ti, p

2
Tj}�R2

ij

dC/A ⌘ �R2
ij

, (2)

where �R2
ij = �y2ij + ��2

ij , and dmin is the minimum over all pairs at this stage in the clustering. Note that with
this metric, our algorithm reduces to a traditional clustering algorithm of the type defined by the distance dij when
↵ ! 1, i.e., in that limit the minimal dij is always chosen. In this sense, it is helpful to think of the traditional,
single tree algorithm as the “classical” approach, and ↵ ⇠ 1/h̄ controlling the deviation from the “classical” clustering
behavior. With this analogy, we call the trees constructed in this non-deterministic fashion Qjets (“quantum” jet)
and the number of trees used NQjet.

3. STATISTICS FORMALISM

In this section, we begin by reviewing the statistics typically assumed in standard (or “classical”) particle physics
analyses. For concreteness, we focus on the case of reconstructing events (or jets such as in substructure analyses),
e.g., that of correctly identifying the mass of a particle to be within some mass window. We then discuss the e↵ects
on these statistics when, as in Qjet analyses, a fraction of the NQjets assigned to a given jet are reconstructed.

A. Classical Statistics

In the classical case, where each jet is either successfully reconstructed or not, the probability that r jets are
reconstructed for fixed total n jets are produced with reconstruction e�ciency for each jet ✏cl is assumed to be
binomially distributed, B✏cl(n; r), where

B✏(n; r) ⌘ nCr✏
r(1� ✏)n�r . (3)
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In addition, the number of jets produced n is Poissonian with mean hni = N (equal to the luminosity times the
cross-section, N = �L) (TODO), given by the expression TODO
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PN (n) ⌘ e�NNn

n!
. (4)

Taken together, the distribution for producing n jets with r successfully reconstructed is given by F✏cl,N (r|n), where
F✏,N (r|n) = PN (n)B✏(n; r). The probability distribution that r jets are reconstructed for any n, F✏cl,N (r), is itself
Poissonian distributed with mean N✏,

F✏,N (r) ⌘
1X

n=r

F✏,N (r|n) = e�N✏Nr✏r

r!
⌘ PN✏(r) . (5)

The mean and variance of this distribution are both given by N✏cl,

�cl ⌘ hri =
1X

r=0

rF✏cl,N (r) = N✏cl , (6)

and

��2
cl ⌘ h(r � hri)2i =
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(r �N✏cl)
2F✏cl,N (r) = N✏cl . (7)

The classical relative uncertainty is given by the familiar expression

��cl

�cl
=

1p
N✏cl

. (8)

B. Qjet Statistics

The key di↵erence a↵ecting the statistics of the Qjet approach is that, in place of the binary result that a jet is
either being reconstructed successfully or not, we assign a real number representing the fraction of Qjets that are
reconstructed for each jet. Denote the relative fraction of times that a fraction x of the Qjets in a single jet are
reconstructed f1(x), and the mean and standard deviation of this distribution ✏Q (the analog of the classical e�ciency
✏cl) and �1, respectively.

Likewise, in an experiment with n total jets, fn(x) is the probability distribution for the number of times a fraction
x of the entire ensemble of Qjets is reconstructed, i.e., (TODO) TODO
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In terms of the mean and variance of the single jet distribution f1(x), those of the n-jet distributions are given by
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respectively. As for the classical case, we can account for the Poissonian nature of the number of produced jets n
given the average hni = N ⌘ �L and compute the expected number of reconstructed jets (the analog of Eq. (6))

�Q ⌘ hyni =
1X

n=0

PN (n)

Z 1

0
dy ynfn(y) = ✏QN , (12)
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Note that for generic ✏Q, ✏cl, and �1, this is not a priori an improvement. The precise values of the parameters that
control the statistical stability of ensembles of Qjet samples, ✏Q and �1, clearly depends on the choice of the set
of Qjets assigned to a given jet and on the relative weights assigned to each Qjet, as discussed in the next section.
However, for the physically reasonable class of metrics governing these assignments that we consider, we generically
find that while the e�ciency is reduced relative to the classical case, ✏Q < ✏cl, this is more than compensated for by
the width �1 resulting in significantly reduced uncertainties.
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Properties of Jets

✤ What properties do we want our jets to have?  Jets should be, at least,

1. Boost invariant 

Easily done - cluster using rapidity/phi coordinate system:

2. IR/Collinear safe

� = � ln
⇤
cot

�
⇥

2

⇥⌅



✤ Want to make jets in a way that is insensitive to soft and collinear 
radiation (IR & Collinear Safe)

✤ Necessary if we’re going to employ higher order corrections.

✤ If jet algorithm is not IRC safe then cancellations between real and 
virtual diagrams will not take place

IR & Collinear Safety

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Infinities cancel Infinities do not cancel

a) b) d)c)
Collinear safe jet alg. Collinear unsafe jet alg

Figure 1: Illustration of collinear safety (left) and collinear unsafety in an IC-PR type algorithm
(right) together with its implication for perturbative calculations (taken from the appendix of
[33]). Partons are vertical lines, their height is proportional to their transverse momentum, and
the horizontal axis indicates rapidity.

W

jet

soft divergence

W

jet jet

W

jet jet

(a) (b) (c)

Figure 2: Configurations illustrating IR unsafety of IC-SM algorithms in events with a W and
two hard partons. The addition of a soft gluon converts the event from having two jets to just
one jet. In contrast to fig. 1, here the explicit angular structure is shown (rather than pt as a
function of rapidity).

to find a new stable cone. Once passed through the split–merge step this can lead to the
modification of the final jets, thus making the algorithm infrared unsafe. This is illustrated
in fig. 2: in an event (a) with just two hard partons (and a W , which balances momentum),
both partons act as seeds, there are two stable cones and two jets. The same occurs in the
(negative) infinite loop diagram (b). However, in diagram (c) where an extra soft gluon
has been emitted, the gluon provides a new seed and causes a new stable cone to be found
containing both hard partons (as long as they have similar momenta and are separated
by less than 2R). This stable cone overlaps with the two original ones and the result of
the split–merge procedure is that only one jet is found. So the number of jets depends
on the presence or absence of a soft gluon and after integration over the virtual/real soft-
gluon momentum the two-jet and one-jet cross sections each get non-cancelling infinite
contributions. This is a serious problem, just like collinear unsafety. A good discussion of
it was given in [39].
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Figure source: Towards Jetography, G. P. Salam, [arXiv:0906.1833]  Eur. Phys. J. C

http://arxiv.org/abs/0906.1833
http://arxiv.org/abs/0906.1833


✤ If we use calorimeter cells as seeds then even an infinitely soft 
emission can change the clustering behavior in a significant way: 

Example of an Unsafe Algorithm

Soft emission



Boosted Top

✤ Most models of new physics use the top quark in a special way.

✤ Identifying energetic tops from new physics processes will be crucial 
in understanding BSM phenomena at the LHC.

✤ If there are heavy states, the top will often be boosted

Challenges at the LHC

1. SM tt̄ has long tail in mtt̄.

2. Wider resonances, Γ ∼ 0.2M . PDF distorts the shape of resonances.

3. EWPT typically constrains the composites to be quite heavy ≥ 3TeV∗.

−→ Very energetic tops

Reconstruction of tops based on isolated objects is likely to fail.

ν, d̄, ...

e+
, u, ...

b

W+

t

boost

∗K. Agashe, A. Delgado, M. May, R. Sundrum, hep-ph/0308036



Much work on Boosted Tops

✤ Many approaches

1.Use jet shapes, analogous to event shapes (e.g. thrust & 
sphericity), to quantify how top-likeness of a jet.

Measure the radiation pattern.

L. G. Almeida et al., Substructure of high-pT Jets at the LHC, Phys. Rev. D79 (2009) 074017, [0807.0234].
L. G. Almeida, S. J. Lee, G. Perez, I. Sung, and J. Virzi, Top Jets at the LHC, Phys. Rev. D79 (2009) 074012, [0810.0934]. 



L. G. Almeida et al., Substructure of high-pT Jets at the LHC, Phys. Rev. D79 (2009) 074017, [0807.0234].
J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092, [0806.0023]

Pf =
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✤ Other approaches

2.Try to find subjets inside each top jet and impose 
kinematical constraints (using helicity structure, etc)

Tailor made analysis

3.See if first splitting in jet was QCD-like (soft emission) 
or top-like (hard emission)

D. E. Kaplan, K. Rehermann, M. D. Schwartz, and B. Tweedie, Top Tagging: A Method for Identifying Boosted 
Hadronically Decaying Top Quarks, Phys. Rev. Lett. 101 (2008) 142001, [0806.0848]. 
J. Thaler and L.-T. Wang, Strategies to Identify Boosted Tops, JHEP 07 (2008) 092, [0806.0023].
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Fig. 3a, b. As Fig. 2 but with the cluster parameter R set to 
0.6R~j= 0.52 

Since all three approaches are similar, we prefer to use 
the first event shape version, which we expect to have 
better theoretical properties due to its closer correspond- 
ence with the angular-ordered picture. 

The need to use the inclusive reconstruction method is 
also related to the transverse boost of the system. If we 
consider a gluon emitted in the W decay, whose transverse 
momentum is much less than the W mass, then either jet 
algorithm in the W rest frame would reconstruct two jets 
roughly corresponding to the q~ pair. However, once this 
system is boosted to the laboratory frame, it is possible 
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Fig. 4a, b. As Fig. ] but with the cluster parameter R set to 0.6Rjj 

that the local k• of the gluon emission inside one jet is 
larger than the p~ of the other jet. Thus the standard 
algorithm would call the hardest vertex the gluon emis- 
sion, rather than the W decay, even if it has an opening 
angle of less than R. On the other hand, the inclusive 
algorithm will merge the gluon, and reconstruct two jets 
roughly corresponding to the q~ pair. 

The event of Fig. 2 is shown again in Fig. 3 according 
to the modified cluster algorithm, with R =0.6Rjj=0.52. 
The reconstructed mass distributions are shown in Fig. 4, 
also with R = 0.6Rjj. Note that the underlying event cor- 
rection has improved considerably, although it is still 
larger than in the cone algorithm. The W and Higgs 
mass distributions have central values and widths of 
79 .3+3 .6GeV and 600 .7_2 .3GeV respectively in the 
cluster algorithm, and 72.7 + 5.6 GeV and 593.5 + 5.2 GeV 
in the cone algorithm. The Higgs mass is measured with 
a central value that is ten times closer to its true value than 
in the cone algorithm, and a width that is more than 
a factor of two smaller. 

Searches for New Particles Using Cone and Cluster Jet Algorithms: a Comparative Study, M. H. Seymour, Z.Phys. C62 
(1994) 127-138

Try to split a jet 
by running an 

algorithm 
backward



4.Take jet, work hard to clean it up, see if has a mass near 
the top’s.

S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Recombination Algorithms and Jet Substructure: Pruning as a Tool for Heavy 
Particle Searches, [arXiv:0912.0033] . 
S. D. Ellis, C. K. Vermilion, and J. R. Walsh, Techniques for improved heavy particle searches with jet substructure, [arXiv:
0903.5081]  Phys.Rev. D80 (2009) 051501. 
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(a) mJ cut, z
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(b) mJ cut, �R12
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(c) mJ and mSubJ cuts, z
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(d) mJ and mSubJ cuts, �R12

FIG. 24: Distributions in z and �R12 comparing for
top quark decays at the parton-level and from Monte
Carlo events after implementing pruning. This figure

uses the same samples and cuts as Fig. 23.

algorithm; when only a jet mass cut is made, the distri-
bution in z and �R12 for pruned jets match the parton-
level distribution much better than unpruned jets. When
both mass and subjet mass cuts are made, pruning shows
a slightly poorer agreement to the parton-level kinemat-
ics than the unpruned case. This arises from the fact
that the value of zcut is fixed, while the distribution in z
is dependent on the kinematics of the decay.

In addition to improving the kinematics of the jet sub-
structure, pruning reduces the contribution of the under-
lying event and improves the mass resolution of recon-
structed decays. In Figs. 25 and 26 we give the mass
distribution of jets with and without the UE in both the
QCD and tt̄ samples for the CA and kT algorithms, but
now with and without pruning. In Figs. 27 and 28 we
show how the e⇥ect of UE on distributions in z and �R12,
also with and without pruning.

Three distinctions between pruned and unpruned jets
are clear. First, the distributions with and without the
UE are very similar for pruned jets, while they notice-
ably di⇥er for unpruned jets. This shows that pruning
has drastically reduced the contribution of the underly-
ing event. Second, the mass peak of jets near the top
quark mass in the tt̄ sample is significantly narrowed by
the introduction of pruning (especially when the UE is
included). This is evidence of the improved mass resolu-
tion of pruning, and will contribute to the improvement
in heavy particle identification with pruning. And finally,
the mass distribution of QCD jets is pushed significantly
downward by pruning. The QCD jet mass is dominantly
built from the soft, large-angle recombinations — most
recombinations are soft, and for fixed pT , larger-angle re-
combinations contribute more to the jet mass. Removing
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(a) unpruned QCD jets
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(b) pruned QCD jets
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(c) unpruned top jets
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(d) pruned top jets

FIG. 25: Distributions in mJ with and without
underlying event, for QCD and top jets, using the CA
algorithm, with and without pruning. The jets have pT

between 500 and 700 GeV, and D = 1.0.
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(a) unpruned QCD jets
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(b) pruned QCD jets
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(c) unpruned top jets
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(d) pruned top jets

FIG. 26: Distributions in mJ with and without
underlying event, for QCD and top jets, using the kT

algorithm, with and without pruning. The jets have pT

between 500 and 700 GeV, and D = 1.0.

these by pruning the jets reduces the QCD mass distri-
bution in the large mass range and will contribute to the
reduction of the QCD background.

We move on to examine pruning through a set of stud-
ies using Monte Carlo simulated events. We will inves-
tigate the parameter dependence of pruning, motivating
the parameters used above. We will extensively study
both top and W reconstruction with pruning, and quan-
tify the improvements of pruning in terms of basic sta-
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