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This talk will be rather strange.  It will
be divided into three sections:

I.  Introduction -- effective field theory of
conductors, and the trouble with high

(50% of talk) 

II.  The “party line” today, and a small 
problem it suggests for us to attack

(10% of talk)

III.  A summary of our  progress on this 
problem, so far: gravity duals of critical 
theories with dynamical scaling (40% of 

talk)

TC



There are several interesting hierarchy
problems that have preyed on the minds of

theorists for the past few decades.

Two you know well; the standard model
allows two relevant operators

∫
d4x

√
−gΛ

∫
d4x
√
−g m2

HH†H



natural question:  what prevents 
these parameters from moving to the UV  

cut-off of our theory?  

For the cosmological term, the only 
plausible answer i’ve heard so far is

environmental selection in a landscape.



For the higgs mass term, there are many 
beautiful proposals that involve dynamical
stabilization (technicolor, supersymmetry).  

LHC will test these.

There have also been serious proposals that
the higgs, too, is simply fine tuned.  The

accidental symmetries of the standard model
protect against various disasters that 

happen in almost all extensions, and require
slightly epicyclic model building.



Here, i want to discuss a (very preliminary)
line of investigation into a third hierarchy

problem that has proven equally vexing.
Unlike the other two problems, in this case
we know already that the solution does not 

involve fine tuning; there is interesting 
dynamics at play.



I will now repeat a (well known) argument 
that we should think of the existence of the 

high temperature superconductors as a 
hierarchy problem.  I heavily rely on 

polchinski’s discussion in the following.

Landau’s Theory of Fermi Liquids

Let’s consider the effective field theory
governing excitations of a conductor.  The
relevant energy scale (say a typical width

of a conduction electron band) is 

E0 ∼ 1− 10 eV

Benfatto and Gallavotti;
Shankar; Polchinski



In a conductor, current is excited by any
tiny electric field, so there must be gapless

charged excitations.  We can try to write
down an effective theory valid at scales

E << E0

At the high scale we encounter the messy
theory of electrons with their Coulomb
interactions.  Lets try to write down a 

simpler theory of low energy modes, just
using symmetries and guesswork.



Guess: light fields are spin 1/2 fermions.
(Lets call them “electrons”).

It is important to emphasize that while this 
is justified in very dilute or weakly 
interacting systems, in a strongly 

interacting system the truth could be very 
different.

Lets begin by studying the free action:

S =
∫

dt d3p [ iψ†
σ(p)∂tψσ(p)

−(ε(p)− εF ) ψ†
σ(p)ψσ(p) ]



εF     is the fermi energy.  In the ground state,
all states with            are filled.  Low-lying 

excitations are obtained by adding an 
electron just above the fermi surface, or
removing one (leaving a hole) just below.

ε < εF

p

p

1
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Figure 1: Fermi sea (shaded) with two low-lying excitations, an electron at
p1 and a hole at p2.

that something very different might emerge. All we can do here is to check

the guess for consistency (naturalness), and compare it with experiment.

Begin by examining the free action
∫

dt d3p
{

iψ†
σ(p)∂tψσ(p) − (ε(p) − εF)ψ†

σ(p)ψσ(p)
}

. (12)

Here σ is a spin index and εF is the Fermi energy. The single-electron energy

ε(p) would be p2/2m for a free electron, but in the spirit of writing down the

most general possible action we make no assumption about its form.5 The

ground state of this theory is the Fermi sea, with all states ε(p) < εF filled

and all states ε(p) > εF empty. The Fermi surface is defined by ε(p) = εF.

Low lying excitations are obtained by adding an electron just above the Fermi

surface, or removing one (producing a hole) just below, as shown in figure 1.

Now we need to ask how the fields behave as we scale all energies by a

factor s < 1. In the relativistic case, the momentum scaled with the energy,
5A possible p-dependent coefficient in the time-derivative term has been absorbed into

the normalization of ψσ(p).
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Now, let us ask how the fields behave if we
scale all energies down by a factor of      

s < 1.

In a relativistic theory, we would scale 
momenta down with a factor of s.  Here,
on the other hand, we should scale the 

momenta toward the fermi surface.

So if

p = k + l



with k on the fermi surface and l 
orthogonal to it, then one should scale

E → sE, k→ k, l→ sl

Expand the single-particle energy

ε(p)− εF = lvF (k) +O(l2)

then under the combined scaling

dt→ s−1dt, dk→ dk, dl→ sdl, ∂t → s∂t, l→ sl



each term in our action

S =
∫

dt d3p [ iψ†
σ(p)∂tψσ(p)

−(ε(p)− εF ) ψ†
σ(p)ψσ(p) ]

scales like 

sψ†ψ

We conclude that we should scale

ψ → s−1/2ψ



Now, lets ask if this theory is natural or 
not.  Are there relevant operators we

haven’t included in our action?

The symmetries we get to impose on allowed
operators include:

1.  Electron number

2.  Translation invariance [really discrete
lattice symmetries; this leads to band theory 

but for now we will ignore this 
complication].

3.  Spin SU(2)



Lets start with terms quadratic in the 
fields:

∫
dt d2k dl µ(k)ψ†

σ(p)ψσ(p)

This scales as 1/s.  Have we already lost?
It looks relevant!

But the answer is no.  We had an unknown
function        in our action, and this canε(p)
be absorbed into the definition of that 

function.  This means that the existence of
a fermi surface is natural, but it is 
unnatural to assume that it has any 

particular precise shape.



* Adding one time derivative, or one factor 
of l, makes the operator marginal; these
terms are already included in our action.

* Additional time derivatives or factors of l
just make irrelevant operators.

How about quartic interactions?  Consider:
∫

dt
(
Π4

i=1 d2ki dli
)

V (k1,k2,k3,k4)

ψ†
σ(p1)ψσ(p3)ψ†

σ′(p2)ψσ′(p4) δ3(p1 + p2 − p3 − p4)



This scales as s times the scaling of the
momentum-conserving delta function.

Glib (wrong) argument:

δ3(p1 + p2 − p3 − p4) ∼ δ3(k1 + k2 − k3 − k4)

(Ignore the l factors because they are 
scaling to zero in the infrared).

Then, the overall scaling of the quartic
is like s, and this operator is irrelevant.

And of course higher order operators
are even more irrelevant.



However, the assertion that 

δ3(p1 + p2 − p3 − p4) ∼ δ3(k1 + k2 − k3 − k4)

admits an important subtlety.  Let us write 
(without loss of generality):  

p3 = p1 + δk3 + δl3, p4 = p2 + δk4 + δl4

then the delta function is:

δ3(δk3 + δk4 + δl3 + δl4)



* For generic momenta, the delta ks are
linearly independent and we can indeed

ignore the ls in the delta function.
p1 = −p2* But if                  then in the argument of

δ3(δk3 + δk4)
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Figure 3: a) For two generic points near a two-dimensional Fermi surface, the
tangents δki are linearly independent. b) For diametrically opposite points
on a parity-symmetric Fermi surface, the tangents are parallel.

p1,2 scatter into momenta p3,4. Expand

p3 = p1 + δk3 + δl3, p4 = p2 + δk4 + δl4. (23)

The momentum delta-function in ds space dimensions is then

δds(δk3 + δk4 + δl3 + δl4). (24)

Now, for generic momenta, shown in figure 3a, δk3 and δk4 are linearly inde-

pendent and our neglect of δl3 and δl4 is justified. An electron of momentum

p1 absorbs a phonon of large momentum q but remains near the Fermi sur-

face. Incidentally, while the picture is two-dimensional, it is easy to see that

this argument applies equally for all ds ≥ 2: the possible variations δk3, δk4

span the full ds-space. However, if p1 = −p2, so that the total momentum is

zero, then δds(δk3 + δk4) is degenerate, since one component of the argument

vanishes automatically. In this case, one component of the delta-function
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  , one component vanishes

automatically!



Then, one component of the delta function
actually does constrain the transverse l

fluctuations, and so scales inversely to l,
as s−1

At such momenta, the four-fermi interaction
becomes marginal.

Computing the one-loop beta function for
this marginal interaction, one finds:

V (E) = V
1+NV log(E0/E)

with n the density of states at the fermi 
energy.



Then we see that a repulsive interaction
grows weaker at low-energy, while an 

attractive interaction grows stronger.

We expect two different contributions to 
the quartic interaction between electrons 

in a generic conductor:

1  --  Some sort of screened Coulomb
interaction Vc

2 --  An attractive contribution that comes
from integrating out phonons, Vp [strictly 

speaking, should have included these as 
goldstones in our effective theory].



What happens at low energies depends
on the sign of Vc-Vp (at the natural energy

scale where we “integrate out” phonon-
electron interactions).

VC − VP > 0Case 1:

The low-energy theory looks free and 
boring.

Case 2:     VC − VP < 0

We added a marginally relevant operator: 
at low-energies it produces a Cooper-pair 

condensate that breaks U(1) (like a 
technicolor model).  Superconductor!



After this long review of things you already
know (presented here in an awkward 

language), it is easy to describe the trouble
with the high temperature superconductors.

The resistivity as a function of temperature 
in a normal superconductor, obeys a 

formula:

ρ(T ) ∼ A + BT 5

The first term arises from impurity 
scattering; the second from phonons (very 

suppressed due to phase space and momentum 
suppressions in the vertex coupling them to

electrons).



In contrast, in the high temperature 
superconductors, one finds:

!

T Tc

Figure 6: Resistivity versus temperature in a typical high-Tc material: zero
below Tc, and linear above.

energy dependence governed by the lowest dimension operator that could

be responsible. For example the T 0 resistivity is from impurity scattering.10

The T 5 resistivity is from phonon scattering; the high power of temperature

is because we are below the Debye temperature, so only the long-wavelength

phonons remain, their contribution suppressed by phase space and the q

in the vertex. What can give T 1? Nothing. Write down the most general

possible effective Lagrangian and there is no operator or process that would

this power of the temperature. This is one of several related anomalies in

these materials. To steal a phrase from Mike Turner, figure 6 shows the

conductor from Hell.

To be precise, there is nothing of this magnitude in the generic Fermi

liquid theory, but in special cases the infrared divergences are enhanced and

new effects are possible. For example, consider free electrons on a square

lattice of side a, with amplitude t per unit time to hop to one of the nearest
10Incidentally, there is perhaps some indication that A is anomalously small, even zero,

in the best-prepared high-Tc materials.
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ρ(T ) ∼ A + CT

we should be able to write down some low-
dimension operator to generate this in our 

effective theory.



But we can’t.  Write down the most general
possible effective Lagrangian and there is 

no operator that would give this power of T.

*  Caveat:  If the fermi surface takes very
special shapes, one can generate infrared
singularities that cancel powers of T and
could conceivably lead to such behaviors.

But the shape of the fermi surface is a 
relevant parameter.  The phenomenon is

seen in many materials, and is stable under
changes in doping of several percent -- 
suggesting that the correct low-energy 

theory has no relevant parameters at all.



So even in the normal state of high 
temperature superconductors, something 

interesting is going on:  Landau’s 
Fermi Liquid Theory has broken down!

The Modern Dogma



“Its the quantum critical point’s fault!”

Phenomena where breakdown of Fermi Liquid 
Theory happen seem to be related to the 

existence of interacting, zero-temperature 
critical points.  These separate phases are 

best characterized by distinct types of 
order, with different order parameters.  The 
fluctuations at the critical point are driven 

by quantum effects at zero temperature 
(perhaps even in an unphysical
region of the parameter space).

c.f.  S. Sachdev,
“Quantum Phase Transitions”



Interestingly, many of these critical points 
exhibit the phenomenon of “dynamical 
scaling.”  That is, they involve critical 

theories where there is a scale invariance 
under which

t→ λzt, x→ λx, z "= 1

in contrast with the scaling symmetry
embedded in the usual conformal group

t→ λt, x→ λx



A toy model to keep in mind (analogous to 
the conformal field theory of a free boson, 

but with nontrivial dynamical critical 
exponent z) is given by the Lagrangian:

L =
∫

d2x dt
(
(∂tM)2 − (∇2M)2

)

This  “Lifshitz fixed point” has z = 2 and is
actually known to govern the behavior of 

some magnetic materials and liquid crystals:

Hornreich, 
Lubin,

Shtrikman



More generally, such fixed points arise in
the phase diagram of various toy models of
the high temperature superconductors (e.g. 

the Rokhsar-Kivelson dimer model).  They 
have been studied somewhat extensively in 
recent work by e.g. Ardonne, Fendley, and 
Fradkin;  Freedman, Nayak, and Shtengel 

(who found some analogous fixed points in 
gauge theories); and Balents, Vishwanath 

and Senthil.



Gravity Duals of Fixed Points with z != 1
It is of interest to develop new tools to 

study these critical theories, perhaps for 
applications to condensed matter problems 
arising in the study of strongly correlated 
electrons.  For strongly coupled conformal 
field theories, a new tool is offered by the 
AdS/CFT correspondence.  Quantum gravity 

in the background:

ds2 = −r2 dt2 + r2 (dx2 + dy2) +
dr2

r2

is dual to a 2+1 dimensional CFT.
Maldacena;

Gubser, Klebanov, Polyakov; 
Witten



* The extra dimension geometrizes the 
energy scale in the dual field theory

* Scale transformations act via

(t, x, y)→ λ (t, x, y), r → r
λ

which leave the AdS metric invariant.

Happily, AdS arises as a solution of gravity
with a negative cosmological constant, 
which can be found as the low-energy 

effective theory in many string 
compactifications.  So many examples are 

known.



We, in contrast, would like gravitational 
duals to systems that enjoy the modified 

scale invariance (say for z=2):

A natural guess, then, is that the gravity 
dual metric could take the form:

ds2 = − r4 dt2 + r2 (dx2 + dy2) +
dr2

r2

This is designed to be invariant under the
modified scale transformation.

(x, y)→ λ (x, y), t→ λ2 t



Now unlike the AdS metric, this weird 
“Lifshitz metric” is not a famous solution of 

supergravity or string theory.  So our 
program will be to:

a) Exhibit gravity + “matter” systems that 
plausibly arise in M-theory, and that can 

support this kind of spacetime metric.

b) Develop the analogue of the AdS/CFT map 
for this spacetime, and see if e.g. 

correlators and phase structure match 
(qualitatively, for now) with those found in 

real 2+1 dimensional systems. 



Gravity Solutions

We expect perturbations of our fixed point
can flow to normal CFTs.  So we should

begin with a gravity theory that could give 
rise to AdS space: say 4d gravity with a 

negative cosmological term:

Sgrav =
∫

X
d4x

√
−g (R − 2Λ)

M or String theory actions typically also 
have various p-form gauge fields.



A reasonably modest choice of additional 
content that can support our desired metric 

is:

where 

dB2 = F3

Sgauge = −1
2

∫

X
d4x

√
−g (F2 ∧ ∗F2 + F3 ∧ ∗F3)

Stopological = c

∫

X
B2 ∧ F2



We can make an obvious scale invariant 
ansatz for the fluxes which preserves time 
and space translation symmetries as well

as spatial rotations:

F2 = Ar dr ∧ dt, F3 = Br dr ∧ dx ∧ dy

We now have the parameters 

Λ, c, A, B

and we can solve for the necessary values
to get various dynamical scaling exponents,

including z=2.  So the desired gravity 
solutions exist in the metric + 2 form + 3 

form system.



Modified AdS/CFT Map:

In standard AdS/CFT, there is a map between 
bulk fields and boundary operators.  For 

instance, for the AdS dual of a 3D 
conformal field theory, a boundary scaling 

operator of dimension       is dual to a
bulk field with Lagrangian:

∆

Sbulk =
∫

d4x
√
−g

(
gµν∂µφ∂νφ−m2φ2

)

m2 = ∆ (∆− 3)



The differential equation that phi satisfies 
in AdS space is:

∂2
zφ− 2

z
∂zφ + (∂2

t + ∂2
x + ∂2

y)φ =
m2

z2
φ

where               For modes which are only a 
function of z, one then finds fall off at

small z (the boundary) that goes like:

φ = c1 z∆ + c2 z3−∆

z = 1/r.

The two-point function of phi computed 
using the GKPW prescription is as expected 

for a field of dimension ∆.



In contrast, in our space-time, the 
differential equation satisfied by a massive 

scalar field will be:

As a result, solutions fall off near
the boundary like

φ = c1 z∆ + c2 z4−∆

with
m2 = ∆ (∆− 4)

∂2
zφ− 3

z
∂zφ + z2∂2

t φ + (∂2
x + ∂2

y)φ =
m2

z2
φ



So e.g. a marginal operator in the boundary 
theory, which maps to a massless bulk scalar 

field (no potential, to reproduce the 
boundary moduli space), would have

in ordinary AdS/CFT, but has 
in our theories with dynamical exponent z=2.
∆ = 3 ∆ = 4

Correlation Functions

The correlation functions in these theories 
show some interesting differences from 

those in CFTs.  Here we illustrate with the
two-point function of a marginal operator

(dual to a massless bulk scalar).



Note that the two-point function is not 
determined by symmetries in these theories;    

f(x2/t)it contains an unknown function

To find the two-point function, we evaluate 
the on-shell bulk action and differentiate 

twice with respect to     :φ

S(φ) =
∫

d3x

∫ ∞

ε
dz(−φ∂µ

√
ggµν∂νφ + ∂µ(

√
ggµνφ∂νφ))

=
∫

d3x [
√

ggzzφ∂zφ|∞ε

=
∫

d2kdω φ(0,k, ω)F(k, ω)φ(0,−k,−ω)



The “flux factor” is given by:

F(k, ω) = [G̃(z,−k,−ω)√ggzz∂zG̃(z,k, ω)]|∞ε

where the propagator satisfies

∂2
z G̃− 3

z
G̃− (ω2z2 + k2)G̃ = 0

with boundary conditions:

G̃(0, ω,k) = 1

G̃ finite as z→∞



These conditions uniquely determine the 
propagator:

with U the confluent hypergeometric 
function of second kind.  This vanishes at 
infinity, so the only contributions to the 

correlator come from the boundary as 
expected.

G̃(z, k) = e−|ω|z2/2 Γ( |k|2
4|ω| + 3

2 ) U( |k|2
4|ω| −

1
2 ,−1, |ω|z2)

So without further ado we can plug this 
into the flux factor and read off the two-

point function of the dual scaling operator:



〈Oφ(k, ω)Oφ(−k,−ω)〉 = −1
2
k2|ω|− 1

8
(4ω2 − k4)log|ω|

−1
8
(4ω2 − k4)ψ(

3
2

+
k2

4|ω| )

here we subtracted some divergent terms via 
adding local boundary terms, and also 
dropped uninteresting contact terms.

Notice that the first two contributions are 
completely localized in space.

such terms are of course forbidden in 
Lorentz invariant theories.



They may well be related to the kind of 
ultralocal behavior found for correlation 
functions of certain scaling operators in 
the Lifshitz theory by Ghaemi, Vishwanath 

and Senthil (2004).

These authors proposed that such behavior 
could be relevant in explaining experiments 
which show clear autocorrelation functions 

(at fixed spatial location with time 
separation), but no spatial correlaton, in 

certain materials.



Phase Structure

One goal is to work out the different phases 
one can obtain by perturbing these kinds of 

gravity duals in various ways.

Their results hold at finite temperature 
(but not zero temperature).  It would be 

interesting to see if the correlators in the 
black hole solution in our spacetime exhibit 

complete ultralocality.



The simplest interesting perturbation of the 
free toy model

L = (∂tM)2 − (∇2M)2

is to add a perturbation by 

δL ∼ ε (∇M)2

Depending on the sign of the perturbation, 
this either has the effect of:



a) inducing renormalisation group flow to a 
normal CFT (in this case, a free theory).

b) causing an instability to condensation of 
low-momentum modes of M, leading to some 

kind of spatially modulated structures.

Do we see analogous phenomena in our 
strongly coupled theory?

We can see the renormalisation group flow 
in a) as follows (i will be brief; the 

equations may not be so illuminating).



To see the flow, we should generalize our 
ansatz for the background fields:

ds2 = − r4 f(r)2 dt2 + r2 (dx2 + dy2) + g(r)2
dr2

r2

F0 = A

F2 = Bh(r) (rg(r)f(r)) dr ∧ dt

F3 = Cj(r) (rg(r)) dr ∧ dx ∧ dy

The equations of motion that the new 
functions f,g,h,j must satisfy can easily be

derived, and are:



2r
f ′

f
= (5− h2 + j2)g2 − 5

rj′ = 2gh +
1
2
j +

1
2
jg2(h2 − j2 − 5)

rh′ = 2gj − 2h

rg′ =
1
2
g3(h2 + j2 − 5) +

3
2
g

We solve for the RG flow by “shooting.”  It 
is hard to hit the AdS fixed point on the 

nose by perturbing the UV theory, because 
the AdS fixed point has relevant operators.



But our UV theory (in this approximation) 
has only one marginally irrelevant 
operator in addition to the relevant 

perturbations.  So it is easy to fix “almost 
AdS” boundary conditions near r=0, and 
calculate the RG flow back “up” to the 

Lifshitz point.  A representative trajectory 
of f,g,h,j as a function of r is shown on the 

next page.
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Our current goals:

* Find the black hole solutions in these 
spacetimes to see if interesting new 
features emerge in the correlators.

* Directly study z=2 Non-Abelian gauge 
theories (c.f. Freedman, Nayak, Shtengel) 
and try to find fixed points.  These could 

morally be the gauge duals of our 
backgrounds (and would have a principled, 

large N, reason to have a string 
description).


