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Dark Matter Searches
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Dark Matter Searches

Neutrinos
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Direct Detection
DAMA, CoGeNT
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Outline

Asymmetric Dark Matter and asymmetry x-fer

Neutrino signal

General models and some model-building issues

Annihilations
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Relic Density
Favorite story: annihilation freeze-out

Alternative: asymmetry
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Asymmetric DM
Similar to Baryons:

DM: 

nB > n̄B TB asym generated

Low T: B conserved

Left with nB − n̄B

nX > n̄X
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Linked asymmetry
Appealing idea: Link SM baryon asymmetry to DM 
asymmetry

Various mechanisms in literature, focus on: asym 
transfered through chemical equilibrium at high 
temperatures

           gauge-invariant, baryon/lepton # carrying

e.g.                                  etc.; 

∆L =
ODSOSM

Λd−4

ODS,OSM

OSM = HL, LLEc, (HL)2, ∆L =
X(HL)2

Λ2

(D.E.Kaplan, 
Luty, Zurek)

(Barr,Chivukula,Farhi; D.B. Kaplan;etc.)
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Transfer of Asymmetry
High temp: DS           SM interaction in equilibrium

Convenient to work w/ chemical potential

n =
1

(2π)3

∫
d3p

e−(E−µ)/T ∓ 1
, µ̄ = −µ

n− n̄ =
µT 2

6 fermions
µT 2

3 bosons

X(HL)2 ⇒ µX = −2(µH + µl)

SM interactions-> relations among µH , µl, µe, µu, . . .

Harvey, 
Turner, (std 
analysis)
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But, with a conserved charge,

Relation to 
symmetries

No sym: lots of interactions, 
lots of constraints

XY
XY Y
XXY

. . .

⇒

µX + µY = 0
µX + 2µY = 0
2µX + µY = 0

. . .

e.g.

µX , µY → 0

∆L = ψ1ψ2 . . .ψn

n∑

i

qi = 0

Non-trivial solution: µi = cqi c free, set by init. 
conditions
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DM abundance 

Also, total EM charge must vanish -> one free par’m, 
useful to use B=net Baryon number

mass prediction:

U(1)B−L, U(1)Y µH =
1
2
CY , µl = −1

2
CY − CB−L, µe = −CY − CB−L,

µq =
1
6
CY +

1
3
CB−L, µu =

2
3
CY +

1
3
CB−L, µd = −1

3
CY +

1
3
CB−L

CB−L =
11
28

B

µX = 2CB−L =
11
14

B

∆L =
X(LH)2

Λ2

Time-independent: nDM

nB
=

2µX

B

mDM = mp
nB

nDM

ΩDM

Ωb
= 3GeV
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DM mass
Easy now to read off more general case

mDM ≈ 6.3|L−1
DM|GeV boson

13|L−1
DM|GeV fermion

1
4

! LDM ! 4⇒ 1GeV ! mDM ! 50GeV
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HL is lowest-dim’l leptonic gauge-invariant in SM,-> 
most ops you write down for transferring asym will 
have HL

Below mh, mW, -> 

ADM quite frequently has leading signal in    decays!

Plus, no anti-DM particles today-> 

Neutrino Portal HL
DM

ODSOSMX ν̄
|H|2, Fµν , . . .

other portals:

HL ∼ vν
ν̄

X → ν̄ν̄

LLEc

(Falkowski,Juknevich,Shelton)

Wednesday, April 21, 2010



Flux from halo decays

Peaked toward galactic center, not very halo-dependant

Cosmic decays < 10% 

dΦ
dE

=
Γ

4πm

dN

dE

∫
ρDM(#l)dl

Jθ=180◦
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Constraint
Super-K hasn’t looked for    s from DM at             , 
doing analysis now

Would have noticed if signal too big, say 
signal>background from atmospheric    s 

ν

ν

(from Beacom et al. )

! 20GeV

∆ log10 E = 0.3

t−1
universe = 1.5× 10−42GeV(                           )
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Downside: need some luck

Some hope: Already sensitive to near-GUT 
suppression...

Also, freeze-out temperature must be below reheating 
temperature

If                    , then

O2ν =
1
2

X(HL)2

Λ2

If    is too large, won’t see anythingΛ
Λmin = 6× 1013GeV

(
Λ4

mpl

)1/3

∼ Tfreeze−out < Treheat

Treheat < MGUT Λ ! 5× 1016GeV

(extra assumption here:      still valid 
description of asym x-ter at high T)

O2ν
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After an experiment sees a bump, look at     vs     composition

Water Cherenkov detectors (Super-K) : requires more statistics 
than initial discovery of bump...

Bin events into many classes, look for deviations from expected 
neutrino vs. anti-neutrino rates from atm background

Example: look for extra muon in final state, expect about 10 
times as many neutrinos as anti-neutrinos

νs vs. ν̄s
ν ν̄

νe + P → P + e− + π+

νe + N → N + e− + π+

ν̄e + P → P + e+ + π−

ν̄e + N → N + e+ + π−

µ+ + νµ

µ+ + νµ

π−
gets absorbed by P

MINOS: magnetic field-> easily distinguish charge of muon
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Other operators
d = 4 : O1 = ψHL

d = 5 : O2 = XψHL

d = 6 : O3 = ψLLEc

O4 = ψLQDc

O5 = ψU cDcDc

O6 = X1X2ψHL

O2ν =
1
2
X(HL)2

X boson
ψ fermionDS particles:
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Trivial Observation #1
d = 4 : O1 = ψHL

d = 5 : O2 = XψHL

d = 6 : O3 = ψLLEc

O4 = ψLQDc

O5 = ψU cDcDc

O6 = X1X2ψHL

O2ν =
1
2
X(HL)2

X boson
ψ fermionDS particles:

Decay to baryons, charged 
leptons; not neutrinos

All have DM with (B-L)[ ]=1ψ
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Trivial Observation #2
d = 4 : O1 = ψHL

d = 5 : O2 = XψHL

d = 6 : O3 = ψLLEc

O4 = ψLQDc

O5 = ψU cDcDc

O6 = X1X2ψHL

O2ν =
1
2
X(HL)2

X boson
ψ fermionDS particles:

Decay to neutrinos, + DS 
states

Spectrum usually sharp, 
from kinematics
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Trivial Observation #3
d = 4 : O1 = ψHL

d = 5 : O2 = XψHL

d = 6 : O3 = ψLLEc

O4 = ψLQDc

O5 = ψU cDcDc

O6 = X1X2ψHL

O2ν =
1
2
X(HL)2

X boson
ψ fermionDS particles:

L(X) + L(ψ) = −1

L(X) >
<

0,
X∗

X
DM
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Trivial Observation #4
d = 4 : O1 = ψHL

d = 5 : O2 = XψHL

d = 6 : O3 = ψLLEc

O4 = ψLQDc

O5 = ψU cDcDc

O6 = X1X2ψHL

O2ν =
1
2
X(HL)2

X boson
ψ fermionDS particles:

d=6:   a little below MGUT 
d=5:   >> MGUT                   .

Λ
Λ
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Lepton # and DM lifetime
        at high T becomesU(1)L U(1)L × U(1)DM

DS SM

DS SM

UV

IR

U(1)L

ODMOSM

Λd−4

U(1)DM U(1)L

XψHLe.g 

L(X) = −1
3

L(ψ) = −2
3

X → ψ + DS states
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Other model-building stuff
See-saw mechanism

Lepton number protects DM lifetime, so violating 
lepton number with heavy right-handed neutrino 
masses is potentially dangerous

           is nice in this respect - easily UV-completed 
to model with accidental lepton number in DS: new 
d,dc doublet fields with Y= ±1/2

No DS allowed renormalizable couplings to Lepton-
breaking 

XψHL

∆L = λψdH + λ′LdcX + mdddc

〈φ〉

〈φ〉NN L(φ) = −2
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Other model-building stuff
suppressing psi X H L

Spont. broken U(1):

∆L = λψd1H + λ′Ldc
2X + md,idid

c
i + cSd2d

c
1

U(1)
X, d2 1
S, dc

2 -1
else 0

→ cλλ′〈S〉
m2

d

XψHL
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Other decays
Can always produced charged SM states, but must go 
through off-shell H,W, or Z

 

phase space factors

X X
h0

ν̄

ν̄
f
f̄

ψ̄

e+

e−
W−

ψ̄

ν̄

Very suppressed Br fraction:v2 → m2
DM

g4,m−4
W γe+ ∼ g4

(2π)4
m4

DM

m4
W

∼ 10−9
( mDM

10GeV

)4
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E.g. Positron flux limits
Abundance set by balance between production and 
depletion

T = diffusion time

neutrinos just travel straight through galaxy

Qe+(E) ≈ d

dE

(
dE

dt
ne+(E)

)
+

ne+

T
≈ ne+

T

r =
√

D × t, D = 3× 1028cm2/s,
Galactic height h ≈ 103ly

T ≈ 106yr

nν ∼
ρDMΓDM

mDM
RG, ne+ ∼ γe+

ρDMΓDM

mDM
T

∼ (10γe+)nν

Neutrinos are leading signature, even with ~1000 
times neutrino bkgd
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Annihilations
No signal from annihilations in halo, because of 
freeze-out bound: asymmetry transfer must freeze 
out above the mass of the DM particle

σmm3
DM ! H(mDM)

Γ0

mDM
! σ0

σm
10−61

(
1GeV
mDM

)3

Would need huge 
enhancement of 

overσ0 σm
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Annihilations in Sun
Small annihilation rate can be accommodated by large 
scattering cross-section

In ADM, scattering and annihilation x-sec can be 
totally different!

vs.
X

X

X X
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Annihilations in Sun
Atmospheric background to overcome at 5GeV w/i 10 
deg around sun: 

Need annihilation rate 

For                      , rate grows like t2:
Ṅ = C −AN2

t < τeq = 1/
√

CA

ΓA =
1
2
AN2 =

1
2
C2At2

XXXX
XXXXX

XX

X

ν̄
ν̄

0.4m−2s−1

ΓA > 1.1× 1023s−1
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DM trapped in sun thermalizes, thermal radius

Ruled out by direct detection: 

Annihilations in Sun

A =
〈σAv〉
Veff

t! ! τeq

rth = 0.045R!

(
5GeV
mDM

) 1
2

(Gould, Press, Spergel)

σS ! 3× 10−4pb
from DAMA at m=5 GeV

1
2
C2At2! ! 1023s−1

(
C

1027s−1

)2 ( 〈σAv〉T!

〈σAv〉m

) 1
2 ( mDM

5GeV

) 1
2

( g∗
60

) 1
2

C ≈ 1027s−1

(
σS

0.05pb

) (
5GeV
mDM

)
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Enhancement from 
WIMP-WIMP scattering

Need enhancement of 170 (A. Zentner)

Ṅ = C + CXN −AN2

N(t!) = Ct!

(
exp(CXt!)− 1

CXt!

)

Need        = 7.1

η =
√

3
2

v!
v̄

CX =
√

3
2
nDMσS v̄

(
vesc(R!)

v̄

)2

〈 v2
esc(r)

v2
esc(R)

〉erf(η)
η

Classical Sommerfeld Enhancement

CEff = C
eCXt! − 1

CXt!

CXt!
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Geometric Cross-section: 

Bounds: Ellipsoidal dwarf galaxies

Looks like a signal is possible

Obviously, very sensitive to O(1) effects...

Enhancement from 
WIMP-WIMP scattering

sX ≡ σS

mX
< 2× 10−25cm2/GeV

CXt! < 8.3
ρDM

0.4GeV/cm3

C ! πr2
thnDMv̄

(vesc

v̄

)2
≈ 2× 1027s−1

(
5GeV
mDM

)
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The End!
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Summary
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Other model-building stuff
getting low mass

Wednesday, April 21, 2010



MINOS: magnetic field-> easily distinguish charge of 
muon

νs vs. ν̄s
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