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Statistics of string vacua

Michael R. Douglas
Rutgers and I.H.E.S.

“Strings meet loops” at AEI-Potsdam
October 30, 2003.

Abstract
In 1975, Scherk and Schwarz proposed that string the-

ory could unify quantum gravity with all other fundamental
interactions. This proposal has met with some success, and
its study has led to dramatic theoretical developments with
great impact in physics and mathematics.

Despite this success, there is still no direct experimental
evidence for or against the theory. How could we hope to get
such evidence? Is the theory falsifiable, even in principle?
We discuss these questions, and a statistical approach to
studying them.
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1. Introduction

String/M theory is a prime candidate for a theory unifying all
fundamental interaction, including quantum gravity. The theory
has passed many impressive consistency tests and suggests an-
swers or at least promising approaches to many questions, such
as

• What is the scattering of gravitons and other particles at
any energy, below or above the Planck scale?

• What is the origin of black hole entropy?

• Is black hole evaporation unitary? What resolves associated
paradoxes?

• What prefers the Standard Model and grand unified gauge
groups?

• What is responsible for the large hierarchy between the
Planck scale and the electroweak scale?

• What structure leads to family replication?

It even suggests new possibilities which, bizarre as they may
seem, appear consistent with present data and could be tested in
future experiments, such as “large” extra dimensions of space,
and Planck scale modifications of cosmology.
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String theory has also led to dramatic progress on other ques-
tions of particle physics: it inspired the Seiberg-Witten solu-
tion of supersymmetric gauge theory, which led to the first an-
alytic proof of confinement, it has proposed new approaches to
QCD phenomenology using both perturbative techniques and the
AdS/CFT correspondence, etc., etc.

On a more abstract level, we begin to get some picture of
the “stringy geometry” which replaces the differential geome-
try underlying Einstein’s equations, and this has led to dramatic
mathematical developments: mirror symmetry, topological field
theory, the Seiberg-Witten invariants of four-manifolds, noncom-
mutative instantons, etc., etc.

Despite all these successes, there is still no direct experimental
evidence for or against the theory, regarded as a candidate “the-
ory of everything.” How could we hope to get such evidence? Is
the theory falsifiable, even in principle? Does this matter?
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Let us start by explaining the framework in which string/M
theorists attempt to make predictions. Along the way, we will
contrast this to a generic class of theories of “quantum gravity
coupled to matter,” for short QGM, based more closely on tra-
ditional concepts from quantum field theory.

The starting points for any discussion of fundamental physics
have to be the Standard Model of electromagnetic, weak and
strong interactions, and general relativity. As with all theories,
they attempt to explain or “predict” certain observations and
experimental results, in terms of a small number of parameters
or other choices.

General relativity is striking in its formal simplicity. It has
a single dimensionful parameter, the Newton constant. Fixing
this, it is established beyond any doubt to describes gravity at
distances up to cosmological scales, but at short distances it has
been precisely tested only down to around 100µm.

At cosmological scales, the story is less clear. The prevailing
hypothesis at present is that there is a cosmological constant,
Λ ∼ 10−120 in the natural units of M 4

pl. The data can also be fit
by more complicated theories with additional scalar fields, but in
any case one needs a tiny dimensionless parameter.

http://www.ihes.fr


Introduction

Statistics of vacua

Flux vacua

Counting vacua

Susy breaking

Summary and . . .

Home Page

Title Page

JJ II

J I

Page 5 of 47

Go Back

Full Screen

Close

Quit

The Standard Model is rather more complicated. There are
two subsectors which could be said to have a simplicity compa-
rable to GR, QED with its single dimensionless coupling and the
electron mass, and the low energy sector of QCD with a dimen-
sionful scale ΛQCD ∼ 100 MeV and two nearly massless quarks.
These sectors have been extremely well tested and form the ba-
sis of almost all of real world physics.

The full story involves SU(3) × SU(2) × U(1) gauge theory, a
moderately complicated spectrum of quarks and leptons, and 19
free parameters. It is presently considered well established at en-
ergies up to about 100 GeV, with caveats. Recently, convincing
evidence for neutrino mixing has been found. This is not de-
scribed by the SM, but can be fit within the general framework.
Also, the Higgs boson has not been (undisputably) detected.

Looking ahead, there are many arguments that new physics:
perhaps supersymmetry, perhaps something else, will be discov-
ered at energies around 1 TeV, to be explored in the coming
decade at LHC. Of course, there could be new physics at even
higher energies, about which we will only have indirect evidence
for many years to come.

http://www.ihes.fr


Introduction

Statistics of vacua

Flux vacua

Counting vacua

Susy breaking

Summary and . . .

Home Page

Title Page

JJ II

J I

Page 6 of 47

Go Back

Full Screen

Close

Quit

Thus, the question of whether a specific theory fits “our uni-
verse”, in practice changes with time. Physicists in 1930 would
have been happy to unify general relativity and electromagnetism,
with some theory of the proton. Physicists in 2030 may have a
very different point of view from ours.

Anyways, as the experimental sitation stands now, in the sense
that we just discussed for the SM and GR, string/M theory is
close to being established as a valid theory.

As was argued in the mid-1980’s, heterotic string compacti-
fication on Calabi-Yau manifolds can fairly easily lead to grand
unified theories of the class previously postulated as natural ex-
tensions of the Standard Model.

The main difficulty not solved at that time was the problem of
computing the effective potential. As with generic quantum field
theories, the problem of understanding the vacuum structure in
string/M theory compactifications can be discussed as that of
computing a potential function of all scalar fields, whose minima
are candidate “phases” or vacua.

∂V (g, λ, φ)

∂(g, λ, φ)
= 0.
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∂V (g, λ, φ)

∂(g, λ, φ)
= 0.

In string/M theory, all values of the coupling constants we ob-
serve are determined from the expectation values of the scalar
fields. This is why we denoted some fields as g and λ in the
above.

In supersymmetric theories, most of the interesting structure
of the effective potential comes from non-perturbative effects,
and thus one needs non-perturbative or even exact results.

During the mid-90’s, techniques based on ideas such as dual-
ity and holomorphy have led to great advances in our ability to
compute the effective potential. In a real sense, the problem for
general supersymmetric gauge theories is under control. A us-
able partial understanding is available for the larger supergravity
theory produced by string/M compactification.

Within this context, one can exhibit supersymmetry breaking
and stabilization of all scalar fields appearing in many classes of
compactification (Calabi-Yau, M theory on G2, F theory).
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At this point, although no concrete string/M theory compact-
ification solves all the problems, there is no theoretical aspect of
the SM+GR which seems out of reach, except possibly one: the
cosmological constant problem.

There is one idea for solving this problem which seems viable,
and indeed rather conservative. It is the “statistical” idea, grow-
ing out of work of Brown, Teitelboim, Banks, Feng et al and
especially (Bousso and Polchinski, 2000).

This idea requires for its realization a theory with huge num-
bers of vacua, at least 10120 in the most general (nonsupersymm-
etric) picture. Furthermore, the cosmological constants in these
vacua, each defined as the value of the effective potential at the
minimum, must be uniformly distributed near Λ ∼ 0.

Λ ∈ {V (φ1), V (φ2), V (φ3), . . .}.

Then, it will be statistically likely for vacua to exist with the
observed small Λ. Of course, given very strong computational
ability, one could go on to check that indeed one or several of
these vacua actually do have Vmin = Λobs.
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Bousso and Polchinski suggested that the requisite large num-
bers of vacua could be obtained by varying the choice of flux in
the compactification. By flux, we mean the expectation values
of the higher p-form field strengths present in supergravity, inte-
grated on non-trivial cycles in the compactification manifold.

In a bit more detail, let F be a gauge field strength; the equa-
tions of motion ∇F = 0 force it to be harmonic, so determined
by its integral over non-trivial homology cycles Σα. Let

Nα =

∫
Σα

F

be the quantized number of F fluxes on the cycle Σα, and K be
the number of cycles.

A qualitative description of the total energy is is

E = E0 +
1

l4

K∑
i=1

qi(z)2N 2
i

where E0 is a flux-independent contribution, qi is a “charge”
(determined by kinetic terms) and l is the length scale of the
internal space.
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Suppose E0 < 0 and q ∼ 1, then the number of flux vacua with
given Λ = E(N) is roughly

dµvac(Λ) ∼
∫

dKN δ(Λ− E) (1)

∼ (Λ− (E0l4))
K/2−1

. (2)

Thus, the number of vacua with Λ ∼ 0 is roughly

dµvac(Λ ∼ 0) ∼ LK/2−1

with L = E0l4. Since typical Calabi-Yau’s have L ∼ 100− 500, this
motivates estimates such as Nvac ∼ 10100 − 10500.

Now this is only a heuristic argument, ignoring questions like
back reaction on the metric, duality and so forth. We will come
back to this question with a more careful treatment in the later
part of the talk. For now, we simply state that there is evidence
that string/M theory compactification can produce vacuum mul-
tiplicities of the sort we need to solve the cosmological constant
problem.
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Although this would be a talk in itself, it seems fair to say
that existing work made the claim that string/M theory contains
vacua which could reproduce the Standard Model plausible, with
the chief the chief remaining obstacle to the claim being the cos-
mological constant problem. Thus the arguments we just gave
significantly strengthen the plausibility argument.

Of course, other theories might also meet these standards. In-
deed, the hypothetical “QGM” theory might have had no trouble
meeting this test. If it were possible to couple any renormaliz-
able gauge theory to matter, then since the Standard Model is
renormalizable, it would have no difficulty at all. One would sim-
ply choose the known matter content and adjustable couplings.
Furthermore, in conventional quantum field theory, the vacuum
energy is an adjustable parameter, set during renormalization.

The reason one has to go to much more trouble to establish
the same claim from string/M theory, is that this theory (pre-
sumably) can not reproduce every theory of matter coupled to
gravity. Not every gauge group and matter content can be real-
ized; not every joint value of the coupling constants is possible.
This is what makes the theory potentially more predictive than
QGM.
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But let us now examine the claim that string/M theory can
“predict” the SM and physics yet to be discovered, a little more
closely. On reflection, it clearly depends on details of the set of
solutions, and especially the number of solutions. Let us con-
trast some possibilities.

If the theory had only one solution which looked anything like
the real world, there would be no problem: either it agreed with
the SM at low energies or it did not.

Even if there were 100 solutions, it would be easy to go
through the list. Only if several solutions reproduced SM physics,
and led to different subsequent predictions, would there be any
ambiguity. While possible, this is still far more predictive than
most theories, and far more so than the generic QGM.
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At the other extreme, there might turn out to be an infinite
number of solutions, densely spread through the “space of theo-
ries.” In this case, it would be very hard to claim that the theory
made any prediction, or was falsifiable on this level. No matter
what “principle” we came up with to select a solution, if the
proposed solution did not agree with the data, we could always
claim that the principle was wrong and that a different solution
was the correct one.

This is not to say that the theory is not falsifiable. Rather, it
would be no more falsifiable than the SM, or the general class of
QGM’s. There would still be an infinite number of predictions
of the same general type made by the SM.

http://www.ihes.fr
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The difficulty of constructing solutions of string/M theory,
and our limited nonperturbative understanding of the theory, still
make statements like these controversial: it has not been proven
that there are many, let alone 10100, consistent and sufficiently
stable vacua; not even one vacuum which reproduces all SM
physics has been constructed; perhaps there is a more attractive
solution to the cosmological constant problem, and so on.

However, these statements do properly summarize our present
state of understanding of the problem, and are a consistent pic-
ture of how contact with the real world will eventually be made.

On this general level, they are not special to string/M theory.
It might also turn out that a particular QGM theory could not
be coupled to an arbitrarily chosen renormalizable matter theory.
It might turn out to constrain the specific field content, or even
the specific couplings. Again, the value of this will depend on
how many different consistent allowed theories or solutions the
framework admits.

So, how many solutions would be “too many” from this point
of view?

http://www.ihes.fr
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One point for which one can be relatively quantitative is the
question of predicting couplings. Suppose one considers the class
of models with SM spectrum, but arbitrarily chosen consistent
values of the 19 parameters. One can ask, what is the volume
in the 19-dimensional parameter space, consistent with present
day observation? We define volume using Lebesgue measure,
with unit normalization for dimensionless quantities, and to the
Planck scale for dimensionful quantities (the Higgs mass).

The volume is about 10−120, with 10−40 or so for the Higgs mass,
10−10 for each of the fine structure constant, electron mass, and
proton mass, and various factors for the other couplings.

If we also factor in the cosmological constant in Planck units,
the total volume is about 10−240. Thus, in a uniform distribution
of 10240 theories, one might expect 1 theory to realize the SM
couplings.

Of course, this “statistical” scenario for realizing the SM cou-
plings would not predict the SM at all. Every other comparable
volume in parameter space would also be likely to contain a the-
ory. On the other hand, having found “our” theory, we could
then go on to make predictions about physics to be discovered
later.

http://www.ihes.fr
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On the other hand, if there were many more than 10240 vacua,
then many would be expected to agree with the SM. If this ex-
pectation were borne out by the actual distribution of vacua, and
if the different vacua which agreed with the SM made different
predictions, then the danger arises that it will be impossible to
falsify the theory by making new measurements which disagree
with all of the predictions.

Thus, in a rough sense, we could take 10240 or so as the
number of vacua above which predictivity becomes problematic.
This estimate did not include the difficulty of actually realizing
the SM matter content. It did not account for supersymmetry,
which can solve the hierarchy problem, bringing the 10240 down
to 10120. Finally, it made the simplistic assumption that vacua
are uniformly distributed in parameter space. To discuss these
points better, one must define “vacuum” more precisely.

Still, it shows the order of number we want: if there are many
fewer than 1060 vacua (with supersymmetry), we need much bet-
ter arguments to claim that we can solve the cosmological con-
stant problem, while if there are many more than 10240, we face
potential loss of predictivity and testability beyond that of the
SM or a general QGM framework.
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It is interesting that present estimates of the number of vacua
are in the 10100 range, completely independently of the arguments
we just gave or any desired application. The best understood
case is Calabi-Yau compactification.

First, the number of distinct CY threefolds is believed to be
105–106. This has not been proven and for all mathematicians
know, the number might turn out to be infinite. Still, a fair
amount work has been done on constructing CY’s leading to
this belief.

One then must make additional choices of bundle (heterotic
string), or brane configuration (type I and II strings). In the case
of bundles, it is mathematically proven that the number of addi-
tional choices is finite, and more generally there are plausibility
arguments. We have only loose estimates of these numbers, say
1010 per CY or so.
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We mentioned the choice of flux, which potentially brings in
up to 10500, which would be too many. This is still a rough es-
timate and work proceeds on pinning this number down. It now
appears quite possible that simple additional conditions, such as
obtaining acceptable supersymmetry breaking, or requiring a dis-
crete symmetry to forbid fast proton decay, will bring this number
down significantly.

Anyways, it may be possible to make a rough but controlled
estimate of this number in the near term, assuming of course
that there are not huge numbers of yet undiscovered vacua.
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Suppose we decide that we expect one “candidate” vacuum
out of this large number? How can we find it? Testing the con-
ditions we discussed, especially the small cosmological constant,
appears very difficult.

Furthermore, at present there is no reasonable candidate for
an a priori selection principle, even one which only suggests where
to look. Now it is definitely worth looking for such principles. For
example, one might try to find a “measure” which weighs dif-
ferent vacua according to how “likely” they are to emerge from
early cosmology. Even doing this would require fairly detailed
knowledge about the set of possible vacua, and the configura-
tion space which contains the vacua. Most such ideas require
even more information. It does not seem reasonable to hope
for a principle which will tell one in advance which string theory,
Calabi-Yau, brane configuration etc. to look at.
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And, we should keep in mind, that there is no guarantee that
any a priori vacuum selection principle exists. We only have one
sample, and the question of why we observe this one need not
have any better answer than “because we are here.”

In our opinion, the primary question string theorists, or QGM
theorists, face, is whether there exists a solution of the theory
which reproduces our data and could make predictions. One
does NOT need anthropic arguments to justify considering a
particular solution which matches our observations, any more
than fixing the matter content and parameters of the Standard
Model requires an anthropic argument.

There are meaningful anthropic arguments, which are more
specific and predictive type of argument. Depending on the set of
possibilities, one might find these interesting, or not, depending
on taste. It seems premature to go too far in this direction before
the primary question is answered.
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2. Statistics of vacua

So what to do? To properly address any of the questions we
raised, and know whether string theory is predictive under a cer-
tain set of assumptions, we need some ability to work with and
make tests on “all” the vacua.

While we are not yet able to do this in an exact way, we may
be reaching the point where we can do it in a useful approximate
way.

To do this, we grant that the set of “all” relevant vacua,
under some precise definition, exists. Our working definition of
“vacuum” is provided by effective field theory: we consider ev-
ery low energy four dimensional effective field theory which could
be derived from string/M theory, and consider every (sufficiently
metastable) minimum of the effective potential, up to possible
equivalences under duality.

While we should work to prove that this is a precise definition
within string theory, it fits with present intuitions, and of course
the Standard Model we are trying to make contact with is an
effective field theory.
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We then make a precise hypothesis for an approximate de-
scription of this set: they appear in a specific ensemble of ef-
fective field theories. While the ensemble should be precisely
specified, we need not claim that it exactly represents the set of
string/M theory vacua, only that it represents it well enough for
our purposes.

We then can proceed in two directions:

• We can test whether our hypothesized ensemble is accurate,
by comparing with actual string/M theory constructions.

• We can find out what fraction of vacua out of our ensemble
meet a specified phenomenological test.
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Let us give a very simple example to illustrate the point, by
asking the question:

How many string/M theory vacua have SU(3)× SU(2)×U(1)
gauge symmetry unbroken at low energy?

If we define our terms, and if string/M theory has a precise
definition, and if there are finitely many physically distinct vacua,
then this question has a definite answer.

One can just as easily generalize the question to, out of all
vacua, how many have low energy gauge group G ? Let us
denote this number by the function

dµ[G].

While finding this function exactly is hard, perhaps it can be ap-
proximated in some simple and useful way.

For example, could it be that the rank r = rk G of the unbroken
gauge group, roughly satisfies a power law distribution,

dµ[r] ∼ N × r−α.

If so, and if we could estimate N and α, we could get a rough
estimate for how many vacua have a rank 4 gauge group, with-
out much effort. One could go on to study the distribution
dµ[N1, N2, . . .] of the ranks of the simple factors, etc.
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Another question we can ask, is the number of theories with a
given matter content. In (Douglas 0303194), this question was
considered for quiver gauge theories arising from type II string
on Calabi-Yau manifolds. and arguments were given that the
fraction of gauge theories with a given matter content is usefully
approximated by the distribution

dµ[Iij] ∼
∏
i<j

dIij

|Iij|
.

Since this is a precise ensemble of theories, any specific mat-
ter content, for example that of the Standard Model, appears as
some definite fraction of the models. If we consider models from
this ensemble with the correct gauge group U(3)× U(2)× U(1)2,
the correct matter content of the brane construction we just de-
scribed, appears in a fraction 3× 10−6 of models.

http://www.ihes.fr
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Thus, we have formulated a precise and quantitative sense in
which the Standard Model matter content is “generic” in this
ensemble and construction.

While this ensemble is a bit oversimplified, a description of
the true ensemble of brane gauge theories, which gives a good
estimate for the fraction of models which work, might not be
too much more complicated. One can refine our estimate by
formulating more detailed ensembles, and comparing them with
actual string theory constructions. We suspect this will lead to
similar results, say

10−16 <
NSM

Nall G,R

< 1.

If so, then realizing the Standard Model spectrum is not the
hard part of the problem.
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3. Flux vacua

Let us come back to the problem of counting flux vacua ob-
tained by compactifying type II or heterotic strings on a Calabi-
Yau threefold, with p-form gauge field strengths. Their contribu-
tions to the energy depend on Calabi-Yau moduli, so this leads to
a potential which can stabilize moduli and break supersymmetry.
(Strominger; Polchinski; K. and M. Becker; Giddings; Kachru;
Trivedi; many others ...)

Furthermore, by known dualities (Maldacena, Gopakumar,
Vafa, Klebanov, Strassler, ...), these effective potentials describe
a good deal of nonperturbative physics, such as gauge theory in-
stanton effects. It is not completely crazy to claim that most
of the choices not having to do with explicit low energy gauge
symmetry can be dualized into this choice. If so, this multiplicity
would be the dominant factor in the total multiplicity of vacua.
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In any case, these vacua, supersymmetric and nonsupersymm-
etric, form a well defined “ensemble,” and thus we can study
their statistics:

• How many are there ?

• How are they distributed in moduli space ?

• How are cosmological constant and supersymmetry breaking
scales distributed ?

In the remainder of the talk, we will discuss how to get ap-
proximate but controlled results for these questions, using tech-
niques which generalize to a wide class of similar problems.
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The effective flux potential can be computed exactly at large
volume, using special geometry and the superpotential (Gukov,
Vafa, Witten):

W (z) =

∫
M

(F
(3)
RR + τH

(3)
NS) ∧ Ω(z) ≡

∫
M

G ∧ Ω(z);

K(z, z̄) = − log

∫
M

Ω(z) ∧ Ω̄(z̄);

V (z) = eK
(
|DW |2 − 3|W |2

)
.

Here z parameterizes complex structure moduli of M , τ =
C(0)+ie−D is the axion-dilaton, and Ω(z) is the holomorphic three-
form on M . We will discuss Kähler moduli, whose potential is
determined non-perturbatively, later.

This formula is appropriate for the type IIb string. The het-
erotic string leads to something similar with one type of flux, not
two.
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Let us proceed to count supersymmetric type II flux vacua.
Essentially the same considerations apply to F theory. Define

Nα ≡ Nα
RR + τNα

NS =

∫
Σα

F
(3)
RR + τH

(3)
NS,

so that
WN(z) =

∑
NαΠα(z)

in terms of the periods Π of the holomorphic three-form. These
are explicitly computable (complicated) functions, which satisfy
the relations of “special geometry.”

A supersymmetric vacuum is then a particular solution of

DiWN(z) = (
∂

∂zi

+
∂K

∂zi

)W = 0.

These vacua are related by dualities, which act both on flux and
moduli,

(N, z) ∼ (N ′, z′).

We can take one representative from each duality class, by
only considering vacua for which the moduli z to live within a
fundamental region of the duality group. On doing this, Nα

RR and
Nα

NS can be arbitrary integers, so the first point is to understand
why the total number of allowed choices is finite.
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In principle, we might have to make cuts to get finiteness.
Two physically reasonable ones are to remove decompactifica-
tion limits (the large complex structure limit), or to put a cut on
the cosmological constant, Λ = −3eK |W |2 ≥ −|Λmin|. For simplic-
ity, we won’t do this unless forced to.

Other considerations can also cut down the possible choices
of flux. An intriguing aspect of the IIb problem is that the IIb
Chern-Simons coupling∫

C(4) ∧ F (3) ∧H(3)

leads to the following constraint from tadpole cancellation for
C(4) (Gukov et.al., Giddings et.al.):∫

F ∧H + N(D3 branes) = N(O3 planes), (3)

The numbers N(O3), N(D3) are positive for supersymmetric
vacua. Furthermore, one can show that

0 <

∫
G ∧ ∗G ∝

∫
F ∧H

for supersymmetric vacua. This might suggest that the number
of fluxes satisfying (3) should be finite.

http://www.ihes.fr


Introduction

Statistics of vacua

Flux vacua

Counting vacua

Susy breaking

Summary and . . .

Home Page

Title Page

JJ II

J I

Page 31 of 47

Go Back

Full Screen

Close

Quit

However, this is not true, because
∫

F ∧H involves the inter-
section form, ∫

F ∧H =
∑

i

NAi
RRNBi

NS −NBi
RRNAi

NS,

which is an indefinite form. Thus,

0 <

∫
F ∧H ≤ Lmax

has an infinite number of solutions.

In fact, (Trivedi & Tripathy 0301139) have found infinite se-
ries of supersymmetric vacua on K3 × T 2 (ignoring dependence
on Kähler moduli).

So, finiteness of the number of vacua was not established. On
the other hand, the series found by T & T decompactifies. So,
putting a “cut” which removes decompactification limits saves
it, in this example.

One can show (Ashok and Douglas 0307049) that all infi-
nite series of IIb supersymmetric flux vacua, run off to limits
of moduli space, in which the conditions DiWN = 0 change rank.
The only known examples are decompactification (large complex
structure) limits. So, this cut should suffice.
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4. Counting vacua

Our basic approximation is to replace the sum over quantized
fluxes by an integral, which can be justified for large L. In the
spirit of the introduction, this will give us a distribution of “likely”
vacua, not in a true probabilistic sense, but simply as a reflection
of our approximate treatment.

We then treat this integral as a limit of a Gaussian ensemble
of superpotentials, defined as a distribution

dµ[W ] =

∫
d2KN e−QαβNαN̄β

δ(W (z)−
∑

α

NαΠα(z))

with

Πα(z) =

∫
Σα

Ω(z).

Any expectation value in this ensemble can be computed in
terms of a two-point function,〈

W (z1)W
∗(z̄2)

〉
,

which gives the joint expectation value for the product of super-
potentials at two points in moduli space.
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The natural two-point function in the IIb flux problem is〈
W (z1)W

∗(z̄2)
〉

=
∑

G

e−
∫

αG∧∗G W (z1)W̄ (z̄2)

∼
∫

dG e−
∫

αG∧∗G(G ∧ Ω(z1)) (Ḡ ∧ Ω̄(z̄2))

= −
1

α

∫
Ω(z1) ∧ Ω̄(z̄2),

=
1

α
e−K(z1,z̄2),

(using a standard formula from special geometry), where K(z1, z̄2)
is the Kähler potential, regarded as an independent function of
the holomorphic and antiholomorphic variables.

This respects the Sp(b3, Z) group of possible duality symme-
tries. It also allows us to fix the tadpole condition L = ηNN , by
doing a Laplace transform,〈

. . .
〉

fixed L
=

∫
dα eαL

∫
dKN e−αG∧∗G . . . .

∫
dα eαL

〈
. . .

〉
fixed α

.

(A subtle point is that this “action” is not positive definite.
One can however justify its use, by an analytic continuation.
This works because

∫
F ∧H > 0 for susy vacua.)
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Using 〈
W (z1)W

∗(z̄2)
〉

= e−K(z1,z̄2),

one finds that the number of any given type of vacuum, can
be computed as the integral of a density constructed from the
Kähler form ω and curvature R of moduli space. These can be
determined using techniques developed in the study of mirror
symmetry.

The simplest computations are of analytic expectation values,
which can be computed using Wick’s theorem. In particular,
the continuous flux approximation to the “supergravity index,”
which counts vacua with signs (the sign of the determinant of
the fermion mass matrix),

Ivac =
∑
vacua

(−1)F

=

∫
F

dnz
〈
δ(DW (z)) det D2W (z)

〉
,

as an integral of an “index density”

dµI(z) =
〈
δ(DW (z)) det D2W (z)

〉
counting the contribution of supersymmetric vacua which stabi-
lize the moduli at the point z.
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Computing this, simply requires computing quantities such
as 〈

D1aD1bW (z1)D̄2c̄D̄2d̄W
∗(z̄2)

〉
|z1=z2=z = Rac̄bd̄ + gbc̄gad̄ + gac̄gbd̄,〈

D̄1āD1bW (z1)D2cD̄2d̄W
∗(z̄2)

〉
|z1=z2=z = gābgcd̄,

and taking a determinant.

The result is an index density for the distribution of vacua
over moduli space,

dµI(z) ∝ det(R + ω)|z,

where ω and R are the Kähler metric and its curvature.

Heuristically, this result says that vacua are distributed roughly
one per flux sector (which we will count below) per unit volume
in configuration space (measured in units of M 2n

pl , but curvature
can modify this.

http://www.ihes.fr


Introduction

Statistics of vacua

Flux vacua

Counting vacua

Susy breaking

Summary and . . .

Home Page

Title Page

JJ II

J I

Page 36 of 47

Go Back

Full Screen

Close

Quit

Doing the Laplace transform produces the total index of all
supersymmetric flux vacua with flux up to L. Essentially, we
have now scaled out all the moduli-dependent factors, and the
remaining factor is the volume of a 2K-sphere in flux space:

Ivac(L ≤ Lmax) =
(2πL)b3

12 · b3!
[cn(ΩM ⊗ L)]

=
(2πL)b3

12πnb3!

∫
F

det(−R− ω),

where F is a fundamental region in the complex structure moduli
space.

For example, for T 6 (with symmetrized period matrix), K =
b3 = 20, and

I =
1

1008 · 12 · 20!
(2πL)20 ∼ 2× 1023 for L = 32.

The index provides a lower bound for Nvac. Nvac is also com-
putable, by doing more complicated Gaussian integrals. For ex-
ample, with one field z, one has

dµc = 1
π
|R−N | · ω; R > 2N,

= (R−2N)2+N2

π|R−3N | · ω; R < 2N.
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To complete the discussion, we need to discuss Kähler sta-
bilization. Note that the W we considered does not depend on
Kähler moduli ρ, leading to no-scale structure at tree level. This
is generically spoiled by α′ and non-perturbative corrections, say

WNP = eiNρ + . . . .

which can be arranged to appear from some brane world-volume
theory. Very generally (KKLT, Douglas), a solution of DW (z) =
0 for the complex structure moduli, with eK |W |2 << M 4

pl, will
become a stable supersymmetric AdS vacuum once these are
taken into account. For example,

0 = DρW = iNeiNρ −
3

ρ− ρ̄
Wrest.

has a solution for

2N

3
(Im ρ)eiNρ = Wrest.

The function on the l.h.s. can take any value up to 2/3e ∼ 1, and
one expects an exact nonperturbative W (ρ) to behave similarly.
Thus, any vacuum with Wrest not too large, can be stabilized.

Thus, we need to know the distribution of AdS cosmological
constants.
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This distribution can be computed in the same way as above
(we denote Λ = −3E with E = eK |W |2):

dµ(Λ) =
〈
δ(DW ) det D2W δ(E − eK |W |2)

〉
=

(
(2π)b3

12πn

)
×

[
(L−E)b3−1

(b3−1)!

∫
F det(−R− 2ω) + Λ(L−E)b3−2

(b3−2)!

∫
F ωn

]
.

In particular, the number of vacua with small Λ = ε << L goes
as Nvac × εb3/L, so the distribution does not fall off at zero. A
simple intuition suggesting this result is the following: the period
vector Πα defines a “direction in flux space,” and the constraint
of small Λ is simply projecting onto a plane orthogonal to this
vector. This produces the volume of a 2K − 2-sphere.

While the claim is correct in this example, this argument as-
sumes that the vector Πα is not correlated with the other quan-
tities which appear. This is false (for example) in the analogous
heterotic string problem, in which the distribution of AdS cos-
mological constants goes as

dµ(Λ) ∼ ΛK/2.
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The upshot in the IIb problem is that, taking (say) ε ∼ 10−3,
we obtain a lower bound 1020 on the number of flux vacua on T 6.
One mighe be even more conservative and cut out the strong
coupling regime. If we do this by insisting on Im τ > 25, we find
that Nvac/25 ∼ 1019 vacua satisfy this constraint.

Thus it seems hard to get around the conclusion that string
theory has many vacua. CY’s are known with b3 ∼ 500 and
L ∼ 104, so there is some danger that the number of vacua is
large enough to spoil predictivity. The fraction of vacua with
the Standard Model spectrum, which as we argue elsewhere is
around 10−10±5, is not small compared to these numbers. It could
still be that some of the other physical constraints (stable susy
breaking, inflation, etc.) are so difficult to meet, that the num-
ber of viable vacua is ∼ 1.

So, let us proceed to count non-supersymmetric vacua.
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5. Susy breaking

We define a non-supersymmetric vacuum as a solution of

∂V (z)

∂zi
= 0

with
V = eK

(
gij̄DiWDj̄W

∗ − 3|W |2
)

+ D2.

It is metastable if V ′′ ≥ 0 (i.e., it is tachyon free).

One can again debate the applicability of effective field theory
in this case, and the question of whether this formula applies after
supersymmetry breaking. While one can always find K for which
this holds, one can worry that explicit flux-dependent corrections
are more important. Anyways, let us continue.
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V = eK
(
gij̄DiWDj̄W

∗ − 3|W |2
)

+ D2.

One can see very generally that energy from antibranes and
gauge fluxes comes in as the D2 part of the potential. Thus, the
non-supersymmetric vacua discussed by (KKLT, Kallosh et al),
and others, work by supersymmetry breaking by D-terms. These
appear comparable in number to AdS vacua.

On the other hand, it could be, even setting D = 0, that the
flux potentials V (z) have metastable minima. They are certainly
complicated enough functions.

Indeed, there is a simple heuristic argument that says that
non-supersymmetric vacua of this type are roughly as common
as supersymmetric vacua. The conditions V ′ = 0 are again as
many equations as unknowns, and since V ∼ (DW )2 is of “higher
degree” than W , should have even more solutions.

The tachyon-free condition V ′′ ≥ 0 can be studied by finding
the distribution of these masses. Typically, massive fields are
roughly as common as tachyons, so with 2n real fields one ex-
pects a fraction 2−2n of vacua to be tachyon free, a fairly large
fraction in the present context. So, more precise arguments are
interesting.
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In (Denef and Douglas, to appear), we get the distribution
of non-supersymmetric vacua with a specified susy breaking pa-
rameter

Fi = DiW (z).

For such vacua,

∂jV = eK
(
F ∗

ī gīkDjDkW − 2FjW
∗
)

and we linearize the condition V ′ = 0. Then, we need

dµns(z, F ) =
〈
δ(F −DiW ) δ(V ′) det(DDW, V ′′)

〉
.

One could then integrate over F if desired (in phenomenology,
one generally does not).
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The simplest cases are when the number of fluxes equals the
number of unknowns, as one can then just solve for the flux. In
particular, in IIb compactification, there are 2b3 real fluxes, and
2b3 variables (zi, Fi) (counting the dilaton-axion).

Thus, one needs to solve for N(z, F ) and change variables, to
find the distribution.

Somewhat surprisingly, there is a simple universal solution in
this case. Using F theory notation (the fluxes are four-forms,
and Nα is real), we find

Nα = ηαβ
(
Fig

ij̄Dj̄Πβ(z) + c.c.
)

.

This can be seen to solve both Fi = DiW and

0 = DiDjWN .

So, these are formally de Sitter nonsupersymmetric vacua with
W = 0 and V = |DW |2.
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These are not physical de Sitter vacua – we have not stabi-
lized the Kähler modulus, and these vacua actually run off to
large volume. They can be understood in ten-dimensional terms
as vacua with anti-self-dual flux (where susy were self-dual flux),
with the overall volume fixed by hand. Because they start out
as de Sitter, the KKLT type of stabilization doesn’t work here.

Rather, we have confirmed the intuitive argument that non-
supersymmetric vacua are as common as supersymmetric, but
with a twist: none of these nonsupersymmetric vacua could be
realistic, as all have Λ ∼ M 4

susy. If (z, F ) satisfy special relations,
there can be other non-supersymmetric vacua with W 6= 0, but
these look rare.

Granting the validity of our approximations, one would con-
clude that in realistic IIb compactification, pure F term breaking
is much harder to accomplish than D term or mixed D-F break-
ing.

More generally, other flux ensembles do contain nonsuper-
symmetric F type vacua with Λ ∼ 0; for example the heterotic
string. One can then get conditions on the geometry of moduli
space which favor or disfavor such vacua (to appear).
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6. Summary and conclusions

At present, while it appears that string/M theory could contain
vacua which describe our universe, there is no good way to find
them. Furthermore, we do not know whether we should expect
to find one or many such vacua, and what type of predictions
string/M theory should make.

We discussed a statistical approach to deal with this problem,
which proceeds as follows:

• We propose a precise ensemble of effective field theories
which is supposed to model the set of string/M theory
vacua.

• We can test whether our hypothesized ensemble is accurate,
by comparing with actual string/M theory constructions.

• We can find out what fraction of vacua out of our ensemble
realize a given mechanism, or meet a specified phenomeno-
logical test.

• If we can decide how many vacua there are in an ensemble,
and apply the known tests, we can estimate the number of
Standard Model candidates in that ensemble.
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We gave various results along these lines:

• We discussed a simple ensemble of quiver gauge theories
which models the actual ensemble of Dirichlet brane world-
volume theories coming from type II compactification on
Calabi-Yau.

• We used this to make quantitative the idea that the Stan-
dard Model spectrum is “generic.”

• We discussed a simplification of the ensemble of type II
compactifications with flux, in which the total number of
vacua can be computed. Our techniques can be pushed
much farther, say to count non-supersymmetric vacua, or
expected distances in configuration space between vacua.

We can compare to (Dine, 0210255), which suggests looking
for “generic” properties of string vacua. Our proposal provides
a quantitative definition of the word “generic.”

Other accessible questions might include whether discrete
symmetries are generic in string theory, whether hierarchies are
generic, and so on.
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While this approach does not directly lead to models, it has
other advantages:

• The set of all vacua of string/M theory is likely to reveal
many patterns and simplicities, not evident after restricting
attention to a single gauge group or other feature.

• One can reason about ensembles using duality arguments.
Two string constructions, which claim to provide dual re-
alizations of the same class of models, should lead to the
same ensembles. This provides a language in which to study
N = 1 (and nonsupersymmetric) duality.

• Models which “work,” i.e. pass many phenomenological
tests, are rare, and hard to find. In this approach, one can
get evidence that models exist, without having to explicitly
find them.

• Features/mechanisms which apply to N >> 1 vacua in an
ensemble, can be considered natural in that ensemble. Thus,
we can develop an idea of “stringy naturalness.”

Such results can guide the search for models. More generally,
we can try to find out whether or not string theory is predictive,
and in what ways.
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