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Qutline

Something’s afoot in WW...

Something Fancyful:
Dreaming about new electroweal< states to
explain the discrepancies

Something Archival:
“Boring” SM measurements have BSM
exclusion POWGI”! (Don’t need LEP-like precision)

— Produce qualitatively new limits

Being responsible citizens: what else could
it be!?



Oh SUSY, where art thou!?
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Let’s use Standard Candles to look under the lamppost...
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* Very similar agreement with (N)NLO predictions is observed by CMS
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WWV cross section

® |n principle the LHC makes 8 measurements highly
sensitive to the WWV cross section

® SMWW at CMS7,ATLAS7, CMSR ATI AR

WW Weasurement:
0S dilepton * jetveto
win lepton pT, Z veto

) h_) VWV at CMS7’ ATLAS7’ c %ETmbou’fSO,pTLL)abouf

h->ww wmeasurement (0j)
08 d:lep’ron +T jezf veto
’ win lepton pT, Z veto
® VWhat’s the status’ MET> about 50, prL > about
mll < 50
delta_phi_ll < 1.8

h->ww control region (0j)
as above, except

wmll > about 100

no delta_phi_ll requirement

SO BASICALLY h->WW and

WW have sawme cuts, except for
and additional mLL and phill
requirement for h->-WW



WWV cross section

® |n principle the LHC makes 8 measurements highly
sensitive to the WW cross sectlon

® SMWW at CMS7 ATLAS7 CMS8 TLAS8

* h—> WW@ CMS7 ATLAS7 CMSS ATL

® VWhat’s the status?

Every reported* measurement is
higher than the SM



WWV cross section

® |n principle the LHC makes 8 measurements highly
sensitive to the WW cross sectlon

® SMWW at CMS7 ATLAS7 CMS8 TLAS8

* h—> WW@ CMS7 ATLAS7 CMSS ATL

® VWhat’s the status?

Every reported* measurement is
higher than the SM

NOT Fermi line high...

No neutron stars or earth’s limb either.....




WWV cross sec measurements

ATLAS 7
o(pp — W+W_) = 53.4 4+ 2.1(stat) + 4.5(sys) =+ 2.1(lum) pb

CMS 7
o(pp — WTW ™) = 52.4 4 2(stat) & 4.5(sys) & 1.2(lum) pb

NLO theory at 7 TeV:
o(pp = WTW~)=45.1+28pb ATLAS MC@NLO
o(pp — W+W_) =47+ 2pb MCFM

.40 and | O is an “anomaly™?

e ATLAS and CMS are more consistent with each
other than the SM...

* NOT just a “rate” anomaly
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Updated LHC-7

Measurement of WTW ~ production in pp collisions at 4/s = 7 TeV with the ATLAS
detector and limits on anomalous WW Z and W W~ couplings

The ATLAS Collaboratlon |
N (Dated October 11, 2012)

This paper presents a measurement of the WV - productlon cross section in pp collisions at
Vs = 7 TeV. The leptonic decay channels are analyzed using data corresponding to an integrated
luminosity of 4.6 fb~* collected with the ATLAS detector at the Large Hadron Collider. The W W~
production cross section o(pp — WTW ™~ 4+ X) is measured to be 51.9 4 2.0 (stat) & 3.9 (syst) &
2.0 (lumi) pb, compatible with the Standard Model prediction of 44.7 T3'5 pb. A measurement of
the normalized fiducial cross section as a function of the leading lepton transverse momentum is
also presented. The reconstructed transverse momentum distribution of the leading lepton is used
to extract limits on anomalous WW Z and W W+ couplings.

Significance about the same as before

Additional pt(ll) cut
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Updated LHC-7

Measurement of WTW ~ production in pp collisions at 4/s = 7 TeV with the ATLAS

detector and limits on anomalous WW Z and W W~ couplings

The ATLAS Collaboratlon ‘
(Dated October 11, 2012) 77

2.0 (luml) pb, compatible with the Standard Model prediction of 44.7 5 pb. A measurement of
the normalized fiducial cross section as a function of the leading lepton transverse momentum is
also presented. The reconstructed transverse momentum distribution of the leading lepton is used
to extract limits on anomalous WW Z and W W+ couplings.

Significance about the same as before

Additional pt(ll) cut
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pdated LHC-7

Measurement of WTW ~ production in pp collisions at 4/s = 7 TeV with the ATLAS
detector and limits on anomalous WW Z and W W~ couplings

The ATLAS Collaboratlon
(Dated October 11, 2012) 77

2.0 (luml) pb, compatible with the Standard Model prediction of 44.7 5 pb. A measurement of
the normalized fiducial cross section as a function of the leading lepton transverse momentum is
also presented. The reconstructed transverse momentum distribution of the leading lepton is used
to extract limits on anomalous WW Z and W W+ couplings.

Three different SM cross sections @ 7 TeV
have been given: 45.1,47,44.7

Experiments need consensus outside of Higgs
Oon Cross sections...



CMS 8 Tev 3.5/fb

WW—=2¢2v at 8 TeV: systematics & results

&

eAlready 4% statistical precision
eAbout 1.80 higher than the NLO prediction

It grows at 8 TeV even faster!

o(8)

o (7)

th

= 1.21

o(8)
o(7)

exp

= 1.33

@ost 30 when combined with LHC?7
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/5 GeV

Let’s get rid of that renormalization
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/5 GeV
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Upward fluctuations in all measurements or a trend!?

Two roads diverged in a yellow wood,
and sorry | could not travel both...

SM calculation

wrons

Will come back to the less traveled one
and that of course may make all the difference...
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Let’s be hopeful.

Possible BSM Explanations
for WWV Excess



Ingredients for a BSM explanation

When you’re measuring the WWV cross section...

(/ ”'-+

q 9 W

% M
5 ~3%

9 W

W

!/
['GC vertex

~10% W~

..youre really counting the number of dilepton +

MET events in fiducial region with jet veto

Ndata — kag
Cww X Aww X BR x L

OWW =



Ingredients for a BSM explanation
® Need to produce dileptons + MET and NOTHING ELSE (jet veto)

® These new events do hot have to contain real Ws (but that could
help)

® The experimentalists do use WWV to look for certain kinds of new

h . S AR BE RS BEEs e ne s B e a s B Ra s s
P YSICS"' 3 JLat=461" Vs=7Tev ]
@ -4 Data —:
2 CIsmww «
o coee Axpm0.1 =
) «

Jop=h, =0.15

TGC vertex

ttttttt

.........
]

20 40 60 80 100 120 140 160 180 200

Leading lepton p_ [GeV]
AN '

.. but this modifies the TAILS of the distributions.We need to modify
the BULK.

We need a few pb of WW-like events
from BSM!
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Ingredients for a BSM explanation
It could be something decaying to WW + MET

— Charginos or something like it.

It could be something decaying directly to dileptons + MET

— Sleptons or something like it
Isn’t SUSY dead?
e NOPE.

25



Ingredients for a BSM explanation
It could be something decaying to WW + MET

— Charginos or something like it.

It could be something decaying directly to dileptons + MET

— Sleptons or something like it

Isn’t SUSY dead!?
e NORPE.

~300 GeV colored States (Tevatron limits)

~100 GeV EW States (LEP limits)
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Ingredients for a BSM explanation
® |t could be something decaying to WW + MET

— Charginos or something like it.

® |t could be something decaying directly to dileptons + MET

— Sleptons or something like it

® |sn’t SUSY dead!?

e NOPE. RPC SUSY post-LHC:

~| TeV colored States (LHC runl limits)

Hadron Colliders ~100 GeV EW States (LEP limits)
relatively insensitive

to EW NP.

EW NP game is just beginning!
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Example Topology for
WW + MET:

Chargino Pair Production

ANVANYANFA
vvvvvv



Charginos

® (Consider Gravity-Mediated scenario right above the LEP bound
X7,X9  ~ 100 GeV

X1 ~ GeV

® Get plenty of WW, but also WZ or Wh production (wino or
higgsinos)

w-
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LHC has produced some EVV constraints!

WZ final state ruled
out far above LEP limit.

m., [GeV]
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Wh also ruled out by ATLAS 7 TeV Wh search for up

to ~160 GeV Higgsinos
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LHC has produced some EWV constraints!

WZ final state ruled
out far above LEP limit.

CMS Preliminary \s=7TeV,L =4.98fb"
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Wh also ruled out by ATLAS 7 TeV Wh search for up

We set this limit in
1206.6888, not ATLAS.

to ~160 GeV Higgsinos
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Can you have charginos without WZ/Wh!

® Consider Chargino-NLSP in gauge-mediated SUSY breaking.

® |ow tanf, large Wino-Higgsino mixing

W
q
i 7 S
4"
"t
W N
0 09 X1 G
~ X1 NAAN
q/ /“ VvV \V
W %%

m._+ ~ 110 GeV
X1

Mo A2 113 GeV

mxg ~ 130 GeV onro ~ 4.3 pb

32



#/10 GeVv

400
300

200

[/20 GeVv

100!

300}

250
200
150
100

50

T SM prediction

PP - X1'Xx1~

pr(Ll) [GeV]
400
300
>
Q
O
é 200
100
T |
S s e S
Pl 20 40 60 80
100 150 200 250 300 350 LI E.miss cev
mp (LL E™s8) [GeV] Pr ( %) [GeV]
% Uncertainty D h - WwW . All EWinos — All EWinos x 5 we= (h > WW) x 5
ce= PP - x1°X% am= PP > X17X%, «== PP > X°1x% pp - x%x° c== PP - x°1x%

80

ATLAS7

#/10 GeVv

100 120 140 160 20 40 60 80 100 120

x* cut in half compared to SM

100

33



140
120}
100 -

80/

1/5
1/5

60 |

40 -

20

70 80

120
100 -

80

150

100

1/5
/5

50

60 80 100 120 50 100 150 200
Pr (r112) mjpy

SM p-value 0.001 SM+charginos 0.3
SM+h 0.1 SM+h+charginos 0.75

34



ATLAS 20/tb Chargino Search [Dilepton]

-
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GMSB model point The CL; value is also calculated for the GMSB model point where the chargino
is the NLSP [m(y7) = 110 GeV, m()'z(l’) = 113 GeV and m()?g_) = 130 GeV] [40]. The observed CL; value
is found to be 0.52 using the SR-WWa region, which the most sensitive signal region for this point. The
expected and observed 95% CL limit on o/ogysy are 2.6 and 2.9, respectively.
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ATLAS 20/tb Chargino Search [Dilepton]
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GMSB model point The CL; value is also calculated for the GMSB model point where the chargino
is the NLSP [m(¥;) = 110 GeV, m(¢}) = 113 GeV and m(¥3) = 130 GeV] [40]. The observed CL; value
is found to be 0.52 using the SR-WWa region, which the most sensitive signal region for this point. The
expected and observed 95% CL limit on o/ogysy are 2.6 and 2.9, respectively.
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ATLAS 20/tb Chargino Search [Trilepton]
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(b) Decay via gauge bosons



CMS 20/fb Chargino Search [Trilepton]

does not look
sensitive to
our model.
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Other consequences of this Scenario

® Smoking Gun: SS Dileptons, some OS dileptons

® Can discover/exclude with 20/fb!

® Amusingly, this is the only scenario in which charginos can increase
h =YY, by about 5%
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Other consequences of this Scenario

® h — WW measurement:

® control region (m; > 100 GeV)* used to scale WW MC
prediction in signal region (m; < 50 GeV)*

® Our charginos look so much like WWV that they pollute signal
and control region in proportion to WW

= charginos do NOT significantly affect h = WWV sensitivity

*ATLAS 7 TeV
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Another possibility: squeezed stops.

Recently proposed by Rolbiecki, Sakurai (1303.5696)

£ ~ 200 GeV

X7, X9  ~ 190 GeV
0

X1 ~ |05 GeV

Light stops decay via t1 — b )ZIL where b is soft (undetected)

Effectively allows relatively heavy charginos to be produced with the
(relatively light) stop pair production cross section O(10 pb)

Avoids SS dilepton signal and hides a light stop!
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Another possibility: squeezed stops.

There are kinematic
discriminants
that may enable 3 sigma
discovery with full LHCS8 data.
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Example Topology for
I + MET:

Slepton Pair Production




Sleptons

€EL.R , UL .R ~110GeV

X3 ~ 60 GeV

® Lower production cross section, but 100% Br to || + MET

® Only get SFOS dileptons — safe from SS dilepton, trilepton bounds!

® Naively has more MET, but can fit just as well as charginos!
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Sleptons + Binos can do all kinds of nifty things for you...
but let’s take a step back first...

and talk about something (possibly) more archival:

Setting new bounds on EW
physics with
Standard Model
Standard Candles



Standard Candles have Exclusion Power!

We learned from examining the Chargino and Slepton scenarios that the
WW measurement can be the harbinger of new physics!

We should exploit that sensitivity not just for discoveries but also for
setting bounds.

These bounds will be entirely complementary to LHC bounds (heavy
states with lots of MET) and LEP bounds (light states below 100 GeV)
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Standard Candles have Exclusion Power!

® We learned from examining the Chargino and Slepton scenarios that the
WW measurement can be the harbinger of new physics!

® We should exploit that sensitivity not just for discoveries but also for
setting bounds.

® These bounds will be entirely complementary to LHC bounds (heavy
states with lots of MET) and LEP bounds (light states below 100 GeV)

— Exclude New Physics along
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Slepton Exclusions from WW
Measurement

® TJreat the WW Measurement like a slepton search.
® Obtain 95% CL limits on slepton production

® Do we trust the overall WWY cross section calculation? We'd
like to, but we don’t know for sure...

® Obtain limits with shape+normalization (powerful) or
shape-only (robust!) of kinematic distributions
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RH Slepton Exclusions from WW
Measurement

 LEP
- CMS 9/fb LHCS slepton search

) | ATLAS/

| CMS7

| CMS8

| combined

shape only
| e shape + normalization

AAAAAAAAAAAAAAAAAAAAAAA
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RH Slepton Exclusions from WW

Measurement
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LEP
I - CMS 9/fb LHCS slepton search
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LH Slepton Exclusions from WW
Measurement
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LH Slepton Exclusions from WW
Measurement

' LEP
| CMS 9/tb LHCS slepton search

| ATLAS7
CMS7

| CMS8

| combined

shape only

| shape + normalization
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LH + RH Slepton Exclusions from WW

Measurement
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LH + RH Slepton Exclusions from WW
Measurement
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LH + RH Slepton Exclusions from WW
Measurement
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Back to hypothesizing about
New Physics...
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Are there any dangerous processes!
No!

However,WWV excess should be

concentrated in Same-Flavor
channels.

— That’s our smoking gun!

We sure would love to see more flavor-resolved
kinematic distributions for WWV.

Also, 20/fb?
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Can light sleptons do anything else for you?
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DM and light sleptons
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Can light sleptons do anything else for you?

Muon (g-2) !




g-2 and light sleptons
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DM, WWY, g-2 all work simultaneously!
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Could work with just LH sleptons too
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Can light sleptons do anything else for you?

A
h-yy!? R
\

- - - /"\4,3’
Some enhancement (15%) possible

without diluting DM relic density.

Requires some slepton soft mass non-universality
— FLV bounds OK!



What about h = WW!?

BSM pollution in the control region (m; > 100 GeV)* leads to
an overestimation of WW background.

For charginos, this overestimation was ‘just right’ to account for
their pollution of the signal region (m; < 50GeV)*.

The slightly harder slepton contribution is more skewed
towards the control region.

This leads to an OVERestimation of BG in the signal region

— UNDERestimates higgs signal strength.

*ATLAS 7 TeV
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Let’s take a deep breath...

What are the likely SM
explanations for WW

excess’



SM/Experimental Explanations for WW

|. Statistical Fluctuation
* Naive combination of significances gives 2.8 O deviation (correlations?). More with shape...

2. Inaccurate Background Estimation
* dominant BGs are top and W + jet, very data-driven and consistent across experiments

* DY is large in ATLAS and small in CMS, both are high and consistent with each other
* No BG ‘jumps out’ as being able to explain the difference in predicted & observed shape

3. Inaccurate prediction for WW production cross section

* higher-order EWV effects are too small, and in wrong direction
(Bierweiler, Kasprzik, Kuhn, Uccirati 1208.3147)

* higgs interferes destructively as well
* QCD? NNLO would have to be ~20% effect..... NNLL+approx NNLO is ~ 3% (1307.3249
Dawson, Lewis, Zeng)

4. Inaccurate Signal Acceptance Estimation =13 g

* Biggest uncertainty from jet veto, but effect does not
seem strong enough to explain 20% deviation
Campbell, Ells,Williams 1105.0020

* ATLAS and CMS use different MC approaches and

different jet clusterings/thresholds. They agree! o ESTENE :
* QCD NLO contributions would have to be softer than expected 105, '510‘ - ‘715‘ - ‘,(l,o' - ;Lg T
to increase WW rate after jet veto. Weird! pr - [GeV]

*WWij,WWijj contributions might need to be treated more carefully.
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SM/Experimental Explanations for WW

|. Statistical Fluctuation
* Naive combination of significances gives 2.8 O deviation (correlations?). More with shape...

2. Inaccurate Background Estimation

* dominant BGs are top and W + jet, very data-driven and consistent across experiments
* DY is large in ATLAS and small in CMS, both are high and consistent with each other
* No BG ‘jumps out’ as being able to explain the difference in predicted & observed shape

3. Inaccurate prediction for WW production cross section

* higher-order EWV effects are too small, and in wrong direction
(Bierweiler, Kasprzik, Kuhn, Uccirati 1208.3147)

* higgs interferes destructively as well
* QCD? NNLO would have to be ~20% effect..... NNLL+approx NNLO is ~ 3%
(1307.3249 Dawson, Lewis, Zeng)

4. Inaccurate Signal Acceptd

* Biggest uncertainty from jet veto§
seem strong enough to explain 20°"
Campbell, Ells, Williams | 105.0020 i

# ATLAS and CMS use different M§

o(pp ~ ZZ) |
agreewlth_SM’

different jet clusterings/thres «' e W S s AP IREMI | 1

* QCD NLO contributions would have to be softer than expected 1~°*25‘ - '510‘ - ‘.,15‘ - ‘,},(; - ‘1‘1:5‘ = 1;0
to increase WWV rate after jet veto. Weird! pr - [GeV]

* WWj, WWijj contributions might need to be treated more carefully.
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SM/Experimental Explanations for WW

Statistical Fluctuation
* Naive combination of significances gives 2.8 O deviation (correlations?). More with shape...

Inaccurate Background Estimation
* dominant BGs are top and W + jet, very data-driven and consistent across experiments

* DY is large in ATLAS and small in CMS, both are high and consistent with each other
* No BG ‘jumps out’ as being able to explain the difference in predicted & observed shape

Inaccurate prediction for WWV production cross section

* higher-order EWV effects are too small, and in wrong direction
(Bierweiler, Kasprzik, Kuhn, Uccirati 1208.3147)

* higgs interferes destructively as well
* QCD? NNLO would have to be ~20% effect..... NNLL+approx NNLO is ~ 3% (1307.3249
Dawson, Lewis, Zeng)

Inaccurate Signal Acceptd Requires more work to |}
compute

* Biggest uncertainty from jet veto}
| NNLO+NA()LL
# ATLAS and CMS use different M§

seem strong enough to explain 20%4
different jet clusterings/thresk CI | bOSOn CI"OSS SeCtlonS 5

* QCD NLO contributions would hatestess
to increase WWV rate after jet veto. Weird! pr - [GeV]
*WWij,WWijj contributions might need to be treated more carefully.
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Conclusions

LHC SM Standard Candles can set EVV bounds without
requiring LEP-precision.

WWV sets bounds on EWV physics that is invisible to other
searches! (Sleptons, Higgsinos, ...)

WWV discrepancy is consistent enough to be interesting to
theorists.

New Physics can fit WW measurements better than SM:

® Chargino explanation (real Ws) — tested soon with SS
dileptons!

® Slepton explanation (notWs) — Can explain more
phenomena, harder to see.
— Want flavor-resolved WW measurement!

SM calculations should be improved to NNLO+N#(n)LL. Partial
progress is starting to be made.
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—Tesleplon
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