Buried Higgs

Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Rutgers University, December 8, 2009

Preview

•Found a SUSY model, where:

Weird higgs decays automatic
Higgs could be below "LEP bound"
No little hierarchy
Lots of new particles at LHC, but higgs buried in QCD background
Could discover "fake higgs"

- •The little hierarchy of the MSSM and pGB higgses
- •The simplest supersymmetric pGB higgs: 5 Goldstones $h+\eta$
- •h-decays and η decays: higgs could be < 114 GeV
- •A "flipped" matter content: charming higgs

Little hierarchy in the MSSM

•SUSY solves hierarchy problem, but

Log divergences remain
Need a large Δλ to push higgs above 114 GeV

Generic Higgs potential

$$V(H_u, H_d) = (m_{H_u}^2 + \mu^2)|H_u|^2 + (m_{H_d}^2 + \mu^2)|H_d|^2$$
$$-B\mu(H_uH_d + \text{h.c.}) + \frac{g^2}{2}(H_u^{\dagger}\vec{\tau}H_u + H_d^{\dagger}\vec{\tau}H_d)^2 + \frac{g'^2}{2}(H_u^{\dagger}H_u - H_d^{\dagger}H_d)^2$$

•For minimum we need

$$M_Z^2 = 2\left(\frac{m_{H_d}^2 - m_{H_u}^2 \tan^2\beta}{\tan^2\beta - 1} - \mu^2\right)$$

 $M_Z^2 \sim -2m_{H_{
m c}}^2$

$$m_{H_u}^2 = m_0^2 - \frac{3\lambda_t^2 m_{\tilde{t}}^2}{4\pi^2} \log \frac{\Lambda_{UV}^2}{m_{\tilde{t}}^2}$$

•But the expression for the Higgs mass is:

$$m_{Higgs}^2 = M_Z^2 + \frac{3m_t^2\lambda_t^2}{4\pi^2}\log\frac{m_{\tilde{t}}}{m_t}$$

•To push Higgs mass above 114 GeV: need $m_{stop}{\gtrsim}1$ TeV, but then need 1% or less tuning for M_Z

 Main idea: SUSY Higgs as pseudo-Goldstone boson (=super-little Higgs, doubly protected Higgs)
 (Birkedal, Chacko, Gaillard; Chankowski, Falkowski, Pokorski, Wagner)

• A global symmetry broken at f~500 GeV produces Goldstones, softens Higgs potential further

In these models higgs potential completely finite

$$m_{H_u}^2 = -\frac{3\lambda_t^2 m_{\tilde{t}}^2}{4\pi^2} \log \frac{f^2}{m_{\tilde{t}}^2}$$

• Fine tuning reduced

• BUT: global symmetry (presence of top partners) also reduced shift in quartic

Usually VERY difficult to achieve m_{Higgs}>114 GeV

• Models quite complicated Pokorski; Roy, Schmaltz; C.C., Marandella, Shirman, Strumia)

• Main new idea here: in simplest model (susy version of Schmaltz's simplest little Higgs) ad'l Goldstone η automatic

• $h \rightarrow \eta \eta$ decay can avoid LEP bounds, don't need to push quartic, can get simple natural model with interesting phenomenology

Higgs sector and Goldstones

•Higgses:

(Same as Schmaltz simplest LH)

-Assume no $\Phi \mathcal{H}$ terms in the superpotential: SU(3) $_{\Phi}$ xSU(3) $_{\mathcal{H}}$ global symmetry

•One sector will get a VEV F~10 TeV

$$\langle \Phi_u \rangle^T = \langle \Phi_d \rangle = (0, 0, F/\sqrt{2})$$

•Embedding of hypercharge: $Y=T_8/\sqrt{3}+X$, where $T_8=1/(2\sqrt{3})$ diag(1,1,-2)

•Below F theory effectively MSSM with SU(3)_H global symmetry

•SU(3) breaking from $\langle \mathcal{H} \rangle \sim$ f~400 GeV

•The parameterization of the Higgses:

$$\mathcal{H}_{u} = e^{i\Pi/f} f \sin\beta \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \quad \mathcal{H}_{d} = e^{-i\Pi/f} f \cos\beta \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

•Where Π is the pion matrix containing the 5 Goldstones:

•The Higgs fields H can be thought of as angles between the triplet VEVs $\langle \Phi \rangle$ and $\langle \mathcal{H} \rangle$. Together SU(3)xU(1) \rightarrow U(1)_{QED}

•The result is:

$$\mathcal{H}_{u,d} = f_{u,d} \begin{pmatrix} \sin H/f \\ e^{\pm i\frac{\eta}{f}} \cos |H|/f \end{pmatrix}$$

•In terms of the uneaten fields \tilde{h} and $\tilde{\eta}$ (before shifting VEVs)

$$\mathcal{H}_{u} = f \sin \beta \begin{pmatrix} 0 \\ \sin(\tilde{h}/\sqrt{2}f) \\ e^{i\tilde{\eta}/\sqrt{2}f}\cos(\tilde{h}/\sqrt{2}f) \end{pmatrix} \qquad \mathcal{H}_{d}^{T} = f \cos \beta \begin{pmatrix} 0 \\ \sin(\tilde{h}/\sqrt{2}f) \\ e^{-i\tilde{\eta}/\sqrt{2}f}\cos(\tilde{h}/\sqrt{2}f) \end{pmatrix}$$

•After Higgs gets VEV
$$\langle \tilde{h} \rangle = \sqrt{2}\tilde{v}$$
 with $v_{EW} = f \sin(\tilde{v}/v_{EW})$
where v_{EW} =174 GeV we shift fields as usual

$$\tilde{h} = \sqrt{2}\tilde{v} + h, \ \tilde{\eta} = \eta/\cos(\tilde{v}/f)$$

<u>h→ηη vs. h→bb</u>

•In order to make $h \rightarrow \eta \eta$ the leading mode need to win over λ_b : not that hard, v/f suppression OK.

•The Goldstone kinetic term contains derivative interaction $\mathcal{L}_{pGB} \approx \frac{1}{2} (\partial_{\mu} \tilde{h})^2 + \frac{1}{2} \cos^2(\tilde{h}/\sqrt{2}f) (\partial_{\mu} \tilde{\eta})^2$

•After shifting VEV get cubic interaction:

$$\mathcal{L}_{h\eta^2} \approx -h(\partial_\mu \eta)^2 \frac{\tan(\tilde{v}/f)}{\sqrt{2}f}$$

(Ideas suggested by Dermisek, Gunion; Chang, Fox, Weiner;...)

•The h $\rightarrow \eta\eta$ rate is:

$$\Gamma_{h \to \eta \eta} \approx \frac{1}{64\pi} \left(1 - \frac{v_{EW}^2}{f^2} \right)^{-1} \frac{m_h^3 v_{EW}^2}{f^4}$$

•Compare to the usual fermionic width with extra $(1-v^2/f^2)$ suppression:

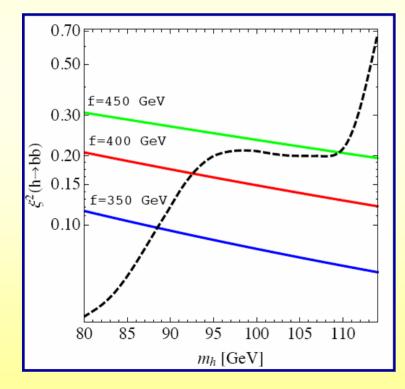
$$\Gamma_{h\to f\overline{f}} = \left(1 - \frac{v_{EW}^2}{f^2}\right)\Gamma_{h\to f\overline{f}}^{SM} = c_{QCD}\frac{N_c}{16\pi}\left(1 - \frac{v_{EW}^2}{f^2}\right)\frac{m_h m_f^2}{v_{EW}^2}$$

•Relevant quantity for suppression of the h \rightarrow bb compared to SM is ξ^2 :

$$\xi_{h \to b\overline{b}}^2 \equiv \frac{\sigma(e^+e^- \to Zh)}{\sigma_{SM}(e^+e^- \to Zh)} BR(h \to b\overline{b}) = \frac{\Gamma_{h \to b\overline{b}}^{SM}}{\Gamma_{h \to \eta\eta} + \left(1 - \frac{v_{EW}^2}{f^2}\right) \sum_f \Gamma_{h \to f\overline{f}}^{SM}} \left(1 - \frac{v_{EW}^2}{f^2}\right)^2$$

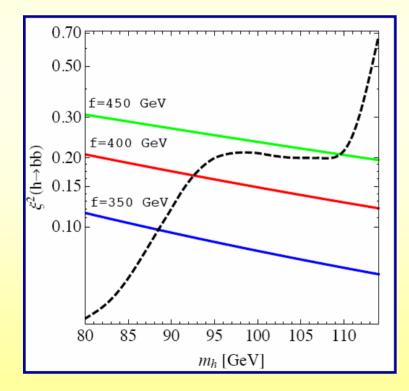
•Relevant quantity for suppression of the h \rightarrow bb compared to SM is ξ^2 :

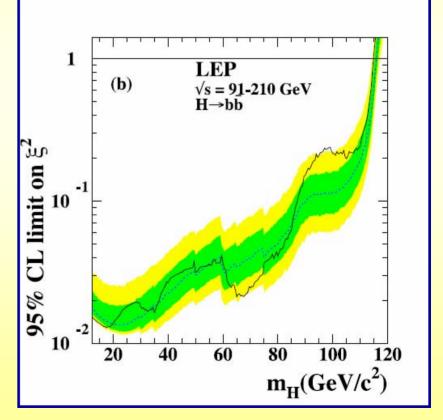
$$\xi_{h \to b\overline{b}}^2 \equiv \frac{\sigma(e^+e^- \to Zh)}{\sigma_{SM}(e^+e^- \to Zh)} BR(h \to b\overline{b}) = \frac{\Gamma_{h \to b\overline{b}}^{SM}}{\Gamma_{h \to \eta\eta} + \left(1 - \frac{v_{EW}^2}{f^2}\right) \sum_f \Gamma_{h \to f\overline{f}}^{SM}} \left(1 - \frac{v_{EW}^2}{f^2}\right)^2$$



•Relevant quantity for suppression of the h \rightarrow bb compared to SM is ξ^2 :

$$\xi_{h \to b\overline{b}}^2 \equiv \frac{\sigma(e^+e^- \to Zh)}{\sigma_{SM}(e^+e^- \to Zh)} BR(h \to b\overline{b}) = \frac{\Gamma_{h \to b\overline{b}}^{SM}}{\Gamma_{h \to \eta\eta} + \left(1 - \frac{v_{EW}^2}{f^2}\right) \sum_f \Gamma_{h \to f\overline{f}}^{SM}} \left(1 - \frac{v_{EW}^2}{f^2}\right)^2$$

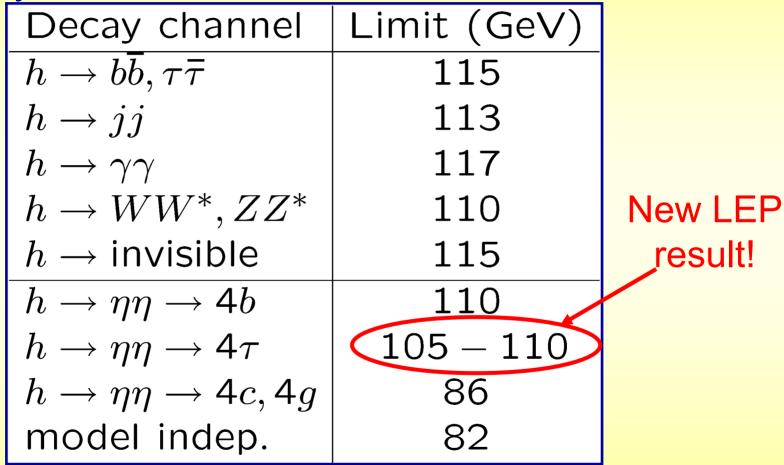




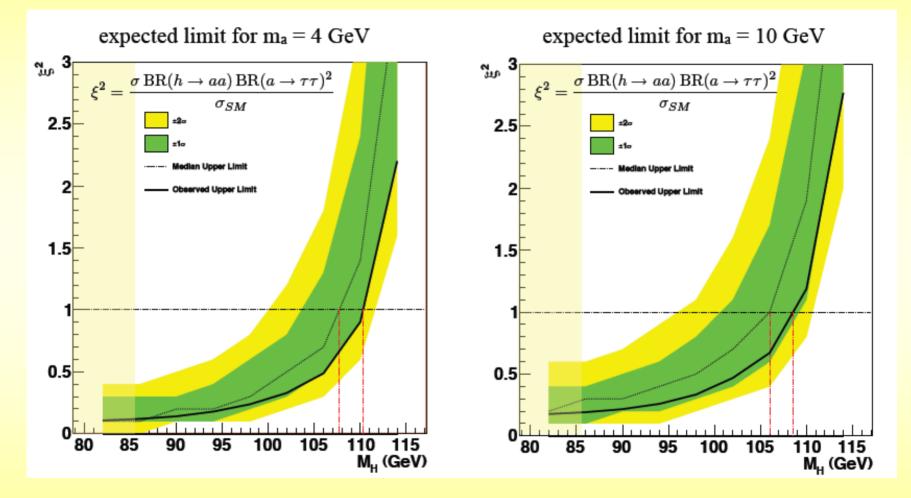
The LEP bound

Decay channel	Limit (GeV)
$h ightarrow b \overline{b}, au \overline{ au}$	115
h ightarrow jj	113
$h ightarrow \gamma \gamma$	117
$h \rightarrow WW^*, ZZ^*$	110
h ightarrow invisible	115
$h o \eta \eta o 4b$	110
$h ightarrow \eta \eta ightarrow 4 au, 4c, 4g$	86
model indep.	82

Decay channel	Limit (GeV)
$h ightarrow b \overline{b}, au \overline{ au}$	115
h ightarrow jj	113
$h ightarrow \gamma \gamma$	117
$h \rightarrow WW^*, ZZ^*$	110
h ightarrow invisible	115
$h o \eta \eta o 4b$	110
$h ightarrow \eta \eta ightarrow 4 au, 4c, 4g$	86
model indep.	82



ALEPH bound on $h \rightarrow 4\tau$ of order 105-110 GeV!



Talk by K. Cranmer on 11/3/09 (Cranmer, Yavin, Beacham, Spagnolo, ALEPH collab.)

Decay channel	Limit (GeV)
$h ightarrow b \overline{b}, au \overline{ au}$	115
$h \rightarrow jj$	113
$h ightarrow \gamma \gamma$	117
$h \rightarrow WW^*, ZZ^*$	110
h ightarrow invisible	115
$h ightarrow \eta \eta ightarrow 4b$	110
$h ightarrow \eta \eta ightarrow 4 au$	105 - 110
$h ightarrow \eta \eta ightarrow 4c, 4g$	86
model indep.	82

•To find out which case need fermion embeddings...

The matter content and Yukawas

	$SU(3)_C$	$SU(3)_W$	$U(1)_X$
$Q = (t^Q, b^Q, \hat{b}^Q)$	3	3	0
$V = (b^V, t^V, \hat{t}^V)$	3	$\overline{3}$	1/3
$V_c = (b_c^V, t_c^V, \hat{t}_c^V)$	$\overline{3}$	3	-1/3
t_c	3	1	-2/3
$b_{c}^{1,2}$	3	1	1/3
$L_{1,2} = (\tau_{1,2}^L, \nu_{1,2}^L, \hat{\nu}_{1,2}^L)$	1	3	-1/3
$E_c = (\nu_c^E, \tau_c^E, \hat{\tau}_c^E)$	1	3	2/3
$ u_c^{1,2,3}$	1	1	0

The matter content and Yukawas

	$SU(3)_C$	$SU(3)_W$	$U(1)_X$
$Q = (t^Q, b^Q, \hat{b}^Q)$	3	3	0
$V = (b^V, t^V, \hat{t}^V)$	3	$\overline{3}$	1/3
$V_c = (b_c^V, t_c^V, \hat{t}_c^V)$	$\overline{3}$	3	-1/3
t_c	3	1	-2/3
$b_{c}^{1,2}$	3	1	1/3
$L_{1,2} = (\tau_{1,2}^L, \nu_{1,2}^L, \hat{\nu}_{1,2}^L)$	1	3	-1/3
$E_c = (\nu_c^E, \tau_c^E, \hat{\tau}_c^E)$	1	3	2/3
$ u_{c}^{1,2,3}$	1	1	0

•Why?????

The matter content and Yukawas

	$SU(3)_C$	$SU(3)_W$	$U(1)_X$
$Q = (t^Q, b^Q, \hat{b}^Q)$	3	3	0
$V = (b^V, t^V, \hat{t}^V)$	3	$\overline{3}$	1/3
$V_c = (b_c^V, t_c^V, \hat{t}_c^V)$	$\overline{3}$	3	-1/3
t_c	3	1	-2/3
$b_{c}^{1,2}$	$\overline{3}$	1	1/3
$L_{1,2} = (\tau_{1,2}^L, \nu_{1,2}^L, \hat{\nu}_{1,2}^L)$	1	3	-1/3
$E_c = (\nu_c^E, \tau_c^E, \hat{\tau}_c^E)$	1	$\overline{3}$	2/3
$ u_{c}^{1,2,3}$	1	1	0
	1	1	'

Cancels anomalies
Contains MSSM chiral generation
Obtain from SU(6) matter content

•Quark Yukawas (including a μ -term for VV_c):

$$y_1 t_c V \Phi_u + y_2 \mathcal{H}_u V_c Q + \mu_V V V_c + y_{b1} \Phi_d Q b_c^1 + y_{b2} \mathcal{H}_d Q b_c^2$$

•Not the most general superpotential, could also add $\tilde{z} + W^2 (z + \tilde{z} + W^2) + \tilde{z} + W^2 (z + \tilde{z} + \tilde{z})$

 $\tilde{y}_1 t_c V \mathcal{H}_u + \tilde{y}_2 \Phi_u V_c Q + \tilde{y}_{b1} \mathcal{H}_d Q b_c^1 + \tilde{y}_{b2} \Phi_d Q b_c^2$

 Original superpotential collective
 In top sector need y₁,y₂ and μ_V to break SU(3)_H m_t~ y₁y₂ μ_V, corrections OK if μ_V < TeV.

•In bottom sector need y_{b1} and y_{b2} to break SU(3)_H •Since y_{b1} F is one of bottom masses, need $y_{b1} \leq 0.1$ to avoid large logs in higgs mass

Higgs potential, fine tuning

- Both f/F and v/f can be radiatively generated from Yukawa interactions
- •f generated due to potential for triplet \mathcal{H}_{u} :

$$m_{\mathcal{H}_u}^2 \approx -\frac{3y_2^2 \sin^2 \beta}{2\pi^2} M_{\text{soft}}^2 \log(\Lambda/M_T)$$

$$\lambda_{\mathcal{H}_u} \approx \frac{3y_2^4 \sin^4 \beta}{8\pi^2} \log((M_{\text{soft}}^2 + M_T^2)/M_T^2)$$

•Here m_T top partner mass

$$M_T = \sqrt{\mu_V^2 + \sin^2 \beta y_2^2 f^2}$$

•Generates "radion" mass

$$m_r^2 \sim 4\lambda_{\mathcal{H}_u} f^2$$

•Fine tuning from f/F hierarchy:

$$FT_3 = \frac{m_r^2/2}{|m_{\mathcal{H}_u}^2|} \sim \frac{y_2^2 f^2}{M_{soft}^2} \frac{\log \frac{M_{soft}^2 + M_T^2}{M_T^2}}{\log \frac{\Lambda^2}{M_T^2}}$$

•Similar to MSSM expression, except: -m_r can be heavier than Higgs -y₂ can be bigger than y_t

•Typical fine tuning 5-10%

Usual MSSM fine tuning completely absent

$$FT_2 = \frac{m_h^2/2}{|\Delta m^2|}$$

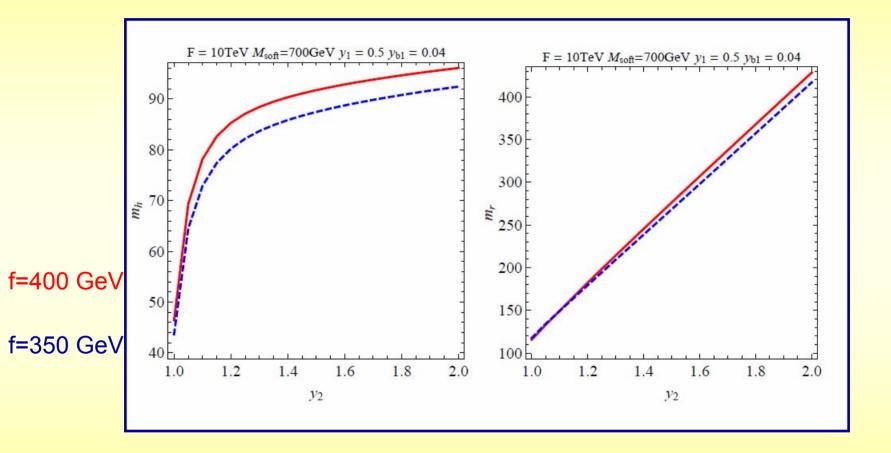
•Higgs mass parameter shift finite

$$\Delta m^2 \approx -\frac{3m_t^2}{8\pi^2 v_{EW}^2} \left[M_T^2 \log \frac{M_{\rm soft}^2 + M_T^2}{M_T^2} + M_{\rm soft}^2 \log \frac{M_{\rm soft}^2 + M_T^2}{M_{\rm soft}^2} \right]$$

•Physical higgs mass:

$$\begin{split} m_h^2 &= \left(1 - \frac{v_{EW}^2}{f^2}\right) \left\{ m_Z^2 \cos^2(2\beta) + \frac{3m_t^4}{4\pi^2 v_{EW}^2} \left[\log\left(\frac{M_{\text{soft}}^2 M_T^2}{m_t^2 (M_{\text{soft}}^2 + M_T^2)}\right) \right. \\ &\left. - 2\frac{M_{\text{soft}}^2}{M_T^2} \log\left(\frac{M_{\text{soft}}^2 + M_T^2}{M_{\text{soft}}^2}\right) \right] \right\} \end{split}$$

•A slice of the higgs and radial masses



•From 1-loop Coleman Weinberg, including higgs-radial mixing

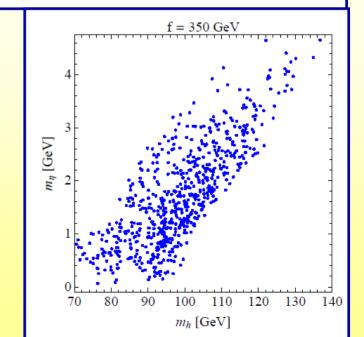
<u>n mass</u>

•For collective Yukawas, f/F \rightarrow 0 η exactly massless – can be removed by phase redefinitions

•To leading order in f/F:

$$m_{\eta}^2 \approx \frac{3v_{EW}^2 y_2^2}{8\pi^2} \frac{M_{\rm soft}^2}{F^2} \left[\log\left(\frac{y_{b1}^2 F^2}{2(M_T^2 + M_{\rm soft}^2)}\right) - \frac{M_T^2}{M_{\rm soft}^2} \log\left(\frac{M_T^2 + M_{\rm soft}^2}{M_T^2}\right) + 1 \right]$$

•Generates small m_{η} in the few GeV range:



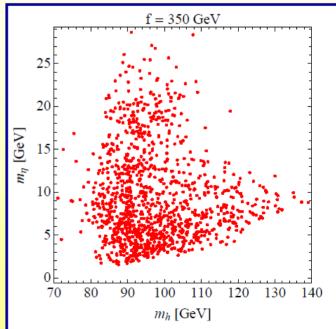
•To get bigger m_{η} can turn on small non-collective coupling

$$\tilde{y}_{b1}\mathcal{H}_dQb_c^1 + \tilde{y}_{b2}\Phi_dQb_c^2$$

$$m_{\eta}^2 = \cos\beta \frac{N_c}{4\pi} \frac{F}{f} (y_{b1}\tilde{y}_{b1} + y_{b2}\tilde{y}_{b2}) M_{soft}^2 \log\frac{\Lambda}{F}$$

•A scatter plot for the achievable masses for a particular point:

 $f = 350, F = \sqrt{2} \cdot 10^4, \Lambda = 10^7 \text{ GeV}$ for both plots, and scanned the remaining parameters in the regions $0.02 < y_1 < 0.3, 1 < y_2 < 3, 0.02 < y_{b1} < 0.12$ and $300 < M_{soft} < 1500 \text{ GeV}$.



Parameter scans (f=350 GeV)

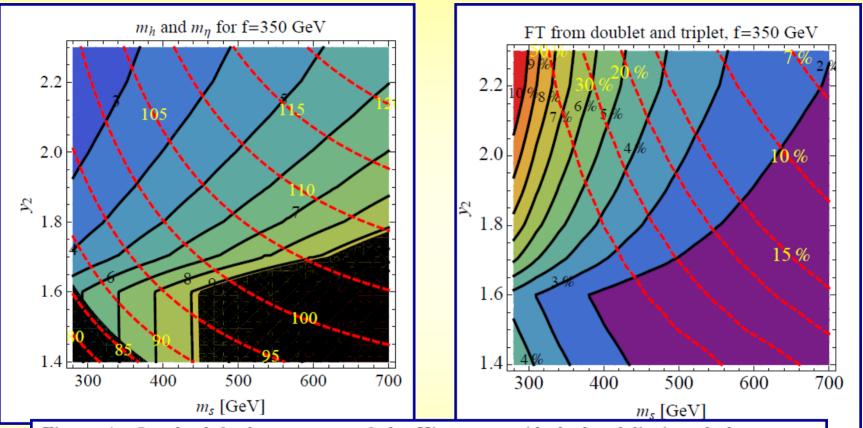
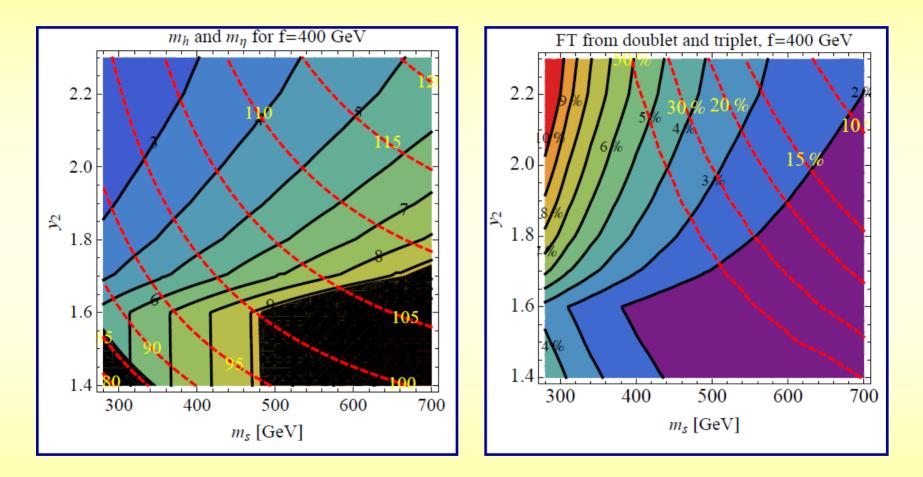


Figure 4: On the left the contours of the Higgs mass (dashed red line) and the η mass (solid black lines) as function of the universal soft breaking mass M_{soft} and the top Yukawa y_2 . On the right, the necessary fine tunings FT_3 (solid black) and FT_2 (dashed red) in percent. These plots are based on the full numerical 1-loop Coleman-Weinberg potential, with f = 350 GeV, $y_1 = 0.29$, $y_{b1} = 0.1$, $y_{b2} = 0$, $\tilde{y}_{b1} = 0.001$, $\tan \beta = 10$, $F = \sqrt{2} \cdot 10^4$ and $\tilde{y}_{b2} = 0$. The region in the lower left is excluded by the LEP ξ^2 bound and in the lower right because $m_{\eta} > 2m_b$.

Parameter scans (f=400 GeV)



•Perturbativity: SU(3) Landau pole at $\Lambda \sim 10^8$ TeV •For y₂=1.64 $\Lambda^{\text{quartic}}=10^8$ TeV, while for y₂=1.83 $\Lambda^{\text{quartic}}=10^4$ TeV

<u>n decays</u>

•If m_{η} >2 m_{b} then η →bb will dominate. But then h→4b which is strongly constrained by LEP (m_{h} >110 GeV)

•Will require m_{η} <2 m_{b} . In this case decays to τ , c, γ or gluon are relevant.

•Decay to τ : h \rightarrow 2 η \rightarrow 4 τ from coupling

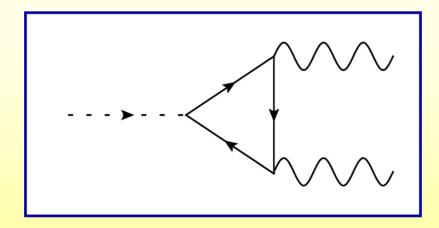
$$i\tilde{y}_{\tau}(\bar{\tau}\gamma_5\tau)\eta$$
 $\tilde{y}_{\tau} \simeq \frac{m_{\tau}^3 f}{\sqrt{2}M_{\tau}^2 v_{EW}^2}$

•Strongly suppressed because τ mixing $\propto m_{\tau}^{2}/M_{\tau}^{2}$

•Width for decays to au

$$\Gamma_{\eta \to \tau \tau} \approx \frac{1}{16\pi} \sqrt{1 - 4m_{\tau}^2 / m_{\eta}^2} \frac{m_{\eta} m_{\tau}^6 f^2}{v_{EW}^4 M_{\tau}^4}$$

- •Very small ~ 10⁻¹³ GeV, mm decay length...
- •Dominant decay will be through loops to 2g, 2γ :



•The loop induced decays:

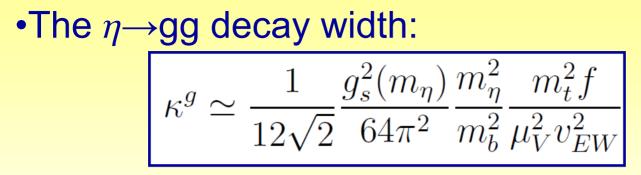
$$\kappa^g \eta \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma} , \qquad \kappa^g = \frac{g^2}{32\pi^2} \sum_{\psi} \frac{\tilde{y}_{\psi}}{m_{\psi}} c_2(\psi) \tau_{\psi} f(\tau_{\psi})$$

•f(τ) is the usual triangle function, τ =4 m_{ψ}²/m_{η}²:

$$f(\tau) = \begin{cases} \arctan^2[\tau^{-1/2}] \\ -\frac{1}{4} \left(\log[(1+\sqrt{1-\tau})/(1-\sqrt{1-\tau})] - i\pi \right)^2 \end{cases}$$

•Leading term: $\eta G \tilde{G} \sim \sum \tilde{y}_{\psi} / m_{\psi} \approx \mathcal{O}(1/F^2)$ vanishes due to anomaly cancellation

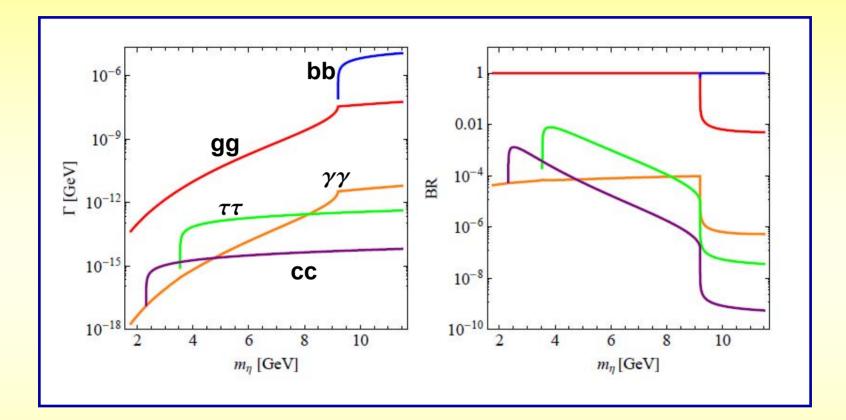
•Actual leading operator $\Box \eta G G$ ~ $\sum \tilde{y}_{\psi} m_{\eta}^2 / m_{\psi}^3$ dominated by bottom



- •Will be leading mode
- •h \rightarrow 2 η \rightarrow 4g will be main decay chain

 Hard to find at hadron colliders – higgs buried under QCD background

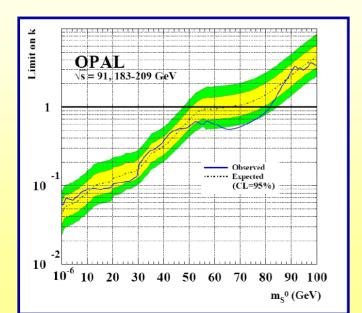
The *η* decays

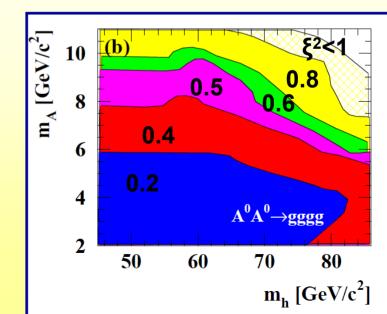


 $f = 350 \text{ GeV}, \ \mu_V = 500 \text{ GeV}, \ M_c = 400 \text{GeV}, \ M_\tau = 200 \text{ GeV}$

- •h \rightarrow 4g almost 100 %
- •h $\rightarrow\gamma\gamma$ gg of order 10⁻⁴
- •h $\rightarrow \tau \tau gg$ of order 10⁻³ 10⁻⁵
- •h \rightarrow 4µ and h \rightarrow $\tau\tau\mu\mu$ very suppressed...
- •LEP bound: model indep. m_h>78 GeV

•OPAL h \rightarrow 2 η \rightarrow 4j analysis (assuming m_h<86 GeV):



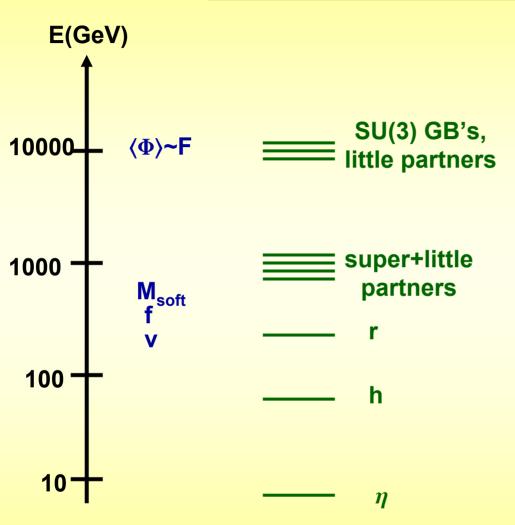


•LEP exclusion: for 78 GeV<m_h<86 GeV we need 6 GeV<m_{η}<9.2 GeV

•Reason: opening angle between jets $\sim 4m_{\eta}/m_{h}$, for very small m_{η} not 4 jets but 2 jets, restrictive search...

•Would need to know what genuine 4 jet analysis gives at LEP...

The particle spectrum

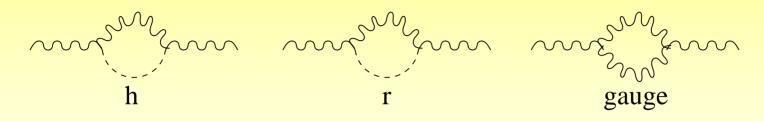


Radial mode, unitarity, EWP

- •Radial mode: m_r~ 300-400 GeV
- Couples just like the higgs, with sin v/f suppression
- •Should be observable in $Z \rightarrow Z + r \rightarrow Z + ZZ \rightarrow Z + 4I$ mode, or just gluon fusion $gg \rightarrow r \rightarrow ZZ \rightarrow 4I$
- But will have wrong cupling for unitarity, EWP: wrong higgs ("fake higgs")
 Unitarity:
- •As long as m_h , m_r < TeV unitarity OK

 $\cos^2 v/f$

•Electroweak precision (S, T):



~cos² v/f log m_h/ Λ

~sin² v/f log m_r/ Λ

 $\sim \log \Lambda / m_W$

• $m_h^{eff} = m_h (m_r/m_h)^{sin^2v/f} \sim 120 \text{ GeV}$

•Still within allowed region, but NOT at χ^2 minimum...

The Charming Higgs

•Simple variation of model by changing fermion matter content

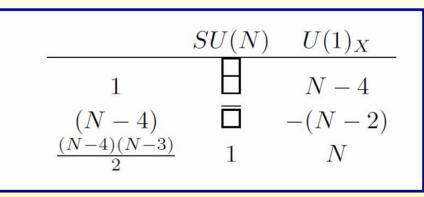
•To get real little Higgs, need top partner in triplet

•Need to exchange up- and down-type quarks

•Can get another anomaly free matter content that does this!

How to get the anomaly free matter?

- •Original model: $SU(3)xSU(3)xU(1) \subset SU(6)$
- •SU(6) matter: +2 a , just decompose to subgroup
- •Another possibility: "flipped SU(N)"

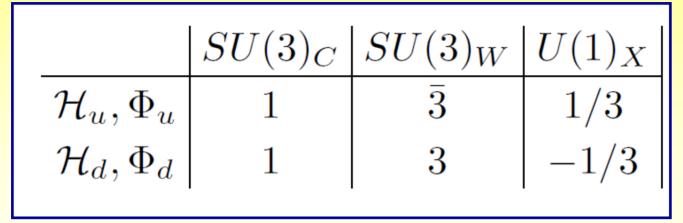


 Decomposing this (for N=6) gives new fermion matter

The flipped matter content

•Quark sector now like little Higgs (can add $\mu_V VV_c$ mass, now μ_V does not have to be ~TeV...

Gauge and global symmetry (almost) same



•Goldstones:

$$\mathcal{H}_{u}^{T} = fs_{b} \begin{pmatrix} \sin(\tilde{h}/\sqrt{2}f) \\ 0 \\ e^{i\tilde{\eta}/\sqrt{2}f}\cos(\tilde{h}/\sqrt{2}f) \end{pmatrix},$$
$$\mathcal{H}_{d} = fc_{b} \begin{pmatrix} \sin(\tilde{h}/\sqrt{2}f) \\ 0 \\ e^{-i\tilde{\eta}/\sqrt{2}f}\cos(\tilde{h}/\sqrt{2}f) \end{pmatrix}.$$

•Hypercharge Y=-T₈/ $\sqrt{3+X}$

Yukawas

•Collective for quarks:

 $y_1 t_c^1 \Phi_u Q + y_2 t_c^2 \mathcal{H}_u Q + \mu_V V_c V + y_{b1} V_c Q \Phi_d + y_{b2} b_c^1 V \mathcal{H}_d$

• μ_V large limit easy:

$$y_1 t_c^1 \Phi_u Q + y_2 t_c^2 \mathcal{H}_u Q + \frac{y_{b1} y_{b2}}{\mu_V} b_c^1 Q \Phi_d \mathcal{H}_d$$

•Top and charm mass:

•Bottom mass:

$$m_t \approx \frac{s_b y_1 y_2 F}{\sqrt{(y_1 F)^2 + 2(s_b y_2 f)^2}} v_{EW}$$
$$m_c = \frac{s_b y_{c1} y_{c2} F}{\sqrt{(y_{c1} F)^2 + 2(s_b y_{c2} f)^2}} v_{EW}$$

 $m_b \approx y_{b1} y_{b2} c_b v_{EW} F / \sqrt{2} \mu_V$

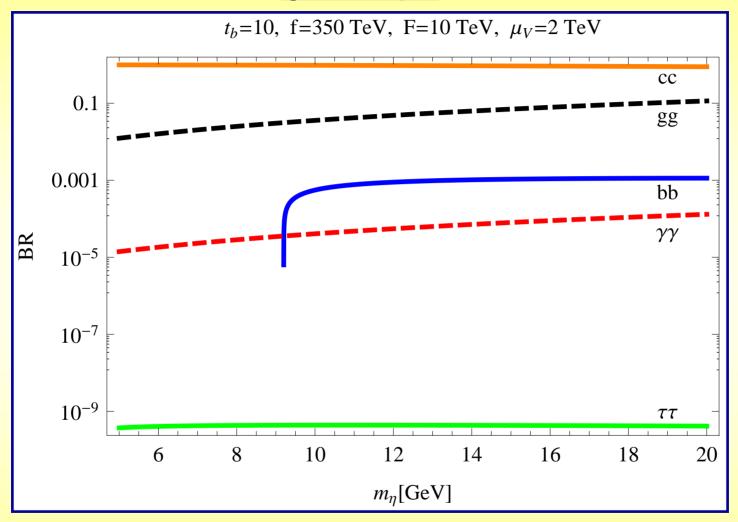
<u>n decays</u>

•Important difference: coupling to down-type quarks suppressed by m_b^2/μ_V^2 – very suppressed even if kinematically allowed

• τ coupling still suppressed

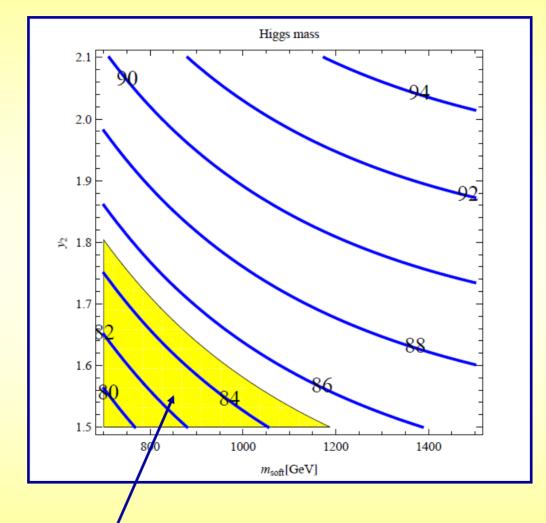
•will mostly decay to charm or gluon

$$\tilde{y}_c \approx \frac{m_c}{\sqrt{2}f} \qquad \tilde{y}_\tau \sim \frac{m_\tau}{\sqrt{2}f} \frac{m_\tau^2}{M_\tau^2}$$



•Note: size of loop induced η bb coupling estimated

Achievable Higgs masses



Region excluded by LEP $h \rightarrow bb$

Summary

•An extension of the MSSM, where:

- •h \rightarrow 2 η \rightarrow 4j cascade is natural •higgs below LEP bound
- •no little hierarchy
- •h and η both Goldstones (little Higgs)
- •super and little partners available at LHC
- •Higgs buried (?) in QCD at LHC
- •Fake higgs readily available
- •All scales radiatively generated
- •A really cool model of EWSB!