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Motivation

® Most interactions at hadron colliders produce multiple
high energy partons in different directions

® Want fo study distributions of these partons wrt to
one another

@ Clearly, will not see partons, and hadronization will be
important

@ Use jets of hadrons to identify the underlying parton

Questions
@ How are partonic results related fo jet observables?

@ What is calculable in PT, and how does PT behave?
@ What non-perturbative physics is needed?
@ How do different jet definitions affect results?
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Motivation

@ We usually think of QCD in terms of a perturbative
expansion

@ Presence of widely separated scales gives rise to
logarithmic terms as"log™(Ai/ /A1)

@ Need to resum these terms fo get precise theoretical
prediction

@ In jet physics, many different energy scales possible:
m(Jef), E(Jef), m(jell-ll.je.l-Z)l cee

No known way to sum these logarithms without
factorization of process
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Some output from GenEvA

CWSB, Tackmann, Thaler ('08)
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Previous work

@ First proofs of factorization based on pioneering work
of Collins, Soper and Sterman g pel i erman (505)

@ Study properties of Feynman diagrams to separate long
and short distance physics

@ Very well understood for bread&butter physics (DIS,
DY, %4

@ Much work for more general processes
For a review, see Stermans TASI lectures

@ Effective field theory treatment possible since
invention of SCET CWSB, Fleming, Pirjol, Rothstein, Stewart ('02)
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Introduction to
Factorization
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How do we get non-perturbative information?
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Introduction to Factorization

Drell Yan: p+p 2> X+ e + et

o(p+p— X+e +et)
=14 ® ®

DIS:p+e = X+ e

=
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Quick introduction
to SCET
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Field content of SCET

CWB, Fleming, Luke ("00)
CWB, Fleming, Pirjol, Stewart (‘00)

Light cone coordinates:  p* = (n-p,n - p,pt)

%(po—pS)J i L>pz’

1
Sl
Degrees of freedom B
Type (p*p~.p") Fields
collinear A A) Xn, An
soft (N, N, N) qs, As
Construct the most general operators with

required field content to given order in A
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Interactions in SCET

Leading order collinear Lagrangian

L= Zn_{m.+gn-f18+.%1’} e

Collinear fields

@ No interactions between collinear fields of different
directions

@ Interaction between collinear and soft fields only via
one single term
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Soft/collinear decouEllng
tewart ('00)

Pirjol,
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Pirjol,
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Deep inelastic scattering
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Very simple proof




Event shapes near
endpoint
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What are event shapes?

Simple example is thrust T
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What are event shapes?

Simple example is thrust T

For 2-jet events T=1

A e

\

P = eXp(-|l’]|)
fc = 3/cosh(r])
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Differences from DIS

@ DIS is completely inclusive process

@ Observables formed from leptonic variables

@ Every final state contributes same to final observable

Allows to perform the sum over final states

@ Event shape is weighted cross section

® Observables formed from hadronic variables

@ Different final states contribute with different weight to
final observable

Sum over final states not possible
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4 steps to the factorization

1. Write e(X)IX) = elX) and sum over states
2.Match onto operators in SCET

3.Use decoupling of Lagrangian to factorize operator

4.Factorize the matrix element and obtain final result
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2: Match onto SCET

Match full QCD current onto SCET
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Match full QCD current onto SCET
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2: Match onto SCET

Match full QCD current onto SCET

C [Xn M xa) = C [XnYn' T YaXr]
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3: Match onto SCET

Christian Bauer Rutgers, 1/29/08



3: Match onto SCET
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3: Match onto SCET

What is e?
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4. Factorize e

Transverse energy flow operator defined as

R— o0

1 27 o0
Er(n) = / 46 lim R / dt 7Ty (1. Rib)
0 0

cosh® n
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4. Factorize e

Transverse energy flow operator defined as

R— o0

1 27 o0
Er(n) = / 46 lim R / dt 7Ty (1. Rib)
0 0

cosh® n

Lagrangian completely decoupled
L=Lh+ i+t ks =e=e; + e+

Allows to write
O(e-€) = Jde O(e-e-c-e)
o(e-2&) o(=-7) o(e-2)
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5: Factorize matrix element

0) = fdefde
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5: Factorize matrix element

o(e)= |C|? [defdefde O(e-c-e-e)

O] _~Fe-o~_]0)X0| ae-2~"|0)
(Ol 30 |0}

O'(e) =H® J; ®
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The same in equations
oe)=H® J1® ®

Ldo
00 de

= |Co(Q; )| / de,, des degs 6(e — e, — eq — e5)Jn(en; p) Ja(en; 1) S(es; p)

with
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The same in equations
oe)=H® J1® ®

1 do
00 CZG
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The same in equations
® Ji; ®

1 do
00 de

dktdk=d’k
2(2m)4

2

dirdi-d?l, it
— e n\tn, l_7 s
/ 2(2m)* ) Tnle 2 (2>5a

(2)3(es — €)Y, (0)Y 4 (0) [0) = / (;lﬂ;e—”““S(es, 5 )

Christian Bauer Rutgers, 1/29/08
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What can we do with this?

Lee, Sterman ('06)
@ Results splits up info several simpler functions

@ Operator definition of non-perturbative contributions

Choose N’ = -n and define F. = fdn fe(n)

S(e) = <o Y1Y,6 <e _ Le 5(0)) Y1y,

Q
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What can we do with this?

S(e) = <o Y1Y,5 <e - %5(0)) Yy, o>
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What can we do with this?

For example, expand in 1/Q to find

S(e) =d(e) + 5/(6)% <O Y1V, £00)YY; O> + ...

Non-perturbative matrix element independent on
which event shape is considered
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Towards factorization for
Jet production
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How to deal with jefts

Hadronization
g

&
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How to deal with jets

@ Jets: collection of hadrons which are “close together”
@ How can we quantify this statement?
@ Need jet algorithms, many possibilities

Jet algorithms groups all particles info jets, and
returns the four-momentum of every jet

Requirements on jet algorithms

@ Has to be efficient
® Needs to be IR safe
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Requirement for IR safety

QCD has
collinear and soft
divergences

sl Collinear gluon

: Soft gluon

Both emissions have large couplings in QCD

Jet algorithm should not be sensitive to either

For example, a naive cone
based algorithm
would not be a good choice

Total momentum of jet is unaffected by soft or
collinear emission
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Jet observables

1. Jet algorithm groups particles into jefs...

{Pll PZ/ coe 4 PN}={{P11---/ Pnl}, et }

2...and returns total four momentum of each jet

J({Pll PZ/ cee g PN}) = {Pl ’ At }
3.0bservables are formed out of the jet momenta

0o=0ORBF, P /% 1) 2 O[J]({p1, P2, -, PN})

0(0)= 3{ppl >~ IXXXI >~ lpp)

x 8(0-O[JT1({p1(X),....p(X)})
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Using the operator idea again

A simple operator that is available

E(n)|X) = sz‘(SS(’ﬁ — ;) | X)

1€ X

E(R) = lim R2 / dt 1; Ty; (t, R)
0]

R— o0

A fcs before
Ci=de + +
Allows to write
O(e-€) = Jde O(e-e--¢)
O(e-€) d( ) d(=-5)
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Factorize matrix element
o(o)= |HI* [dec fdeSde O[T][c+€+€]
x<0l.".10)<0I~_|0»
x<0|/ \|o><o|\<e 20>

4
L 4 §
N - ~ ‘
~§ 4‘ ~§ “
X £- e
- ~ L d ~
“f §~~ ‘ﬁ §~~
L d ~
" ~~§

Need to study behavior of O[J] For reasonable jet
defs, depends at leading order either on € or

e
o(o) =@pHe®f®Ji® ®




Is the soft function relevant?
o(o) = H2fde JdeO[T][e+ +<]
x fa®fq@Ji(e)®  ®S(e)

o(0) = HE jde  O[T][e+ ]
x fq®fq®Ji(e)®J (¢)® fdeS(¢)
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Is the soft function relevant?
st e |0)

~
Phe ~O PR
~ -
~
§~ ‘4'
~~,“4
- ~
~
~
~
S

Ol [Y1Y2'Y3Y, T [Y4Y5'Y2Y1'] 10)
1

Soft function only important if observable
sensitive to soft momenta
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Conclusions

@ Understanding factorization is crucial to make
theoretical predictions for experimental observables

@ Factorization can be understood using SCET
@ Factorization simple for tofally inclusive processes

@ For weighted cross sections, need operator statement
about restricted final states

@ Allows to understand factorization in event shapes
without assumption about parton-hadron duality

@ Similar methods applicable o jet production at hadron
colliders, but some more work required
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