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Geometric Engineering of QFTs is a powerful tool for exploring Strongly Coupled
Systems

The Landscape of SCFTs can be explored by studying the low-energy dynamics of
various brane systems

Reduction of SCFTs on compact manifolds, X – Lower D SCFT defined by X

Typical SCFT is strongly coupled and may not admit Lagrangian descriptions
[Gaiotto ’09; Gaiotto, Moore, Neitzke ’09]

Many of such SCFTs can admit an arbitrarily large flavor symmetry – For example:
Compactification of 6D SCFTs on punctured Riemann surfaces

Physical observables of SCFTs from the geometric definitions

Compute ’t Hooft anomalies of SCFTs from geometric setup
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’t Hooft Anomalies

’t Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor,
discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, ’12]

Quantum Anomalies: Partition function not invariant under gauge transformation in
presence of background gauge fields

ZQFT [A′] = e iα(A,ε)ZQFT [A]

A′ & A are background gauge fields of G related by gauge transformation ε

There is a ’t Hooft anomaly when
α(A, ε) cannot be removed by local counterterms =⇒ Cohomology problem

α(A, ε) vanish in the limit A→ 0 =⇒ Can imply higher groups otherwise

The anomaly measures obstruction to gauging the symmetry G
Non-renormalized under RG flows – must be reproduced by any effective description
Constrain IR phases of quantum systems
Yield central charges in supersymmetric theories

’t Hooft anomalies provide a measure for degrees of freedom for QFTs – Defining
data for non-Lagrangian theories
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Anomaly Polynomials

Anomalies for continuous global symmetries

The anomaly for a QFT on Wd is given by an integral of a local density

α(A, ε) = δεWQFT [A] = 2π

∫
Wd

I
(1)
d

Wess-Zumino consistency conditions imply descent relations for anomaly

dI
(1)
d = δI

(0)
d+1, dI

(0)
d+1 = Id+2

I
(0)
d+1 is a Chern-Simons form in Wd+1 with boundary Wd

Id+2 is a gauge invariant form in Wd+2 with boundary Wd+1

Id+2 is a polynomial in curvatures of the background fields whose coefficients encode
the ’t Hooft anomaly of the global symmetry – Anomaly Polynomial

Example in 4d: aIJK and aI are anomaly coefficients from triangle diagram

I6 = aIJKF
I ∧ F J ∧ FK + aIF

I ∧ tr(R ∧ R),
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Anomaly Polynomials

Anomalies for continuous global symmetries

The anomaly for a QFT on Wd is given by an integral of a local density

α(A, ε) = δεWQFT [A] = 2π

∫
Wd

I
(1)
d

Wess-Zumino consistency conditions imply descent relations for anomaly

dI
(1)
d = δI

(0)
d+1, dI

(0)
d+1 = Id+2

Id+2 is a polynomial in curvatures of the background fields whose coefficients encode
the ’t Hooft anomaly of the global symmetry – Anomaly Polynomial

Captures anomalies for Discrete Symmetries when embedded in continuous
symmetries

Quantization conditions on background fields and anomaly polynomial – Global
anomalies – Anomaly form as differential co-cycle
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Outline

1 Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry
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Setup with M5-branes

Consider a stack of N M5-branes in M-theory
Flat branes: (2, 0) AN−1 SCFTs in 6D
Probing C2/Γ singularity: (1, 0) SCFTs in 6D
Wrapped on a surface X : SCFTs in 4D, SCFTs in 2D
· · ·

The 4-form flux of M-theory admits a singular magnetic source and the M-theory
background has an internal boundary

dG4 = NδW6 , M11 = R+ ×M10

M10 is the boundary of a tubular neighborhood of the source:

M10−d ↪→ M10 → Wd , M4 ↪→ M10−d → X6−d

M10−d : defines the SCFT in M-theory,
can have orbifold fixed points

M4: The angular directions that
surround the branes

M4 fibration fixed by topological twist
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Symmetries and Anomalies

Reducing M-theory on M10−d can lead to interesting gauge symmetry, G

Components of G : the isometry group of M10−d , massless fluctuations of the C3

potential – Expanded on H∗(M10−d ,Z)free

δC3 = c3 + bu
2λ

1
u + aα1 ω

2
α + tx0 Λ3

x

Bulk gauge fields: (c3, b
u
2 , a

α
1 , t

x
0 ) → (2, 1, 0, (−1))-form U(1) gauge symmetries

G induces a global symmetry G for QFT on Wd

Due to the singular source of G4, the classical variation of the M-theory action under
diffeomorphisms and the gauge group G is anomalous

Consistency of the full theory, including the M5-brane sources, must be anomaly free
[Callan, Harvey ’85]

Anomaly Inflow: The quantum anomalies for the boundary degrees of freedom on
the M5-branes must cancel the classical bulk anomaly

The bulk supergravity action can be used to obtain
the anomalies for SCFTs from M5-branes
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Flux Boundary Condition

The anomalous variation of the M-theory action depends on the boundary condition
of G4 corresponding to the singular source [Freed, Harvey, Minasian, Moore ’98]

G4 = 2πρ(r)Ḡ4 + · · · with

∫
M4

Ḡ4 = N

ρ(r) is bump function that vanishes away from the boundary

The boundary term Ḡ4 is a closed and globally defined four-form on M10−d

Ḡ4 can be extended to a closed, gauge invariant and globally defined four-form, E4,
on the space M10 by gauging the action of the group G

Ḡ4 on M10−d ⇒ E4 on M10

On Wd , the gauging corresponds to turning on background fields
for the global symmetry

Background fields ⇐⇒ Boundary value of bulk gauge fields
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Anomalous Variation of M-theory [IB, Bonetti, Minasian, Nardoni ’18, ’19]

The variation of the M-theory action localizes on the boundary

δSM

2π
=

∫
M10

I(1)
10 , dI(1)

10 = δI(0)
11 , dI(0)

11 = I12

The 12-form anomaly polynomial is completely characterized by E4 and the
M-theory action

I12 = −1

6
E4 ∧ E4 ∧ E4 − E4 ∧ X8

the 8-form, X8 = 1
192

[
p1(TM11)2 − 4p2(TM11)

]
∼ R4, decomposed on

M11 = R+ ×M10 – Gravitational anomalies

Anomaly inflow statement:

I inf
d+2 + ICFT

d+2 + I decoupled
d+2 = 0, I inf

d+2 =

∫
M10−d

I12
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Anomaly for 6D (2, 0) Theory – Flat branes

M10 and boundary condition for G4 are

M10 = W6 × S4, Ḡ4 = N dΩ4

M4: Round 4-sphere and the induced global symmetry is SO(5) – the R-symmetry
of the (2, 0) SCFT

The extension of Ḡ4 : global angular form of the 4-sphere

E4 =
N

64π2
εa1···a5y

a5 [Dy a1 · · ·Dy a4 + 2F a1a2Dy a3Dy a4 + F a1a2F a3a4 ]

Dy a = dy a − Aabyb, y ay a = 1

Here Aab is the SO(5) connection with field strength F ab

Integrating I12 on S4: [Freed, Harvey, Minasian, Moore ’98; Harvey, Minasian, Moore ’98]

I inf
8 + I8[(2, 0) SCFT] + I8[Free (2,0) tensor] = 0
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General Properties of E4 [IB, Bonetti, Minasian, Nardoni ’19]

The extension E4 has different components

E4 =
∑
p

E p
4

E p
4 : expansion along a basis of Hp(M10−d ,Z)free

Ḡ4 = NaΩ4
a → E 4

4 = Na
[
Ω4,g

a + F Iωg
a,I + F IF Jσa,IJ

]
F I = DAI : Background gauge fields for isometry group

Closure of E4:
ιI Ω

4
a + dωa,I = 0, ι(Iωa,J) + dσa,IJ = 0

The expansion along 2-forms is

E 2
4 = Fα

[
ω2,g
α + F Iσα,I

]
, ιIω

2
α + dσα,I = 0

Fα = dAα – background field in QFT ⇐⇒ Boundary value of bulk gauge field
f α = daα

Choices for E4 labeled by Gisom-equivariant cohomology of M10−d
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Compute anomaly by considering local ansatz for metric and p-forms on M10−d

consistent with symmetry and topology

Impose regularity conditions on E4

Regularity conditions related to integrals of internal forms
(
Ω4, ω2, · · ·

)
The Inflow anomaly depends on background fields and on flux parameters of M10−d

Ibrahima Bah (JHU) Rutgers NHETC 14 / 46



Application to Holography

I12 = −1

6
E4 ∧ E4 ∧ E4 − E4 ∧ X8

Consider an AdSd+1 ×M10−d solution in M-theory supported by a G ads
4 flux

We can identify M10−d = M10−d and G ads
4 = Ḡ4

The 4-form E4 can be constructed and I12 yields the anomaly for the dual SCFT

The X8 term in I12 yields the 1
N2 corrections to the anomaly polynomial

Extremization principles [Intriligator, Wecht ’03; Benini, Bobev ’15]

We expect the anomaly to be exact up to O(1) corrections due to decoupled
center-of-mass degrees of freedom

Ibrahima Bah (JHU) Rutgers NHETC 15 / 46



Outline

1 Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry

Ibrahima Bah (JHU) Rutgers NHETC 16 / 46



Topological Mass in the Bulk [IB, Bonetti, Minasian: 2007.15003

In the reduction of M-theory on M10−d , there can be topological mass terms and
part of the gauge symmetry is spontaneously broken

Example: consider an M6 with closed p-forms, (λ1
u, ω

2
α), one expects massless

fluctuations for C3 of the form

δC3 = aα1 ∧ ω2
α + bu

2 ∧ λ1
u + c3 + tx0 Λ3

x

(aα1 , b
u
2 , c3): gauge fields in 5D spacetime for U(1) (0, 1, 2)-form gauge symmetries

M-theory Chern-Simons can lead to topological mass terms of the 5D theory

L =
1

2π
Ωuv bu

2 ∧ dbv
2 +

Nα
2π

aα1 ∧ dc3 + · · ·
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Discrete symmetries

Consider the 5d topological action [Banks, Seiberg ’11]

S =
M

2π

∫
M5

b2 ∧ db̃2 +
k

2π

∫
M5

c3 ∧ da1

Large gauge transformations imply that (M, k) are integers

On Shell: dc3 = da1 = db2 = db̃2 = 0 – no local operators

Observables: Holonomies of gauge fields – “Wilson lines”

Wc(C3, n) = exp

(
i n

∫
C3

c3

)
, Wa(C1, n) = exp

(
i n

∫
C1

a1

)
Wb(C2, n, ñ) = exp

(
i

∫
C2

[ñ b2 − n b̃2]

)
Correlation functions of “Wilson lines” implies that

c3, a1 are flat connections with holonomies in Zk ∈ U(1)

b2, b̃2 are flat connections with holonomies in ZM ∈ U(1)

Topological mass terms are dual to the Stückelberg action – Discrete symmetry left
over from spontaneous breaking of U(1) symmetries
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Discrete Symmetries [IB, Bonetti, Minasian: 2007.15003]

L =
Ωuv

2π
bu

2 ∧ dbv
2 +

Nα
2π

aα1 ∧ dc3 + · · ·

In suitable normalization of gauge fields, and due to flux quantization, (Ωuv ,Nα))
are quantized

The topological mass terms describe discrete gauge symmetries in the 5D
supergravity

For Ω12 = M, and k = gcd(Nα) the discrete gauge symmetries are

Zk 2-form with c3

Zk 0-form with a1 = mαa
α
1 , Nα = k mα

ZM × ZM 1-form with (b1
2 , b

2
2)
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Boundary discrete symmetry

The boundary global symmetry dual to the discrete gauge symmetry depends on the
choice of boundary condition for the gauge fields [Witten ’99]

Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

Case Boundary Condition Boundary Symmetry

(a)
c3: free

a1: Dirichlet
Zk 0-form symmetry

(b)
a1: free

c3: Dirichlet
Zk 2-form symmetry

(c) k = mm′
c3: free modulo Zm′

a1: free modulo Zm

Zm′ 0-form symmetry
Zm 2-form symmetry

Dirichlet boundary conditions fix a source for discrete symmetry in the dual theory
[Gaiotto, Kapustin, Seiberg, Willett ’14; Hofman, Iqbal, ’18]

Mixed boundary conditions between the fields lead to a larger class of possible
choices of boundary discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett ’14]

Similar choices exist for the 1-form discrete symmetry from (b2, b̃2)
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Boundary discrete symmetry

Case Boundary Condition Boundary Symmetry
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Zm′ 0-form symmetry
Zm 2-form symmetry

In case (c), there is a mixed ’t Hooft anomaly between the two discrete symmetry
[Gaiotto, Kapustin, Seiberg, Willett ’14; Bergman, Tachikawa, Zafrir ’20]

Formally the anomaly polynomial includes

I6 ⊃ k
dA1

2π
∧ dC̃3

2π
+ Ωuv

dBu
2

2π
∧ dBv

2

2π

(A1, C̃3,B
u
2 ,B

v
2 ) are the boundary values of the gauge field (a1, c3, b

u
2 , b

v
2 )

These anomalies determine the surface and line operators that can exist for the
gauge theory

From the bulk, the choice of boundary condition determines which bulk “Wilson
lines” can end on the boundary
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Mixed ’t Hooft Anomalies

In general, the anomaly polynomial includes terms

I6 ⊃ Nα
Fα

2π
∧ dC̃3

2π
+Kα•

Fα

2π
∧ Q•4 +K•

dC̃3

2π
∧ Q̃•2

+Kαβ•
Fα

2π
∧ Fβ

2π
∧ Q•2 +Kαβγ

Fα

2π
∧ Fβ

2π
∧ F γ

2π

The K’s are intersection numbers from various 2-forms in M6, Fα = dAα

The Q’s involve background fields for other symmetries including curvature terms
for gravitational anomalies

Disclaimer: Anomaly polynomial and its component forms should be understood as
field strength for differential co-cycles

A basis transformation (Aα) −→ (A1,Aα
′
) that is consistent with quantization of

flux is necessary

When successful mixed ’t Hooft anomalies between discrete and continuous
symmetries can be read off from the anomaly polynomial
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Anomalies for continuous symmetries

In general, the anomaly polynomial includes terms

I6 ⊃ Nα
Fα

2π
∧ dC̃3

2π
+Kα•

Fα

2π
∧ Q•4 +K•

dC̃3

2π
∧ Q̃•2

+Kαβ•
Fα

2π
∧ Fβ

2π
∧ Q•2 +Kαβγ

Fα

2π
∧ Fβ

2π
∧ F γ

2π
If we care only about perturbative anomalies, things are less subtle: Impose equation
of motion for massive bulk fields on background fields

NαF
α +K•Q̃•2 = 0

Q̃•2 is either field strength for a 0-form symmetry or products of dT x
0 – Boundary

field strength for axions

T x
0 – background dependent coupling parameters!

Constraints on background fields translate to constraints on symmetry generators Jα:

NαF
α −→ MαJ

α = 0

a-maximization for CFT is sensitive to constraints over U(1) symmetries that can
mix with the R-symmetry
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Green-Schwarz terms [IB, Bonetti, Minasian, Nardoni ’19]

Constraint on anomalies for continuous symmetries in 6d

I8 → I8 +
1

4

dC̃3

2π
∧ dC̃3

2π
+

dC̃3

2π
Q4 → I8 − Q2

4

Anomaly inflow for 6D (1, 0) SCFTs from M5 branes at orbifolds [Ohmori, Shimizu, Tachikawa,

Yonekura, ’14]

Interpreted as a Green-Schwarz term associated to the decoupled center of mass
mode of the stack in Ohmori et al.

Bulk equation of motion fix Green-Schwarz term!
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Singletons and Decoupled modes [IB, Bonetti, Minasian: 2007.15003]

In presence of a boundary, BF theories admit singleton modes [Witten ’99; Maldacena, Moore,

Seiberg ’01]

Singletons: Pure gauge modes in the bulk and dynamical in the boundary

M

2π
bp ∧ dad−p−1 → (p-1)-form gauge field singleton

SUSY partners from KK singletons

Singletons dual to Goldstone modes of the spontaneously broken boundary
symmetry associated to (bp, ad−p−1) gauge fields

Singletons contribute to the inflow anomaly and must be subtracted as part of the
decoupled modes

I inf + ICFT + I decoupled = 0

Singletons account for all decoupling modes in SUSY compactifications of
M5-branes on punctured Riemann surfaces! (not including orbifold theories)

The symmetry and topology of M10−d completely fix the anomaly of SCFTs from
M5-branes and its compactifications
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Applications to orbifold theories

Consider a stack of N M5-branes wrapped on a Riemann surface Σg and probing a
C2/Zk singularity

The linking space M4 = S4/Zk , there are two Zk orbifold fixed points at the poles

Space that define the QFT is M6 = M4 × Σg with a topological twist to preserve
SUSY

In M-theory, resolve the fixed points by introducing 2k − 2 two-cycles C i2
Including the Riemann surface, there are 2k − 1 two-cycles

Thread flux N i units of four-form flux on C i2 × Σg to make large bubbles

The system is labeled by 2k − 1 flux parameters, (N,N i )

There is an additional twist parameter from the U(1) commutant of the R-symmetry
in the isometry group of S4
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Space that define the QFT is M6 = M4 × Σg with a topological twist to preserve
SUSY

In M-theory, resolve the fixed points by introducing 2k − 2 two-cycles C i2
Including the Riemann surface, there are 2k − 1 two-cycles

Thread flux N i units of four-form flux on C i2 × Σg to make large bubbles

The system is labeled by 2k − 1 flux parameters, (N,N i )

There is an additional twist parameter from the U(1) commutant of the R-symmetry
in the isometry group of S4
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Symmetry of system

One-cycles:

[λu, λ̃u] on the Σg , b1(M6) = 2g

U(1)2g 1-form gauge symmetry with Sp(2g ,Z) S-duality group

Topological mass terms break gauge symmetry to (ZN × ZN)g 1-form symmetry

Two-cycles:

[Cα2 = (C i2,Σg )] on M6, b2(M6) = 2k − 1

U(1)2k−1 0-form gauge symmetry

Since b0(M6) = 1, Topological mass term involving a linear combination Nαa
α
1 ∧ c3

There is Zk 2-form and U(1)2(k−1) × Zk 0-form gauge symmetry, k = gcd(Nα)

Three-cycles:

(λu × C i2, λ̃u × C i2) on the Σg , b3(M6) = 4g(k − 1)

4g(k − 1) bulk axions, Boundary value of axions correspond to marginal coupling
parameters

Anomaly involving the axions correspond to anomalies in the space of couplings
[Córdova, Freed, Lam, Seiberg, ’19]
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Outlook

Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian ’20], For k > 2, To appear!

Discrete symmetries and higher-form symmetries – role of torsion in Cohomology
group

Anomalies related to large gauge transformations and duality groups of QFTs –
Global anomalies

Defects and extended operators – higher-form discrete symmetry

Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial
in [IB, Bonetti, Minasian, Weck ’20]), massive IIA

Conformal blocks relating to Singleton physics and anomalies relating to Sp(2g ,Z)
duality group (Similar to [Belov, Moore ’04] )

Since the analysis relies less on SUSY, we hope to be able to study more general
classes of compactifications with punctures and defects
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Summary

Topological mass terms in 5d supergravity encode discrete global symmetries of the
dual field theory

The same bulk theory with different topological boundary conditions gives field
theories with different discrete global symmetries

We can capture ‘t Hooft anomalies with a 6-form inflow anomaly polynomial

There is a rich interplay between all p-forms fields from expansion of M-theory C3

potential
Higher-form symmetries
Discrete symmetries
Anomalies in the space of coupling constants, or “(–1)-form” symmetries
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THANK YOU!
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IIB and D3 branes [IB, Bonetti, Minasian, Weck ’20]

One can also consider brane systems in type II string theories

The polynomials that encode the anomalies are 11-forms, I11 constructed from
gauge invariant boundary conditions of various flux

The anomaly polynomial of IIA is related to the M-theory I12 by a reduction, It is
similarly characterized by IIA Chern-Simons terms

The anomaly polynomial for IIB receives a contribution from the kinetic term of the
self-dual five-form flux

If we consider a stack of D3-branes supported by the five-form flux, F5

F5 = 2π(1 + ?)ρ(r)F̄5 + · · · on M10 = R+ ×Wd ×M9−2d

The boundary term F̄5 on M9−2d can be extended to E5 on Wd ×M9−2d

The 11-form and the inflow anomaly polynomial are given as

I11 =
1

2
E5 ∧ dE5 − E5 ∧ H3 ∧ F3, I inf

2d+2 =

∫
M9−2d

I11
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IIB and D3 branes [IB, Bonetti, Minasian, Weck ’20]

The 11-form and the inflow anomaly polynomial are given as

I11 =
1

2
E5 ∧ dE5 − E5 ∧ H3 ∧ F3, I inf

2d+2 =

∫
M9−2d

I11

For N = 4 SYM, E5 is the global angular form of the 5-sphere, e5! Integrating I11

yields the anomaly for the SO(6) R-symmetry group

E5 = N e5, dE5 = −N π∗χ (SO(6)) ,

I inf6 =
1

2
N2χ (SO(6)) =

1

2
N2c3 (SU(4))

For more general N = 1, E5 is the volume of SE5 gauged over the world volume
theory! Consistent with holographic analysis by [Benvenuti, Pando Zayas, Tachikawa 06]

Anomaly of N = 4 SYM on punctured Riemann surface

This anomaly formula can be used to study compactifications of 4D SCFTs to 2D
QFTs
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F-theory [IB, Bonetti, Minasian, Weck ’20]

Generalize type IIB with non-trivial axio-dilaton profile

Consider an elliptic fibration over the IIB background

Eτ ↪→ M12 → M10

The anomaly polynomial is

I11 =
1

2
E5 ∧ dE5 − E5 ∧ π∗

[
X8(TM12) +

1

2
E4 ∧ E4

]

F3 and H3 are encoded in E4, for trivial elliptic fiber

E4 = F3 ∧ dx + H3 ∧ dy

Anomalies of N = 4 with varying coupling, τYM , can be studied with this
generalization [Lawrie, Martelli, Schäfer-Nameki ’18]
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Things to do

Compute the anomalies for N = 2 Class S of AN type with arbitrary punctures [IB,

Nardoni, ’18; IB, Bonetti, Minasian, Nardoni ’19]

The possible choices of E4 from M6 = S4 × Σg,n is in one-to-one correspondence
with the classification from Hitchin equations

Choices come from different resolutions of punctures on Σg,n in M6

This provides an alternate derivation of punctures and the data associated with
them from bulk SUGRA

Explore punctures for N = 1 Class S [IB, Beem, Bobev, Wecht ’12] and from Class Sk
[Gaiotto, Razamat, ’15; Hanany, Maruyoshi ’15 and SΓ [Heckmann, Jefferson, Rudelius,

Vafa, ’16]

Study Class S from the D-series (Inflow for 6D SCFT from [Yi, ’00]) and E-string
theories

Example – Class S2
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A look at class S2 [IB, Bonetti ’19]

Consider a stack of N M5-branes on Σg and probing a Z2 orbifold fixed point

Here M6 = M4 × Σg and M4 is S4/Z2 with resolution two cycles

The resolution is supported by threading flux (NN ,NS) on 4-cycles made from the
resolution 2-cycles combined with the Riemann surface

There are a total of three 4-cycles with three flux parameters (N,NN ,NS),
Associated to them are three closed 2-forms by Poincare duality

The isometry group is U(1)R × SU(2)F and the naive symmetry from C3 is U(1)3

From the 6d (1, 0) theory, only U(1)N × U(1)S is visible, the third U(1)C is an
accidental symmetry from the compactification!
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A look at class S2 [IB, Bonetti ’19]

A combination of the three U(1)s is broken by a topological mass – Spontaneous
symmetry break of a U(1) global symmetry for the field theory

The symmetry of low-energy theory is then U(1)′N × U(1)′S × U(1)R × SU(2)L

The generators of the 2 U(1)s visible from the 6d SCFT are shifted as

T ′N = TN −
NN

N
TC , T ′S = TS −

NS

N
TC

After obtaining anomaly polynomial, compute large N central charge by
a-maximization [Intriligator, Wecht ’03]

Inflow data can be matched with a family of AdS5 ×M6 obtained in [Gauntlett,

Martelli, Sparks, Waldram ’04]
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A look at class S2 [IB, Bonetti, Minasian, 2007.15003]

5d SUGRA theory admits a rich discrete gauge symmetry! Thus complex network of
discrete symmetry in SCFT which is acted upon by Sp(2g ,Z)

multiplicity fields top. mass terms bulk gauge symm.

b2(M6) = 3 aa1
1

2π
Na a

a
1 ∧ dc3

U(1)2 0-form symm.

Zk 0-form symm.

1 c3 Zk 2-form symm.

b1(M6) = 2g bi
2, b̃i

2
1

2π
M b̃i

2 ∧ dbi
2 (ZM × ZM)g 1-form symm.

b3(M6) = 4g ai±0 , ãi±0 — 5D axions

There are 4g background 1-forms in the anomaly polynomial associated to the
axions – Anomaly for background dependent couplings and “(-1)-form symmetry”?
[Córdova, Freed, Lam, Seiberg, ’19]
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Outlook

Origin of decoupled modes from M10−d

I inf + IQFT + I decoupled = 0

Discrete symmetries and higher form symmetries – role of torsion in Cohomology
group

Anomalies related to large gauge transformations and duality groups of QFTs –
Global anomalies

Defects and extended operators – higher form discrete symmetry

Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial
in [IB, Bonetti, Minasian, Weck ’20]), massive IIA

Since the analysis relies less on SUSY, we hope to be able to study more general
classes of compactifications with punctures and defects
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THANK YOU!
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M5-branes probing C2/Z2 fixed point

When the stack of M5-branes is probing a C2/Zk fixed point, M4
∼= S4/Zk

Zk ⊂ SU(2)L from SU(2)L × SU(2R) ⊂ SO(5) of the isometry group

When k = 2, the orbifold action preserves the SU(2)L × SU(2)R subgroup

On the branes, SU(2)L is a flavor symmetry and SU(2)R is an R-symmetry for the
worldvolume (1, 0) SCFT

There are two R4/Z2 fixed points on the sphere at the north and south poles

The fluctuations of the C3 potential leads to an additional SU(2)N × SU(2)S flavor
symmetry for the worldvolume theory

For the purpose of the SUGRA analysis, we consider a resolution of the orbifold fixed
points by blowing up two-cycles at the poles of the sphere

Symmetry breaks:
SU(2)N × SU(2)S × SU(2)R × SU(2)L → U(1)N × U(1)S × U(1)R × SU(2)L
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M4 Space

The space M4 is a circle fibration, S1
ψ, over a cylinder [µ]× S2

ϕ. The isometries of
S1
ψ × S2

ϕ correspond to U(1)R × SUL(2)

S1
ψ × S2

ϕ have a topology of S3/Z2

The circle S1
ψ shrinks at the end points of the µ-interval while the two sphere S2

ϕ

never shrinks

The non-shrinking sphere at the end of the µ-interval correspond to the blowup
two-cycles of the orbifold fixed points
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Adding a Riemann Surface, Σg

Now we consider the case when the branes wrap a Riemann surface Σg while
probing the singularity

This is equivalent to taking the 6D (1, 0) theory on a Riemann surface with a
topological twist to preserve supersymmetry

By anomaly matching, the anomaly of the 4D theories can be computed as

I6 =

∫
Σg

I8

Anomaly polynomial does not yield correct central charge for “potential” dual
holographic solution

Possible accidental symmetry and interesting decoupled modes!
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Adding a Riemann Surface, Σg

In this case, M6 = M4 ×Σg . the R-symmetry circle, S1
ψ, is twisted over the Riemann

Surface with curvature 2(g − 1)

M6 has three 4-cycles, two of them correspond to taking the product of the polar
two-cycles of M4 with Σg . The third is the embedding of M4 in M6

Threading flux on these cycles yields three quantum number (N,NN ,NS)

there are three closed 2-forms dual to the 4-cycles. The vector fluctuations of C3

along these forms implies three U(1) gauge fields in the bulk supergravity

This suggests a U(1)3 flavor symmetry for the 4d theory

Compactification of the 6D (1, 0) theory only sees U(1)N × U(1)S ; the third U(1)C
is an accidental symmetry!
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Counting symmetries again

In the reduction of M-theory on M6, a combination of the vectors from C3 acquires a
topological mass term from M-theory CS term

S5d ⊃ Nα
∫
γ3 ∧ daα, C3 ⊃ aα ∧ ωα + γ3

This topological mass term can dualized to Stückelberg kinetic term with Nαaα
eating the axion dual to γ3

In the bulk supergravity this is spontaneous breaking of a U(1) gauge symmetry and
on the boundary, it corresponds to spontaneous breaking of a U(1) global symmetry!

The symmetry of low-energy theory is then U(1)′N × U(1)′S × U(1)R × SU(2)L

The generators are shifted as

T ′N = TN −
NN

N
TC , T ′S = TS −

NS

N
TC
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E4 for Class S2 theories

We write the 4-form as

E4 = N (Vg
0 + · · · ) + NN (Vg

N + · · · ) + NS (Vg
S + · · · )

+ F 0(ωg
0 + · · · ) + FN

4d(ωg
N + · · · ) + F S

4d(ωg
S + · · · )

The field strength for the vector fluctuations of C3 are (F 0,FN
4d ,F

S
4d), one of them is

removed by the constraint

NF 0 + NNFN
4d + NSF S

4d = 0

This constraint also follows from the tadpole condition

The 4d curvatures are related to the 6d curvatures as

FN = NNVΣ + FN
4d , F S = NSVΣ + F S

4d

The flux (NN ,NS) are background flux for the 6D flavor symmetry on the Riemann
surface

I infl
6, large N = 1

(2π)3

[
1
2
N (χN − NN + NS )F 2

R (FN + FS)− 1
2

(NN − NS )FR (FN + FS)2

+ N−1 (NN FN + NS FS) (F 2
N − F 2

S)− 2
3
χ (F 3

N + F 3
S)

]
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Holographic dual

To check for the existence of a SCFT fixed point, we look for an AdS solution of the
form

ds2 = e2λ
[
ds2(AdS5) + e−6λds2(M̃6)

]
The solutions were already found by Gauntlett, Martelli, Sparks and Waldram in
2004!

By construction, symmetries and topology match

From our anomaly computation we can match the large N central charge with
a-maximization!

Class S2 with a torus is dual to the AdS5 × Y p,q solutions in IIB supergravity
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