Anomaly Inflow and topological mass terms With Federico Bonetti, Ruben Minasian

Ibrahima Bah

Johns Hopkins University

- Geometric Engineering of QFTs is a powerful tool for exploring Strongly Coupled Systems
- The Landscape of SCFTs can be explored by studying the low-energy dynamics of various brane systems
- Reduction of SCFTs on compact manifolds, X Lower D SCFT defined by X
- Typical SCFT is strongly coupled and may not admit Lagrangian descriptions [Gaiotto '09; Gaiotto, Moore, Neitzke '09]
- Many of such SCFTs can admit an arbitrarily large flavor symmetry For example: Compactification of 6D SCFTs on punctured Riemann surfaces
- Physical observables of SCFTs from the geometric definitions

Compute 't Hooft anomalies of SCFTs from geometric setup

 't Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, '12]

- 't Hooft Anomalies: Gauge anomalies for global symmetry G Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

- 't Hooft Anomalies: Gauge anomalies for global symmetry G Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

- There is a 't Hooft anomaly when
 - $\alpha(A,\epsilon)$ cannot be removed by local counterterms \Longrightarrow Cohomology problem
 - $\alpha(A,\epsilon)$ vanish in the limit $A \to 0 \Longrightarrow$ Can imply higher groups otherwise

- 't Hooft Anomalies: Gauge anomalies for global symmetry G Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

- There is a 't Hooft anomaly when
 - $\alpha(A,\epsilon)$ cannot be removed by local counterterms \implies Cohomology problem
 - $\alpha(A,\epsilon)$ vanish in the limit $A \to 0 \Longrightarrow$ Can imply higher groups otherwise
- The anomaly measures obstruction to gauging the symmetry G
 - Non-renormalized under RG flows must be reproduced by any effective description
 - Constrain IR phases of quantum systems
 - Yield central charges in supersymmetric theories

- 't Hooft Anomalies: Gauge anomalies for global symmetry G Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, '12]
- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

- There is a 't Hooft anomaly when
 - $\alpha(A,\epsilon)$ cannot be removed by local counterterms \implies Cohomology problem
 - $\alpha(A,\epsilon)$ vanish in the limit $A \to 0 \Longrightarrow$ Can imply higher groups otherwise
- The anomaly measures obstruction to gauging the symmetry G
 - Non-renormalized under RG flows must be reproduced by any effective description
 - Constrain IR phases of quantum systems
 - Yield central charges in supersymmetric theories

't Hooft anomalies provide a measure for degrees of freedom for QFTs – Defining data for non-Lagrangian theories

- Anomalies for continuous global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density

$$\alpha(A,\epsilon) = \delta_{\epsilon} \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)}$$

• Wess-Zumino consistency conditions imply descent relations for anomaly

 $dI_d^{(1)} = \delta I_{d+1}^{(0)}, \qquad dI_{d+1}^{(0)} = I_{d+2}$

- $I_{d+1}^{(0)}$ is a Chern-Simons form in W_{d+1} with boundary W_d
- I_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}

- Anomalies for continuous global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density

$$\alpha(A,\epsilon) = \delta_{\epsilon} \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)}$$

• Wess-Zumino consistency conditions imply descent relations for anomaly

 $dI_d^{(1)} = \delta I_{d+1}^{(0)}, \qquad dI_{d+1}^{(0)} = I_{d+2}$

- $I_{d+1}^{(0)}$ is a Chern-Simons form in W_{d+1} with boundary W_d
- I_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}
- I_{d+2} is a polynomial in curvatures of the background fields whose coefficients encode the 't Hooft anomaly of the global symmetry Anomaly Polynomial
- Example in 4d: *a*_{IJK} and *a*_I are anomaly coefficients from triangle diagram

$$I_6 = a_{IJK}F^{I} \wedge F^{J} \wedge F^{K} + a_IF^{I} \wedge tr(R \wedge R)$$

- Anomalies for continuous global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density

$$\alpha(A,\epsilon) = \delta_{\epsilon} \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)}$$

• Wess-Zumino consistency conditions imply descent relations for anomaly

$$dI_d^{(1)} = \delta I_{d+1}^{(0)}, \qquad dI_{d+1}^{(0)} = I_{d+2}$$

- I_{d+2} is a polynomial in curvatures of the background fields whose coefficients encode the 't Hooft anomaly of the global symmetry Anomaly Polynomial
- Captures anomalies for Discrete Symmetries when embedded in continuous symmetries
- Quantization conditions on background fields and anomaly polynomial Global anomalies – Anomaly form as differential co-cycle

Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry

Anomalies of SCFTs in M-theory

Topological mass terms and discrete symmetry

Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: (2,0) A_{N-1} SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: (1,0) SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D

• • • •

Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: (2,0) A_{N-1} SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: (1,0) SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D

• • • •

• The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$dG_4 = N\delta_{W_6}, \qquad M_{11} = \mathbb{R}^+ \times M_{10}$$

• M_{10} is the boundary of a tubular neighborhood of the source:

Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: (2,0) A_{N-1} SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: (1,0) SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D

• • • •

• The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$dG_4 = N\delta_{W_6}, \qquad M_{11} = \mathbb{R}^+ \times M_{10}$$

• M_{10} is the boundary of a tubular neighborhood of the source:

 $M_{10-d} \hookrightarrow M_{10} \to W_d, \quad M_4 \hookrightarrow M_{10-d} \to X_{6-d}$

- *M*_{10-d}: defines the SCFT in M-theory, can have orbifold fixed points
- *M*₄: The angular directions that surround the branes
- M_4 fibration fixed by topological twist

Symmetries and Anomalies

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G
- Components of G: the isometry group of M_{10-d}, massless fluctuations of the C₃ potential – Expanded on H^{*}(M_{10-d}, Z)_{free}

$$\delta C_3 = c_3 + b_2^u \lambda_u^1 + a_1^\alpha \omega_\alpha^2 + t_0^x \Lambda_x^3$$

• Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^x) \rightarrow (2, 1, 0, (-1))$ -form U(1) gauge symmetries

Symmetries and Anomalies

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G
- Components of G: the isometry group of M_{10-d}, massless fluctuations of the C₃ potential – Expanded on H^{*}(M_{10-d}, Z)_{free}

$$\delta C_3 = c_3 + b_2^u \lambda_u^1 + a_1^\alpha \omega_\alpha^2 + t_0^x \Lambda_x^3$$

- Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^\alpha) \rightarrow (2, 1, 0, (-1))$ -form U(1) gauge symmetries
- G induces a global symmetry G for QFT on W_d
- Due to the singular source of G_4 , the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous
- Consistency of the full theory, including the M5-brane sources, must be anomaly free [Callan, Harvey '85]

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G
- Components of G: the isometry group of M_{10-d}, massless fluctuations of the C₃ potential Expanded on H^{*}(M_{10-d}, Z)_{free}

$$\delta C_3 = c_3 + b_2^u \lambda_u^1 + a_1^\alpha \omega_\alpha^2 + t_0^x \Lambda_x^3$$

- Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^\alpha) \rightarrow (2, 1, 0, (-1))$ -form U(1) gauge symmetries
- G induces a global symmetry G for QFT on W_d
- Due to the singular source of G_4 , the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous
- Consistency of the full theory, including the M5-brane sources, must be anomaly free [Callan, Harvey '85]
- Anomaly Inflow: The quantum anomalies for the boundary degrees of freedom on the M5-branes must cancel the classical bulk anomaly

The bulk supergravity action can be used to obtain the anomalies for SCFTs from M5-branes • The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4 = 2\pi\rho(r)\bar{G}_4 + \cdots$$
 with $\int_{M_4}\bar{G}_4 = N$

 $\rho(r)$ is bump function that vanishes away from the boundary

• The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4=2\pi
ho(r)ar{G}_4+\cdots$$
 with $\int_{M_4}ar{G}_4=N$

 $\rho(r)$ is bump function that vanishes away from the boundary

- The boundary term \overline{G}_4 is a closed and globally defined four-form on M_{10-d}
- \overline{G}_4 can be extended to a closed, gauge invariant and globally defined four-form, E_4 , on the space M_{10} by gauging the action of the group G

$$ar{G}_4$$
 on M_{10-d} \Rightarrow E_4 on M_{10}

• The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4=2\pi
ho(r)ar{G}_4+\cdots$$
 with $\int_{M_4}ar{G}_4=N$

 $\rho(r)$ is bump function that vanishes away from the boundary

- The boundary term \overline{G}_4 is a closed and globally defined four-form on M_{10-d}
- \overline{G}_4 can be extended to a closed, gauge invariant and globally defined four-form, E_4 , on the space M_{10} by gauging the action of the group G

$$\bar{G}_4$$
 on M_{10-d} \Rightarrow E_4 on M_{10}

On W_d , the gauging corresponds to turning on background fields for the global symmetry Background fields \iff Boundary value of bulk gauge fields • The variation of the M-theory action localizes on the boundary

$$\frac{\delta S_M}{2\pi} = \int_{M_{10}} \mathcal{I}_{10}^{(1)}, \qquad d\mathcal{I}_{10}^{(1)} = \delta \mathcal{I}_{11}^{(0)}, \quad d\mathcal{I}_{11}^{(0)} = \mathcal{I}_{12}$$

• The 12-form anomaly polynomial is completely characterized by E_4 and the M-theory action

$$\mathcal{I}_{12}=-rac{1}{6}E_4\wedge E_4\wedge E_4-E_4\wedge X_8$$

the 8-form, $X_8 = \frac{1}{192} \left[p_1 (TM_{11})^2 - 4p_2 (TM_{11}) \right] \sim R^4$, decomposed on $M_{11} = \mathbb{R}^+ \times M_{10}$ – Gravitational anomalies

• The variation of the M-theory action localizes on the boundary

$$\frac{\delta S_{M}}{2\pi} = \int_{M_{10}} \mathcal{I}_{10}^{(1)}, \qquad d\mathcal{I}_{10}^{(1)} = \delta \mathcal{I}_{11}^{(0)}, \quad d\mathcal{I}_{11}^{(0)} = \mathcal{I}_{12}$$

• The 12-form anomaly polynomial is completely characterized by E_4 and the M-theory action

$$\mathcal{I}_{12}=-rac{1}{6} E_4 \wedge E_4 \wedge E_4 - E_4 \wedge X_8$$

the 8-form, $X_8 = \frac{1}{192} \left[p_1(TM_{11})^2 - 4p_2(TM_{11}) \right] \sim R^4$, decomposed on $M_{11} = \mathbb{R}^+ \times M_{10}$ – Gravitational anomalies

Anomaly inflow statement:

$$I_{d+2}^{\text{inf}} + I_{d+2}^{\text{CFT}} + I_{d+2}^{\text{decoupled}} = 0, \qquad I_{d+2}^{\text{inf}} = \int_{M_{10-d}} \mathcal{I}_{12}$$

• M_{10} and boundary condition for G_4 are

$$M_{10} = W_6 \times S^4, \qquad ar{G}_4 = N \, d\Omega_4$$

 M_4 : Round 4-sphere and the induced global symmetry is SO(5) – the R-symmetry of the (2,0) SCFT

• M_{10} and boundary condition for G_4 are

$$M_{10} = W_6 \times S^4, \qquad \bar{G}_4 = N \, d\Omega_4$$

 M_4 : Round 4-sphere and the induced global symmetry is SO(5) – the R-symmetry of the (2,0) SCFT

• The extension of \overline{G}_4 : global angular form of the 4-sphere

$$E_{4} = \frac{N}{64\pi^{2}} \epsilon_{a_{1}\cdots a_{5}} y^{a_{5}} \left[Dy^{a_{1}} \cdots Dy^{a_{4}} + 2F^{a_{1}a_{2}} Dy^{a_{3}} Dy^{a_{4}} + F^{a_{1}a_{2}} F^{a_{3}a_{4}} \right]$$
$$Dy^{a} = dy^{a} - A^{ab}y^{b}, \qquad y^{a}y^{a} = 1$$

• Here A^{ab} is the SO(5) connection with field strength F^{ab}

• M_{10} and boundary condition for G_4 are

$$M_{10} = W_6 \times S^4, \qquad \bar{G}_4 = N \, d\Omega_4$$

 M_4 : Round 4-sphere and the induced global symmetry is SO(5) – the R-symmetry of the (2,0) SCFT

• The extension of \overline{G}_4 : global angular form of the 4-sphere

$$E_4 = \frac{N}{64\pi^2} \epsilon_{a_1\cdots a_5} y^{a_5} \left[Dy^{a_1} \cdots Dy^{a_4} + 2F^{a_1a_2} Dy^{a_3} Dy^{a_4} + F^{a_1a_2} F^{a_3a_4} \right]$$
$$Dy^a = dy^a - A^{ab} y^b, \qquad y^a y^a = 1$$

- Here A^{ab} is the SO(5) connection with field strength F^{ab}
- Integrating \mathcal{I}_{12} on S^4 : [Freed, Harvey, Minasian, Moore '98; Harvey, Minasian, Moore '98]

 $I_8^{\text{inf}} + I_8[(2,0) \text{ SCFT}] + I_8[\text{Free } (2,0) \text{ tensor}] = 0$

$$E_4 = \sum_p E_4^p$$

• E_4^p : expansion along a basis of $H^p(M_{10-d},\mathbb{Z})_{free}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^{4,g}_a + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

• $F^{I} = DA^{I}$: Background gauge fields for isometry group

$$E_4 = \sum_p E_4^p$$

• E_4^p : expansion along a basis of $H^p(M_{10-d},\mathbb{Z})_{free}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^{4,g}_a + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

- $F^{I} = DA^{I}$: Background gauge fields for isometry group
- Closure of E4:

$$\iota_I \Omega_a^4 + d\omega_{a,I} = 0, \quad \iota_{(I}\omega_{a,J)} + d\sigma_{a,IJ} = 0$$

$$E_4 = \sum_p E_4^p$$

• E_4^p : expansion along a basis of $H^p(M_{10-d},\mathbb{Z})_{free}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^{4,g}_a + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

• $F^{I} = DA^{I}$: Background gauge fields for isometry group

• Closure of E4:

$$\iota_I \Omega_a^4 + d\omega_{a,I} = 0, \quad \iota_{(I} \omega_{a,J)} + d\sigma_{a,IJ} = 0$$

• The expansion along 2-forms is

$$E_4^2 = F^{\alpha} \left[\omega_{\alpha}^{2,g} + F^{I} \sigma_{\alpha,I} \right], \qquad \iota_I \omega_{\alpha}^2 + d\sigma_{\alpha,I} = 0$$

• $F^{\alpha} = dA^{\alpha}$ – background field in QFT \iff Boundary value of bulk gauge field $f^{\alpha} = da^{\alpha}$

$$E_4 = \sum_p E_4^p$$

• E_4^p : expansion along a basis of $H^p(M_{10-d},\mathbb{Z})_{free}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^{4,g}_a + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

• $F^{I} = DA^{I}$: Background gauge fields for isometry group

• Closure of E4:

$$\iota_I \Omega_a^4 + d\omega_{a,I} = 0, \quad \iota_{(I} \omega_{a,J)} + d\sigma_{a,IJ} = 0$$

• The expansion along 2-forms is

$$E_4^2 = F^{\alpha} \left[\omega_{\alpha}^{2,g} + F^{I} \sigma_{\alpha,I} \right], \qquad \iota_I \omega_{\alpha}^2 + d\sigma_{\alpha,I} = 0$$

• $F^{\alpha} = dA^{\alpha}$ – background field in QFT \iff Boundary value of bulk gauge field $f^{\alpha} = da^{\alpha}$

Choices for E_4 labeled by G_{isom} -equivariant cohomology of M_{10-d}

Ibrahima Bah (JHU)

Rutgers NHETC

Compute anomaly by considering local ansatz for metric and p-forms on M_{10-d} consistent with symmetry and topology

- Impose regularity conditions on E4
- Regularity conditions related to integrals of internal forms $\left(\Omega^4,\omega^2,\cdots
 ight)$
- The Inflow anomaly depends on background fields and on flux parameters of M_{10-d}

$$\mathcal{I}_{12}=-rac{1}{6}E_4\wedge E_4\wedge E_4-E_4\wedge X_8$$

- Consider an $AdS_{d+1} \times \mathcal{M}_{10-d}$ solution in M-theory supported by a G_4^{ads} flux
- We can identify $\mathcal{M}_{10-d} = \mathcal{M}_{10-d}$ and $\mathcal{G}_4^{ads} = ar{\mathcal{G}}_4$
- The 4-form E_4 can be constructed and \mathcal{I}_{12} yields the anomaly for the dual SCFT
- The X_8 term in \mathcal{I}_{12} yields the $\frac{1}{N^2}$ corrections to the anomaly polynomial
- Extremization principles [Intriligator, Wecht '03; Benini, Bobev '15]
- We expect the anomaly to be exact up to O(1) corrections due to decoupled center-of-mass degrees of freedom

Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry

• In the reduction of M-theory on M_{10-d} , there can be topological mass terms and part of the gauge symmetry is spontaneously broken

- In the reduction of M-theory on M_{10-d} , there can be topological mass terms and part of the gauge symmetry is spontaneously broken
- Example: consider an M_6 with closed p-forms, $(\lambda_u^1, \omega_\alpha^2)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a_1^{\alpha} \wedge \omega_{\alpha}^2 + b_2^{u} \wedge \lambda_u^1 + c_3 + t_0^{x} \Lambda_x^3$$

• $(a_1^{\alpha}, b_2^{\mu}, c_3)$: gauge fields in 5D spacetime for U(1) (0, 1, 2)-form gauge symmetries

- In the reduction of M-theory on M_{10-d} , there can be topological mass terms and part of the gauge symmetry is spontaneously broken
- Example: consider an M_6 with closed p-forms, $(\lambda_u^1, \omega_\alpha^2)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a_1^{\alpha} \wedge \omega_{\alpha}^2 + b_2^{u} \wedge \lambda_u^1 + c_3 + t_0^{x} \Lambda_x^3$$

- $(a_1^{\alpha}, b_2^{\mu}, c_3)$: gauge fields in 5D spacetime for U(1) (0, 1, 2)-form gauge symmetries
- M-theory Chern-Simons can lead to topological mass terms of the 5D theory

$$\mathcal{L} = rac{1}{2\pi}\Omega_{uv} \ b_2^u \wedge db_2^v + rac{N_lpha}{2\pi} \ a_1^lpha \wedge dc_3 + \cdots$$

 Gauge symmetry is spontaneously broken – dual continuous global symmetry is not present
- In the reduction of M-theory on M_{10-d} , there can be topological mass terms and part of the gauge symmetry is spontaneously broken
- Example: consider an M_6 with closed p-forms, $(\lambda_u^1, \omega_\alpha^2)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a_1^{\alpha} \wedge \omega_{\alpha}^2 + b_2^{u} \wedge \lambda_u^1 + c_3 + t_0^{x} \Lambda_x^3$$

- $(a_1^{\alpha}, b_2^{\mu}, c_3)$: gauge fields in 5D spacetime for U(1) (0, 1, 2)-form gauge symmetries
- M-theory Chern-Simons can lead to topological mass terms of the 5D theory

$$\mathcal{L}=rac{1}{2\pi}\Omega_{uv}\,\,b_2^u\wedge db_2^v+rac{N_lpha}{2\pi}\,\,a_1^lpha\wedge dc_3+\cdots\,$$

 Gauge symmetry is spontaneously broken – dual continuous global symmetry is not present

Topological mass terms have important consequences for anomaly inflow results!

• Consider the 5d topological action [Banks, Seiberg '11]

$$\mathcal{S} = rac{M}{2\pi}\int_{\mathcal{M}_5} b_2 \wedge d ilde{b}_2 + rac{k}{2\pi}\int_{\mathcal{M}_5} c_3 \wedge da_1$$

- Large gauge transformations imply that (M, k) are integers
- On Shell: $dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0$ no local operators

• Consider the 5d topological action [Banks, Seiberg '11]

$$\mathcal{S} = rac{M}{2\pi} \int_{\mathcal{M}_5} b_2 \wedge d ilde{b}_2 + rac{k}{2\pi} \int_{\mathcal{M}_5} c_3 \wedge d\mathsf{a}_1$$

- Large gauge transformations imply that (M, k) are integers
- On Shell: $dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0$ no local operators
- Observables: Holonomies of gauge fields "Wilson lines"

$$W_{c}(C_{3}, n) = \exp\left(i \ n \int_{C_{3}} c_{3}\right), \qquad W_{a}(C_{1}, n) = \exp\left(i \ n \int_{C_{1}} a_{1}\right)$$
$$W_{b}(C_{2}, n, \tilde{n}) = \exp\left(i \int_{C_{2}} [\tilde{n} \ b_{2} - n \ \tilde{b}_{2}]\right)$$

• Consider the 5d topological action [Banks, Seiberg '11]

$${\cal S}={M\over 2\pi}\int_{{\cal M}_5}b_2\wedge d ilde{b}_2+{k\over 2\pi}\int_{{\cal M}_5}c_3\wedge da_1$$

- Large gauge transformations imply that (M, k) are integers
- On Shell: $dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0$ no local operators
- Observables: Holonomies of gauge fields "Wilson lines"

$$W_{c}(C_{3}, n) = \exp\left(i \ n \int_{C_{3}} c_{3}\right), \qquad W_{a}(C_{1}, n) = \exp\left(i \ n \int_{C_{1}} a_{1}\right)$$
$$W_{b}(C_{2}, n, \tilde{n}) = \exp\left(i \int_{C_{2}} [\tilde{n} \ b_{2} - n \ \tilde{b}_{2}]\right)$$

- Correlation functions of "Wilson lines" implies that
 - c_3 , a_1 are flat connections with holonomies in $\mathbb{Z}_k \in U(1)$
 - b_2 , $ilde{b}_2$ are flat connections with holonomies in $\mathbb{Z}_M \in U(1)$
- Topological mass terms are dual to the Stückelberg action Discrete symmetry left over from spontaneous breaking of U(1) symmetries

$$\mathcal{L}=rac{\Omega_{uv}}{2\pi}\,\,b_2^u\wedge db_2^v+rac{N_lpha}{2\pi}\,\,a_1^lpha\wedge dc_3+\cdots$$

- In suitable normalization of gauge fields, and due to flux quantization, $(\Omega_{uv}, N_{\alpha}))$ are quantized
- The topological mass terms describe discrete gauge symmetries in the 5D supergravity
- For $\Omega_{12} = M$, and $k = gcd(N_{\alpha})$ the discrete gauge symmetries are

\mathbb{Z}_k	2-form with	<i>C</i> 3	
\mathbb{Z}_k	0-form with	$a_1 = m_lpha a_1^lpha,$	$N_{lpha} = k m_{lpha}$
$\mathbb{Z}_M imes \mathbb{Z}_M$	1-form with	(b_2^1, b_2^2)	

• The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]

- The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]
- Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

Case	Boundary Condition	Boundary Symmetry
(a)	<i>c</i> 3: free <i>a</i> 1: Dirichlet	\mathbb{Z}_k 0-form symmetry
(b)	a_1 : free c_3 : Dirichlet	\mathbb{Z}_k 2-form symmetry
(c) $k = mm'$	c_3 : free modulo $\mathbb{Z}_{m'}$ a_1 : free modulo \mathbb{Z}_m	$\mathbb{Z}_{m'}$ 0-form symmetry \mathbb{Z}_m 2-form symmetry

- The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]
- Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

Case	Boundary Condition	Boundary Symmetry
(a)	<i>c</i> ₃ : free <i>a</i> ₁ : Dirichlet	\mathbb{Z}_k 0-form symmetry
(b)	a_1 : free c_3 : Dirichlet	\mathbb{Z}_k 2-form symmetry
(c) <i>k</i> = <i>mm</i> ′	c_3 : free modulo $\mathbb{Z}_{m'}$ a_1 : free modulo \mathbb{Z}_m	$\mathbb{Z}_{m'}$ 0-form symmetry \mathbb{Z}_m 2-form symmetry

- Dirichlet boundary conditions fix a source for discrete symmetry in the dual theory [Gaiotto, Kapustin, Seiberg, Willett '14; Hofman, Iqbal, '18]
- Mixed boundary conditions between the fields lead to a larger class of possible choices of boundary discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14]
- Similar choices exist for the 1-form discrete symmetry from (b_2, \tilde{b}_2)

Case	Boundary Condition	Boundary Symmetry
(a)	c_3 : free a_1 : Dirichlet	\mathbb{Z}_k 0-form symmetry
(b)	a_1 : free c_3 : Dirichlet	\mathbb{Z}_k 2-form symmetry
(c) <i>k</i> = <i>mm</i> ′	c_3 : free modulo $\mathbb{Z}_{m'}$ a_1 : free modulo \mathbb{Z}_m	$\mathbb{Z}_{m'}$ 0-form symmetry \mathbb{Z}_m 2-form symmetry

• In case (c), there is a mixed 't Hooft anomaly between the two discrete symmetry

[Gaiotto, Kapustin, Seiberg, Willett '14; Bergman, Tachikawa, Zafrir '20]

Case	Boundary Condition	Boundary Symmetry
(a)	c_3 : free a_1 : Dirichlet	\mathbb{Z}_k 0-form symmetry
(b)	a_1 : free c_3 : Dirichlet	\mathbb{Z}_k 2-form symmetry
(c) <i>k</i> = <i>mm</i> ′	c_3 : free modulo $\mathbb{Z}_{m'}$ a_1 : free modulo \mathbb{Z}_m	$\mathbb{Z}_{m'}$ 0-form symmetry \mathbb{Z}_m 2-form symmetry

• In case (c), there is a mixed 't Hooft anomaly between the two discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14; Bergman, Tachikawa, Zafrir '20]

Formally the anomaly polynomial includes

$$I_6 \supset k rac{dA_1}{2\pi} \wedge rac{d\widetilde{C}_3}{2\pi} + \Omega_{uv} rac{dB_2^u}{2\pi} \wedge rac{dB_2^v}{2\pi}$$

• $(A_1, \widetilde{C}_3, B_2^u, B_2^v)$ are the boundary values of the gauge field (a_1, c_3, b_2^u, b_2^v)

Case	Boundary Condition	Boundary Symmetry
(a)	c_3 : free a_1 : Dirichlet	\mathbb{Z}_k 0-form symmetry
(b)	<i>a</i> 1: free <i>c</i> 3: Dirichlet	\mathbb{Z}_k 2-form symmetry
(c) <i>k</i> = <i>mm</i> ′	c_3 : free modulo $\mathbb{Z}_{m'}$ a_1 : free modulo \mathbb{Z}_m	$\mathbb{Z}_{m'}$ 0-form symmetry \mathbb{Z}_m 2-form symmetry

• In case (c), there is a mixed 't Hooft anomaly between the two discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14; Bergman, Tachikawa, Zafrir '20]

• Formally the anomaly polynomial includes

$$I_6 \supset k rac{dA_1}{2\pi} \wedge rac{d\widetilde{C}_3}{2\pi} + \Omega_{uv} rac{dB_2^u}{2\pi} \wedge rac{dB_2^v}{2\pi}$$

• $(A_1, \widetilde{C}_3, B_2^u, B_2^v)$ are the boundary values of the gauge field (a_1, c_3, b_2^u, b_2^v)

- These anomalies determine the surface and line operators that can exist for the gauge theory
- From the bulk, the choice of boundary condition determines which bulk "Wilson lines" can end on the boundary

• In general, the anomaly polynomial includes terms

$$\begin{split} I_{6} \supset \mathcal{N}_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_{3}}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge \mathcal{Q}_{4}^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_{3}}{2\pi} \wedge \widetilde{\mathcal{Q}}_{2}^{\bullet} \\ + \mathcal{K}_{\alpha \beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \mathcal{Q}_{2}^{\bullet} + \mathcal{K}_{\alpha \beta \gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

- The \mathcal{K} 's are intersection numbers from various 2-forms in M_6 , $F^{\alpha} = dA^{\alpha}$
- The Q's involve background fields for other symmetries including curvature terms for gravitational anomalies

• In general, the anomaly polynomial includes terms

$$\begin{split} I_{6} \supset \mathcal{N}_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_{3}}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge \mathcal{Q}_{4}^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_{3}}{2\pi} \wedge \widetilde{\mathcal{Q}}_{2}^{\bullet} \\ + \mathcal{K}_{\alpha \beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \mathcal{Q}_{2}^{\bullet} + \mathcal{K}_{\alpha \beta \gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

- The \mathcal{K} 's are intersection numbers from various 2-forms in M_6 , $F^{\alpha} = dA^{\alpha}$
- The *Q*'s involve background fields for other symmetries including curvature terms for gravitational anomalies
- Disclaimer: Anomaly polynomial and its component forms should be understood as field strength for differential co-cycles

• In general, the anomaly polynomial includes terms

$$\begin{split} I_{6} \supset N_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_{3}}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge Q_{4}^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_{3}}{2\pi} \wedge \widetilde{Q}_{2}^{\bullet} \\ + \mathcal{K}_{\alpha \beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge Q_{2}^{\bullet} + \mathcal{K}_{\alpha \beta \gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

- The \mathcal{K} 's are intersection numbers from various 2-forms in M_6 , $F^{\alpha} = dA^{\alpha}$
- The *Q*'s involve background fields for other symmetries including curvature terms for gravitational anomalies
- Disclaimer: Anomaly polynomial and its component forms should be understood as field strength for differential co-cycles
- A basis transformation $(A^{\alpha}) \longrightarrow (A_1, \mathcal{A}^{\alpha'})$ that is consistent with quantization of flux is necessary
- When successful mixed 't Hooft anomalies between discrete and continuous symmetries can be read off from the anomaly polynomial

Anomalies for continuous symmetries

• In general, the anomaly polynomial includes terms

$$\begin{split} I_6 \supset N_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge Q_4^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_3}{2\pi} \wedge \widetilde{Q}_2^{\bullet} \\ + \mathcal{K}_{\alpha \beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge Q_2^{\bullet} + \mathcal{K}_{\alpha \beta \gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

• If we care only about perturbative anomalies, things are less subtle: Impose equation of motion for massive bulk fields on background fields

 $N_{\alpha}F^{\alpha}+\mathcal{K}_{\bullet}\widetilde{Q}_{2}^{\bullet}=0$

Anomalies for continuous symmetries

• In general, the anomaly polynomial includes terms

$$\begin{split} I_6 \supset N_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge Q_4^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_3}{2\pi} \wedge \widetilde{Q}_2^{\bullet} \\ + \mathcal{K}_{\alpha\beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge Q_2^{\bullet} + \mathcal{K}_{\alpha\beta\gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

• If we care only about perturbative anomalies, things are less subtle: Impose equation of motion for massive bulk fields on background fields

$$N_{\alpha}F^{\alpha}+\mathcal{K}_{\bullet}\widetilde{Q}_{2}^{\bullet}=0$$

- $\widetilde{Q}_2^{\bullet}$ is either field strength for a 0-form symmetry or products of dT_0^{\times} Boundary field strength for axions
- T_0^{\times} background dependent coupling parameters!

Anomalies for continuous symmetries

• In general, the anomaly polynomial includes terms

$$\begin{split} I_6 \supset N_{\alpha} \frac{F^{\alpha}}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \mathcal{K}_{\alpha \bullet} \frac{F^{\alpha}}{2\pi} \wedge Q_4^{\bullet} + \mathcal{K}_{\bullet} \frac{d\widetilde{C}_3}{2\pi} \wedge \widetilde{Q}_2^{\bullet} \\ + \mathcal{K}_{\alpha\beta \bullet} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge Q_2^{\bullet} + \mathcal{K}_{\alpha\beta\gamma} \frac{F^{\alpha}}{2\pi} \wedge \frac{F^{\beta}}{2\pi} \wedge \frac{F^{\gamma}}{2\pi} \end{split}$$

If we care only about perturbative anomalies, things are less subtle: Impose equation
of motion for massive bulk fields on background fields

$$N_{\alpha}F^{\alpha}+\mathcal{K}_{\bullet}\widetilde{Q}_{2}^{\bullet}=0$$

- $\widetilde{Q}_2^{\bullet}$ is either field strength for a 0-form symmetry or products of dT_0^{\times} Boundary field strength for axions
- T_0^{\times} background dependent coupling parameters!
- Constraints on background fields translate to constraints on symmetry generators J^{α} :

 $N_{\alpha}F^{\alpha} \longrightarrow M_{\alpha}J^{\alpha} = 0$

a-maximization for CFT is sensitive to constraints over U(1) symmetries that can mix with the R-symmetry

Ibrahima Bah	I JHU

$$l_8 \rightarrow l_8 + \frac{1}{4} \frac{d\widetilde{C}_3}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \frac{d\widetilde{C}_3}{2\pi} Q_4 \rightarrow l_8 - Q_4^2$$

$$l_8 \rightarrow l_8 + \frac{1}{4} \frac{d\widetilde{C}_3}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \frac{d\widetilde{C}_3}{2\pi} Q_4 \rightarrow l_8 - Q_4^2$$

- Anomaly inflow for 6D (1,0) SCFTs from M5 branes at orbifolds [Ohmori, Shimizu, Tachikawa, Yonekura, '14]
- Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.

$$l_8 \rightarrow l_8 + \frac{1}{4} \frac{d\widetilde{C}_3}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \frac{d\widetilde{C}_3}{2\pi} Q_4 \rightarrow l_8 - Q_4^2$$

- Anomaly inflow for 6D (1,0) SCFTs from M5 branes at orbifolds [Ohmori, Shimizu, Tachikawa, Yonekura, '14]
- Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.
- Bulk equation of motion fix Green-Schwarz term!

Singletons and Decoupled modes [IB, Bonetti, Minasian: 2007.15003]

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

 $\frac{M}{2\pi}b_p \wedge da_{d-p-1} \longrightarrow \qquad (p-1)\text{-form gauge field singleton}$

• SUSY partners from KK singletons

Singletons and Decoupled modes [IB, Bonetti, Minasian: 2007.15003]

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

 $\frac{M}{2\pi}b_p \wedge da_{d-p-1} \longrightarrow \qquad (p-1)\text{-form gauge field singleton}$

- SUSY partners from KK singletons
- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to (b_p, a_{d-p-1}) gauge fields
- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes

 $I^{inf} + I^{CFT} + I^{decoupled} = 0$

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

 $\frac{M}{2\pi}b_p \wedge da_{d-p-1} \longrightarrow \qquad (p-1)\text{-form gauge field singleton}$

- SUSY partners from KK singletons
- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to (b_p, a_{d-p-1}) gauge fields
- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes

 $I^{inf} + I^{CFT} + I^{decoupled} = 0$

 Singletons account for all decoupling modes in SUSY compactifications of M5-branes on punctured Riemann surfaces! (not including orbifold theories)

The symmetry and topology of M_{10-d} completely fix the anomaly of SCFTs from M5-branes and its compactifications

Ibrahima Bah (IHI)		D 1	
	UHU	Bah	Ibrahima

- Consider a stack of N M5-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity
- The linking space $M_4 = S^4 / \mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles
- Space that define the QFT is $M_6=M_4\times \Sigma_g$ with a topological twist to preserve SUSY

- Consider a stack of N M5-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity
- The linking space $M_4 = S^4 / \mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles
- Space that define the QFT is $M_6=M_4\times \Sigma_g$ with a topological twist to preserve SUSY
- In M-theory, resolve the fixed points by introducing 2k 2 two-cycles C_2^i
- Including the Riemann surface, there are 2k 1 two-cycles

- Consider a stack of N M5-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity
- The linking space $M_4 = S^4 / \mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles
- Space that define the QFT is $M_6=M_4\times \Sigma_g$ with a topological twist to preserve SUSY
- In M-theory, resolve the fixed points by introducing 2k 2 two-cycles C_2^i
- Including the Riemann surface, there are 2k 1 two-cycles
- Thread flux N^i units of four-form flux on $C_2^i \times \Sigma_g$ to make large bubbles
- The system is labeled by 2k 1 flux parameters, (N, N^i)

- Consider a stack of N M5-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity
- The linking space $M_4 = S^4 / \mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles
- Space that define the QFT is $M_6=M_4\times \Sigma_g$ with a topological twist to preserve SUSY
- In M-theory, resolve the fixed points by introducing 2k 2 two-cycles C_2^i
- Including the Riemann surface, there are 2k 1 two-cycles
- Thread flux N^i units of four-form flux on $C_2^i \times \Sigma_g$ to make large bubbles
- The system is labeled by 2k 1 flux parameters, (N, N^i)
- There is an additional twist parameter from the U(1) commutant of the R-symmetry in the isometry group of S^4

Symmetry of system

One-cycles:

- $[\lambda^u, \tilde{\lambda}^u]$ on the Σ_g , $b^1(M_6) = 2g$
 - $U(1)^{2g}$ 1-form gauge symmetry with $Sp(2g,\mathbb{Z})$ S-duality group
 - Topological mass terms break gauge symmetry to $\left(\mathbb{Z}_N \times \mathbb{Z}_N\right)^g$ 1-form symmetry

Symmetry of system

One-cycles:

- $[\lambda^u, \tilde{\lambda}^u]$ on the Σ_g , $b^1(M_6) = 2g$
 - $U(1)^{2g}$ 1-form gauge symmetry with $Sp(2g,\mathbb{Z})$ S-duality group
 - Topological mass terms break gauge symmetry to $(\mathbb{Z}_N \times \mathbb{Z}_N)^g$ 1-form symmetry

Two-cycles:

- $[\mathcal{C}_2^lpha=(\mathcal{C}_2^i,\Sigma_g)]$ on M_6 , $b^2(M_6)=2k-1$
 - $U(1)^{2k-1}$ 0-form gauge symmetry
 - Since $b^0(M_6) = 1$, Topological mass term involving a linear combination $N_{\alpha} a_1^{\alpha} \wedge c_3$
 - There is \mathbb{Z}_k 2-form and $U(1)^{2(k-1)} \times \mathbb{Z}_k$ 0-form gauge symmetry, $k = \gcd(N_\alpha)$

Symmetry of system

One-cycles:

- $[\lambda^u, { ilde\lambda}^u]$ on the $\Sigma_g, \ b^1(M_6) = 2g$
 - $U(1)^{2g}$ 1-form gauge symmetry with $Sp(2g,\mathbb{Z})$ S-duality group
 - Topological mass terms break gauge symmetry to $(\mathbb{Z}_N \times \mathbb{Z}_N)^g$ 1-form symmetry

Two-cycles:

- $[\mathcal{C}_2^lpha=(\mathcal{C}_2^i,\Sigma_g)]$ on M_6 , $b^2(M_6)=2k-1$
 - $U(1)^{2k-1}$ 0-form gauge symmetry
 - Since $b^0(M_6) = 1$, Topological mass term involving a linear combination $N_{\alpha} a_1^{\alpha} \wedge c_3$
 - There is \mathbb{Z}_k 2-form and $U(1)^{2(k-1)} \times \mathbb{Z}_k$ 0-form gauge symmetry, $k = \gcd(N_\alpha)$

Three-cycles:

- $(\lambda^u imes \mathcal{C}_2^i, ilde\lambda^u imes \mathcal{C}_2^i)$ on the Σ_g , $b^3(M_6)=4g(k-1)$
 - 4g(k-1) bulk axions, Boundary value of axions correspond to marginal coupling parameters
 - Anomaly involving the axions correspond to anomalies in the space of couplings

[Córdova, Freed, Lam, Seiberg, '19]

Ibrahima Bah (JHU)

• Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian '20], For k > 2, To appear!

- Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian '20], For k > 2, To appear!
- Discrete symmetries and higher-form symmetries role of torsion in Cohomology group
- $\bullet\,$ Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher-form discrete symmetry

- Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian '20], For k > 2, To appear!
- Discrete symmetries and higher-form symmetries role of torsion in Cohomology group
- $\bullet\,$ Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA

- Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian '20], For k > 2, To appear!
- Discrete symmetries and higher-form symmetries role of torsion in Cohomology group
- $\bullet\,$ Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA
- Conformal blocks relating to Singleton physics and anomalies relating to $Sp(2g,\mathbb{Z})$ duality group (Similar to [Belov, Moore '04])

- Anomalies for k = 1, 2 were studied [IB, Bonetti, Minasian '20], For k > 2, To appear!
- Discrete symmetries and higher-form symmetries role of torsion in Cohomology group
- $\bullet\,$ Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA
- Conformal blocks relating to Singleton physics and anomalies relating to $Sp(2g,\mathbb{Z})$ duality group (Similar to [Belov, Moore '04])
- Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects
- Topological mass terms in 5d supergravity encode discrete global symmetries of the dual field theory
- The same bulk theory with different topological boundary conditions gives field theories with different discrete global symmetries

- Topological mass terms in 5d supergravity encode discrete global symmetries of the dual field theory
- The same bulk theory with different topological boundary conditions gives field theories with different discrete global symmetries
- We can capture 't Hooft anomalies with a 6-form inflow anomaly polynomial
- There is a rich interplay between all p-forms fields from expansion of M-theory C_3 potential
 - Higher-form symmetries
 - Discrete symmetries
 - Anomalies in the space of coupling constants, or "(-1)-form" symmetries

THANK YOU!

- One can also consider brane systems in type II string theories
- The polynomials that encode the anomalies are 11-forms, \mathcal{I}_{11} constructed from gauge invariant boundary conditions of various flux
- The anomaly polynomial of IIA is related to the M-theory \mathcal{I}_{12} by a reduction, It is similarly characterized by IIA Chern-Simons terms
- The anomaly polynomial for IIB receives a contribution from the kinetic term of the self-dual five-form flux
- If we consider a stack of D3-branes supported by the five-form flux, F_5

 $F_5 = 2\pi (1+\star)\rho(r)\bar{F_5} + \cdots$ on $M_{10} = \mathbb{R}^+ \times W_d \times M_{9-2d}$

The boundary term \overline{F}_5 on M_{9-2d} can be extended to E_5 on $W_d \times M_{9-2d}$

• The 11-form and the inflow anomaly polynomial are given as

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \qquad I_{2d+2}^{inf} = \int_{M_{9-2d}} \mathcal{I}_{11}$$

• The 11-form and the inflow anomaly polynomial are given as

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \qquad l_{2d+2}^{inf} = \int_{M_{9-2d}} \mathcal{I}_{11}$$

• For $\mathcal{N} = 4$ SYM, E_5 is the global angular form of the 5-sphere, e_5 ! Integrating \mathcal{I}_{11} yields the anomaly for the SO(6) R-symmetry group

$$E_5 = N e_5, \qquad dE_5 = -N \pi^* \chi \left(SO(6) \right),$$
$$I_6^{inf} = \frac{1}{2} N^2 \chi \left(SO(6) \right) = \frac{1}{2} N^2 c_3 \left(SU(4) \right)$$

- For more general $\mathcal{N} = 1$, E_5 is the volume of SE_5 gauged over the world volume theory! Consistent with holographic analysis by [Benvenuti, Pando Zayas, Tachikawa 06]
- Anomaly of $\mathcal{N} = 4$ SYM on punctured Riemann surface
- $\bullet\,$ This anomaly formula can be used to study compactifications of 4D SCFTs to 2D ${\sf QFTs}\,$

- Generalize type IIB with non-trivial axio-dilaton profile
- Consider an elliptic fibration over the IIB background

 $\mathbb{E}_{ au} \hookrightarrow M_{12} \to M_{10}$

• The anomaly polynomial is

$$\mathcal{I}_{11} = \frac{1}{2} \mathcal{E}_5 \wedge d\mathcal{E}_5 - \mathcal{E}_5 \wedge \pi_* \left[X_8(\mathcal{T}\mathcal{M}_{12}) + \frac{1}{2} \mathcal{E}_4 \wedge \mathcal{E}_4 \right]$$

• F_3 and H_3 are encoded in \mathcal{E}_4 , for trivial elliptic fiber

 $\mathcal{E}_4 = F_3 \wedge dx + H_3 \wedge dy$

• Anomalies of $\mathcal{N} = 4$ with varying coupling, τ_{YM} , can be studied with this generalization [Lawrie, Martelli, Schäfer-Nameki '18]

- Compute the anomalies for $\mathcal{N} = 2$ Class S of A_N type with arbitrary punctures [IB, Nardoni, '18; IB, Bonetti, Minasian, Nardoni '19]
- The possible choices of E_4 from $M_6 = S^4 \times \Sigma_{g,n}$ is in one-to-one correspondence with the classification from Hitchin equations
- Choices come from different resolutions of punctures on $\sum_{g,n}$ in M_6
- This provides an alternate derivation of punctures and the data associated with them from bulk SUGRA
- Explore punctures for $\mathcal{N} = 1$ Class S [IB, Beem, Bobev, Wecht '12] and from Class S_k [Gaiotto, Razamat, '15; Hanany, Maruyoshi '15 and S_{Γ} [Heckmann, Jefferson, Rudelius, Vafa, '16]
- Study Class ${\cal S}$ from the $D\mbox{-series}$ (Inflow for 6D SCFT from [Yi, '00]) and E-string theories
- Example Class S_2

- Consider a stack of N M5-branes on Σ_g and probing a \mathbb{Z}_2 orbifold fixed point
- Here $M_6 = M_4 \times \Sigma_g$ and M_4 is S^4/\mathbb{Z}_2 with resolution two cycles
- The resolution is supported by threading flux (N^N, N^S) on 4-cycles made from the resolution 2-cycles combined with the Riemann surface
- There are a total of three 4-cycles with three flux parameters (N, N^N, N^S) , Associated to them are three closed 2-forms by Poincare duality
- The isometry group is $U(1)_R \times SU(2)_F$ and the naive symmetry from C_3 is $U(1)^3$
- From the 6d (1,0) theory, only $U(1)_N \times U(1)_S$ is visible, the third $U(1)_C$ is an accidental symmetry from the compactification!

- A combination of the three U(1)s is broken by a topological mass Spontaneous symmetry break of a U(1) global symmetry for the field theory
- The symmetry of low-energy theory is then $U(1)'_N \times U(1)'_S \times U(1)_R \times SU(2)_L$
- The generators of the 2 U(1)s visible from the 6d SCFT are shifted as

$$T'_N = T_N - \frac{N^N}{N}T_C, \qquad T'_S = T_S - \frac{N^S}{N}T_C$$

- After obtaining anomaly polynomial, compute large N central charge by a-maximization [Intriligator, Wecht '03]
- Inflow data can be matched with a family of $AdS_5 \times M_6$ obtained in [Gauntlett, Martelli, Sparks, Waldram '04]

 5d SUGRA theory admits a rich discrete gauge symmetry! Thus complex network of discrete symmetry in SCFT which is acted upon by Sp(2g, Z)

multiplicity	fields	top. mass terms	bulk gauge symm.
$b^2(M_6)=3$	a_1^a	$rac{1}{2\pi} {\sf N}_{s} {\sf a}_{1}^{s}\wedge dc_{3}$	$U(1)^2$ 0-form symm.
			\mathbb{Z}_k 0-form symm.
1	C 3		\mathbb{Z}_k 2-form symm.
$b^1(M_6)=2g$	$b_2^i,\; ilde{b}_2^i$	$rac{1}{2\pi}M ilde{b}_2^i\wedge db_2^i$	$(\mathbb{Z}_M imes \mathbb{Z}_M)^g$ 1-form symm.
$b^3(M_6)=4g$	$a_0^{i\pm}$, ${ ilde a}_0^{i\pm}$		5D axions

• There are 4g background 1-forms in the anomaly polynomial associated to the axions – Anomaly for background dependent couplings and "(-1)-form symmetry"? [Córdova, Freed, Lam, Seiberg, '19]

• Origin of decoupled modes from M_{10-d}

```
I^{inf} + I^{QFT} + I^{decoupled} = 0
```

- Discrete symmetries and higher form symmetries role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs Global anomalies
- Defects and extended operators higher form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA
- Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects

THANK YOU!

- When the stack of M5-branes is probing a $\mathbb{C}^2/\mathbb{Z}_k$ fixed point, $M_4 \cong S^4/\mathbb{Z}_k$
- $\mathbb{Z}_k \subset SU(2)_L$ from $SU(2)_L \times SU(2_R) \subset SO(5)$ of the isometry group
- When k = 2, the orbifold action preserves the $SU(2)_L \times SU(2)_R$ subgroup
- On the branes, $SU(2)_L$ is a flavor symmetry and $SU(2)_R$ is an R-symmetry for the worldvolume (1,0) SCFT
- There are two $\mathbb{R}^4/\mathbb{Z}_2$ fixed points on the sphere at the north and south poles
- The fluctuations of the C_3 potential leads to an additional $SU(2)_N \times SU(2)_S$ flavor symmetry for the worldvolume theory
- For the purpose of the SUGRA analysis, we consider a resolution of the orbifold fixed points by blowing up two-cycles at the poles of the sphere
- Symmetry breaks: $SU(2)_N \times SU(2)_S \times SU(2)_R \times SU(2)_L \rightarrow U(1)_N \times U(1)_S \times U(1)_R \times SU(2)_L$

- The space M_4 is a circle fibration, S_{ψ}^1 , over a cylinder $[\mu] \times S_{\varphi}^2$. The isometries of $S_{\psi}^1 \times S_{\varphi}^2$ correspond to $U(1)_R \times SU_L(2)$
- $S^1_\psi imes S^2_arphi$ have a topology of S^3/\mathbb{Z}_2
- The circle S^1_ψ shrinks at the end points of the μ -interval while the two sphere S^2_φ never shrinks
- The non-shrinking sphere at the end of the $\mu\text{-}interval$ correspond to the blowup two-cycles of the orbifold fixed points

- Now we consider the case when the branes wrap a Riemann surface Σ_g while probing the singularity
- This is equivalent to taking the 6D (1,0) theory on a Riemann surface with a topological twist to preserve supersymmetry
- By anomaly matching, the anomaly of the 4D theories can be computed as

$$I_6 = \int_{\Sigma_g} I_8$$

- Anomaly polynomial does not yield correct central charge for "potential" dual holographic solution
- Possible accidental symmetry and interesting decoupled modes!

- In this case, $M_6 = M_4 \times \Sigma_g$. the R-symmetry circle, S_{ψ}^1 , is twisted over the Riemann Surface with curvature 2(g-1)
- M_6 has three 4-cycles, two of them correspond to taking the product of the polar two-cycles of M_4 with Σ_g . The third is the embedding of M_4 in M_6
- Threading flux on these cycles yields three quantum number (N, N^N, N^S)
- there are three closed 2-forms dual to the 4-cycles. The vector fluctuations of C_3 along these forms implies three U(1) gauge fields in the bulk supergravity
- This suggests a $U(1)^3$ flavor symmetry for the 4d theory
- Compactification of the 6D (1,0) theory only sees $U(1)_N \times U(1)_S$; the third $U(1)_C$ is an accidental symmetry!

• In the reduction of M-theory on M_6 , a combination of the vectors from C_3 acquires a topological mass term from M-theory CS term

$$S_{5d} \supset N^{lpha} \int \gamma_3 \wedge d a_{lpha}, \qquad C_3 \supset a_{lpha} \wedge \omega^{lpha} + \gamma_3$$

- This topological mass term can dualized to Stückelberg kinetic term with $N^{\alpha}a_{\alpha}$ eating the axion dual to γ_3
- In the bulk supergravity this is spontaneous breaking of a U(1) gauge symmetry and on the boundary, it corresponds to spontaneous breaking of a U(1) global symmetry!
- The symmetry of low-energy theory is then $U(1)'_N \times U(1)'_S \times U(1)_R \times SU(2)_L$
- The generators are shifted as

$$T_N' = T_N - rac{N^N}{N}T_C, \qquad T_S' = T_S - rac{N^S}{N}T_C$$

• We write the 4-form as

$$E_4 = N \left(\mathcal{V}_0^g + \cdots \right) + N^N \left(\mathcal{V}_N^g + \cdots \right) + N^S \left(\mathcal{V}_S^g + \cdots \right) \\ + F^0(\omega_0^g + \cdots) + F^N_{4d}(\omega_N^g + \cdots) + F^S_{4d}(\omega_S^g + \cdots)$$

• The field strength for the vector fluctuations of C_3 are $(F^0, F_{4d}^N, F_{4d}^S)$, one of them is removed by the constraint

$$NF^{0} + N^{N}F^{N}_{4d} + N^{S}F^{S}_{4d} = 0$$

This constraint also follows from the tadpole condition

• The 4d curvatures are related to the 6d curvatures as

$$F^N = N^N V_{\Sigma} + F^N_{4d}, \qquad F^S = N^S V_{\Sigma} + F^S_{4d}$$

The flux (N^N, N^S) are background flux for the 6D flavor symmetry on the Riemann surface

$$\begin{split} I_{6,\,\text{large }N}^{\text{infl}} &= \frac{1}{(2\pi)^3} \left[\frac{1}{2} \, N \left(\chi \, N - N^N + N^S \right) F_R^2 \left(F_{\text{N}} + F_{\text{S}} \right) - \frac{1}{2} \left(N^N - N^S \right) F_R \left(F_{\text{N}} + F_{\text{S}} \right)^2 \\ &+ N^{-1} \left(N^N \, F_{\text{N}} + N^S \, F_{\text{S}} \right) \left(F_{\text{N}}^2 - F_{\text{S}}^2 \right) - \frac{2}{3} \, \chi \left(F_{\text{N}}^3 + F_{\text{S}}^3 \right) \right] \end{split}$$

• To check for the existence of a SCFT fixed point, we look for an *AdS* solution of the form

$$ds^2 = e^{2\lambda} \left[ds^2 (AdS_5) + e^{-6\lambda} ds^2 (\widetilde{M}_6)
ight]$$

- The solutions were already found by Gauntlett, Martelli, Sparks and Waldram in 2004!
- By construction, symmetries and topology match
- From our anomaly computation we can match the large *N* central charge with a-maximization!
- Class S_2 with a torus is dual to the $AdS_5 \times Y^{p,q}$ solutions in IIB supergravity