Anomaly Inflow and topological mass terms
With Federico Bonetti, Ruben Minasian

Ibrahima Bah

Johns Hopkins University
- Geometric Engineering of QFTs is a powerful tool for exploring Strongly Coupled Systems
- The Landscape of SCFTs can be explored by studying the low-energy dynamics of various brane systems
- Reduction of SCFTs on compact manifolds, X – Lower D SCFT defined by X
- Typical SCFT is strongly coupled and may not admit Lagrangian descriptions [Gaiotto '09; Gaiotto, Moore, Neitzke '09]
- Many of such SCFTs can admit an arbitrarily large flavor symmetry – For example: Compactification of 6D SCFTs on punctured Riemann surfaces
- Physical observables of SCFTs from the geometric definitions

Compute 't Hooft anomalies of SCFTs from geometric setup
't Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, ’12]

- **'t Hooft Anomalies**: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, ’12]

- **Quantum Anomalies**: Partition function not invariant under gauge transformation in presence of background gauge fields

\[
Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]
\]

A' & A are background gauge fields of G related by gauge transformation ϵ

The anomaly measures obstruction to gauging the symmetry G

- Non-renormalized under RG flows
- Must be reproduced by any effective description
- Constrain IR phases of quantum systems
- Yield central charges in supersymmetric theories

't Hooft anomalies provide a measure for degrees of freedom for QFTs – Defining data for non-Lagrangian theories
't Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form \((p\text{-form conserved currents}) \) \cite{Gaiotto:2012各方}

Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

\[
Z_{\text{QFT}}[A'] = e^{i\alpha(A,\epsilon)} Z_{\text{QFT}}[A]
\]

A' & A are background gauge fields of G related by gauge transformation ϵ

There is a 't Hooft anomaly when

- $\alpha(A,\epsilon)$ cannot be removed by local counterterms \Rightarrow Cohomology problem
- $\alpha(A,\epsilon)$ vanish in the limit $A \rightarrow 0 \Rightarrow$ Can imply higher groups otherwise
’t Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, ’12]

Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)}Z_{QFT}[A]$

A' & A are background gauge fields of G related by gauge transformation ϵ

There is a ’t Hooft anomaly when
- $\alpha(A, \epsilon)$ cannot be removed by local counterterms \implies Cohomology problem
- $\alpha(A, \epsilon)$ vanish in the limit $A \to 0$ \implies Can imply higher groups otherwise

The anomaly measures obstruction to gauging the symmetry G
- Non-renormalized under RG flows – must be reproduced by any effective description
- Constrain IR phases of quantum systems
- Yield central charges in supersymmetric theories

't Hooft Anomalies
't Hooft Anomalies

- 't Hooft Anomalies: Gauge anomalies for global symmetry G – Poincaré, flavor, discrete, higher-form (p-form conserved currents) [Gaiotto, Kapustin, Seiberg, Willett, ’12]

- Quantum Anomalies: Partition function not invariant under gauge transformation in presence of background gauge fields

$$Z_{QFT}[A'] = e^{i\alpha(A,\epsilon)} Z_{QFT}[A]$$

A' & A are background gauge fields of G related by gauge transformation ϵ

- There is a 't Hooft anomaly when
 - $\alpha(A, \epsilon)$ cannot be removed by local counterterms \implies Cohomology problem
 - $\alpha(A, \epsilon)$ vanish in the limit $A \rightarrow 0 \implies$ Can imply higher groups otherwise

- The anomaly measures obstruction to gauging the symmetry G
 - Non-renormalized under RG flows – must be reproduced by any effective description
 - Constrain IR phases of quantum systems
 - Yield central charges in supersymmetric theories

't Hooft anomalies provide a measure for degrees of freedom for QFTs – Defining data for non-Lagrangian theories
Anomaly Polynomials

- Anomalies for **continuous** global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density
 \[\alpha(A, \epsilon) = \delta_\epsilon \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)} \]

- Wess-Zumino consistency conditions imply descent relations for anomaly
 \[dl_d^{(1)} = \delta l_{d+1}^{(0)}, \quad dl_{d+1}^{(0)} = l_{d+2} \]

 - $l_{d+1}^{(0)}$ is a Chern-Simons form in W_{d+1} with boundary W_d
 - l_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}
Anomaly Polynomials

- Anomalies for **continuous** global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density

$$\alpha(A, \epsilon) = \delta_\epsilon \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)}$$

- Wess-Zumino consistency conditions imply descent relations for anomaly

$$dl_d^{(1)} = \delta l_{d+1}^{(0)}, \quad dl_{d+1}^{(0)} = l_{d+2}$$

- l_{d+1} is a Chern-Simons form in W_{d+1} with boundary W_d
- l_{d+2} is a gauge invariant form in W_{d+2} with boundary W_{d+1}
- l_{d+2} is a polynomial in curvatures of the background fields whose coefficients encode the 't Hooft anomaly of the global symmetry – **Anomaly Polynomial**
- Example in 4d: a_{IJK} and a_I are anomaly coefficients from triangle diagram

$$l_6 = a_{IJK} F^I \wedge F^J \wedge F^K + a_I F^I \wedge \text{tr}(R \wedge R),$$
Anomaly Polynomials

- Anomalies for **continuous** global symmetries
- The anomaly for a QFT on W_d is given by an integral of a local density

\[\alpha(A, \epsilon) = \delta_\epsilon \mathcal{W}_{QFT}[A] = 2\pi \int_{W_d} I_d^{(1)} \]

- Wess-Zumino consistency conditions imply descent relations for anomaly

\[dI_d^{(1)} = \delta I_{d+1}^{(0)}, \quad dl_{d+1}^{(0)} = l_{d+2} \]

- l_{d+2} is a **polynomial in curvatures of the background fields** whose coefficients encode the 't Hooft anomaly of the global symmetry – **Anomaly Polynomial**
- Captures anomalies for **Discrete Symmetries** when embedded in continuous symmetries
- Quantization conditions on background fields and anomaly polynomial – **Global anomalies** – Anomaly form as differential co-cycle
1. Anomalies of SCFTs in M-theory

2. Topological mass terms and discrete symmetry
Outline

1. Anomalies of SCFTs in M-theory

2. Topological mass terms and discrete symmetry
Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: $(2,0)\ A_{N-1}$ SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: $(1,0)$ SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D
 - ...
Setup with M5-branes

- Consider a stack of N M5-branes in M-theory
 - Flat branes: $(2,0)$ A_{N-1} SCFTs in 6D
 - Probing \mathbb{C}^2/Γ singularity: $(1,0)$ SCFTs in 6D
 - Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D
 - ...

- The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$dG_4 = N\delta W_6, \quad M_{11} = \mathbb{R}^+ \times M_{10}$$

- M_{10} is the boundary of a tubular neighborhood of the source:
Consider a stack of N M5-branes in M-theory
- Flat branes: $(2, 0) A_{N-1}$ SCFTs in 6D
- Probing \mathbb{C}^2/Γ singularity: $(1, 0)$ SCFTs in 6D
- Wrapped on a surface X: SCFTs in 4D, SCFTs in 2D
- ...

The 4-form flux of M-theory admits a singular magnetic source and the M-theory background has an internal boundary

$$dG_4 = N\delta_{W_6}, \quad M_{11} = \mathbb{R}^+ \times M_{10}$$

M_{10} is the boundary of a tubular neighborhood of the source:

$$M_{10-d} \hookrightarrow M_{10} \rightarrow W_d, \quad M_4 \hookrightarrow M_{10-d} \rightarrow X_{6-d}$$

- M_{10-d}: defines the SCFT in M-theory, can have orbifold fixed points
- M_4: The angular directions that surround the branes
- M_4 fibration fixed by topological twist

SCFT$_d$ on W_d (external spacetime)
Symmetries and Anomalies

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G

- Components of G: the isometry group of M_{10-d}, massless fluctuations of the C_3 potential – Expanded on $H^*(M_{10-d}, \mathbb{Z})_{\text{free}}$

$$\delta C_3 = c_3 + b_2^u \lambda_1^u + a_1^\alpha \omega_\alpha^2 + t_0^x \Lambda_x^3$$

- Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^x) \rightarrow (2, 1, 0, (-1))$-form U(1) gauge symmetries
Symmetries and Anomalies

- Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G.
- Components of G: the isometry group of M_{10-d}, massless fluctuations of the C_3 potential – Expanded on $H^*(M_{10-d}, \mathbb{Z})_{\text{free}}$

$$\delta C_3 = c_3 + b_2^u \lambda_1^1 + a_1^\alpha \omega_\alpha^2 + t_0^x \Lambda_\chi^3$$

- Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^x) \rightarrow (2, 1, 0, (-1))$-form U(1) gauge symmetries
- G induces a global symmetry G for QFT on W_d
- Due to the singular source of G_4, the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous
- Consistency of the full theory, including the M5-brane sources, must be anomaly free

[Callan, Harvey '85]
Reducing M-theory on M_{10-d} can lead to interesting gauge symmetry, G

Components of G: the isometry group of M_{10-d}, massless fluctuations of the C_3 potential – Expanded on $H^*(M_{10-d}, \mathbb{Z})_{\text{free}}$

$$\delta C_3 = c_3 + b_2^u \lambda_u^1 + a_1^\alpha \omega_{\alpha}^2 + t_0^x \Lambda_x^3$$

Bulk gauge fields: $(c_3, b_2^u, a_1^\alpha, t_0^x) \rightarrow (2, 1, 0, (-1))$-form U(1) gauge symmetries

G induces a global symmetry G for QFT on W_d

Due to the singular source of G_4, the classical variation of the M-theory action under diffeomorphisms and the gauge group G is anomalous

Consistency of the full theory, including the M5-brane sources, must be anomaly free

[Callan, Harvey ’85]

Anomaly Inflow: The quantum anomalies for the boundary degrees of freedom on the M5-branes must cancel the classical bulk anomaly

The bulk supergravity action can be used to obtain the anomalies for SCFTs from M5-branes
The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4 = 2\pi \rho(r) \bar{G}_4 + \cdots \quad \text{with} \quad \int_{M_4} \bar{G}_4 = N$$

$\rho(r)$ is a bump function that vanishes away from the boundary.
The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore ’98]

$$G_4 = 2\pi \rho(r) \tilde{G}_4 + \cdots \quad \text{with} \quad \int_{M_4} \tilde{G}_4 = N$$

$\rho(r)$ is a bump function that vanishes away from the boundary.

The boundary term \tilde{G}_4 is a closed and globally defined four-form on M_{10-d}.

\tilde{G}_4 can be extended to a closed, gauge invariant and globally defined four-form, E_4, on the space M_{10} by gauging the action of the group G

$$\tilde{G}_4 \quad \text{on} \quad M_{10-d} \implies E_4 \quad \text{on} \quad M_{10}$$
The anomalous variation of the M-theory action depends on the boundary condition of G_4 corresponding to the singular source [Freed, Harvey, Minasian, Moore '98]

$$G_4 = 2\pi \rho(r) \tilde{G}_4 + \cdots \quad \text{with} \quad \int_{M_4} \tilde{G}_4 = N$$

$\rho(r)$ is bump function that vanishes away from the boundary

- The boundary term \tilde{G}_4 is a closed and globally defined four-form on M_{10-d}
- \tilde{G}_4 can be extended to a closed, gauge invariant and globally defined four-form, E_4, on the space M_{10} by gauging the action of the group G

$$\tilde{G}_4 \quad \text{on} \quad M_{10-d} \quad \Rightarrow \quad E_4 \quad \text{on} \quad M_{10}$$

On W_d, the gauging corresponds to turning on background fields for the global symmetry

Background fields \iff Boundary value of bulk gauge fields
The variation of the M-theory action localizes on the boundary
\[\frac{\delta S_M}{2\pi} = \int_{M_{10}} \mathcal{I}_{10}^{(1)}, \quad d\mathcal{I}_{10}^{(1)} = \delta \mathcal{I}_{11}^{(0)}, \quad d\mathcal{I}_{11}^{(0)} = \mathcal{I}_{12} \]

The 12-form anomaly polynomial is completely characterized by \(E_4 \) and the M-theory action
\[\mathcal{I}_{12} = -\frac{1}{6} E_4 \wedge E_4 \wedge E_4 - E_4 \wedge X_8 \]

the 8-form, \(X_8 = \frac{1}{192} [p_1(TM_{11})^2 - 4p_2(TM_{11})] \sim R^4 \), decomposed on \(M_{11} = \mathbb{R}^+ \times M_{10} \) – Gravitational anomalies
The variation of the M-theory action localizes on the boundary

\[
\frac{\delta S_M}{2\pi} = \int_{M_{10}} I_{10}^{(1)}, \quad dI_{10}^{(1)} = \delta I_{11}^{(0)}, \quad dI_{11}^{(0)} = I_{12}
\]

The 12-form anomaly polynomial is completely characterized by \(E_4 \) and the M-theory action

\[
I_{12} = -\frac{1}{6} E_4 \wedge E_4 \wedge E_4 - E_4 \wedge X_8
\]

the 8-form, \(X_8 = \frac{1}{192} \left[p_1(T\!M_{11})^2 - 4p_2(T\!M_{11}) \right] \sim R^4 \), decomposed on \(M_{11} = \mathbb{R}^+ \times M_{10} \) – Gravitational anomalies

Anomaly inflow statement:

\[
i_{d+2}^{\text{inf}} + i_{d+2}^{\text{CFT}} + i_{d+2}^{\text{decoupled}} = 0, \quad i_{d+2}^{\text{inf}} = \int_{M_{10-d}} I_{12}
\]
Anomaly for 6D (2, 0) Theory – Flat branes

- M_{10} and boundary condition for G_4 are

 \[M_{10} = W_6 \times S^4, \quad \bar{G}_4 = N \, d\Omega_4 \]

M_4: Round 4-sphere and the induced global symmetry is $SO(5)$ – the R-symmetry of the (2, 0) SCFT
M_{10} and boundary condition for G_4 are

$$M_{10} = W_6 \times S^4, \quad \tilde{G}_4 = N \, d\Omega_4$$

M_4: Round 4-sphere and the induced global symmetry is $SO(5)$ – the R-symmetry of the (2, 0) SCFT

The extension of \tilde{G}_4: global angular form of the 4-sphere

$$E_4 = \frac{N}{64\pi^2} \epsilon_{a_1 \cdots a_5} y^{a_5} \left[D y^{a_1} \cdots D y^{a_4} + 2 F^{a_1 a_2} D y^{a_3} D y^{a_4} + F^{a_1 a_2} F^{a_3 a_4} \right]$$

$$D y^a = d y^a - A^{ab} y^b, \quad y^a y^a = 1$$

Here A^{ab} is the $SO(5)$ connection with field strength F^{ab}
Anomaly for 6D (2, 0) Theory – Flat branes

- M_{10} and boundary condition for G_4 are
 \[M_{10} = W_6 \times S^4, \quad \bar{G}_4 = N d\Omega_4 \]

M_4: Round 4-sphere and the induced global symmetry is $SO(5)$ – the R-symmetry of the (2, 0) SCFT

- The extension of \bar{G}_4 : global angular form of the 4-sphere
 \[
 E_4 = \frac{N}{64\pi^2} \epsilon_{a_1 \cdots a_5} y^{a_5} \left[Dy^{a_1} \cdots Dy^{a_4} + 2F^{a_1 a_2} Dy^{a_3} Dy^{a_4} + F^{a_1 a_2} F^{a_3 a_4} \right]
 \]
 \[
 Dy^a = dy^a - A^{ab} y^b, \quad y^a y^a = 1
 \]

- Here A^{ab} is the $SO(5)$ connection with field strength F^{ab}

- Integrating \mathcal{I}_{12} on S^4: [Freed, Harvey, Minasian, Moore ’98; Harvey, Minasian, Moore ’98]
 \[
 I_{8}^{\text{inf}} + I_8[(2, 0) \text{ SCFT}] + I_8[\text{Free (2,0) tensor}] = 0
 \]
The extension E_4 has different components

$$E_4 = \sum_\mathcal{p} E_4^{\mathcal{p}}$$

$E_4^{\mathcal{p}}$: expansion along a basis of $H^p(M_{10-d}, \mathbb{Z})_{\text{free}}$

$$\tilde{\mathcal{G}}_4 = N^a \omega^4_a \rightarrow E_4^4 = N^a \left[\Omega^4_{a} g + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

$F^I = DA^I$: Background gauge fields for isometry group
The extension E_4 has different components

$$E_4 = \sum_p E_4^p$$

- E_4^p: expansion along a basis of $H^p(M_{10-d}, \mathbb{Z})_{\text{free}}$

$$\bar{G}_4 = N^a \Omega^4_a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega^4_{a,g} + F^I \omega^g_{a,I} + F^I F^J \sigma_{a,IJ} \right]$$

- $F^I = DA^I$: Background gauge fields for isometry group

- Closure of E_4:
 $$\iota_I \Omega^4_a + d\omega_{a,I} = 0, \quad \iota_I (\iota_J \omega_{a,J}) + d\sigma_{a,IJ} = 0$$
The extension E_4 has different components

$$E_4 = \sum_p E_4^p$$

E_4^p: expansion along a basis of $H^p(M_{10-d}, \mathbb{Z})_{free}$

$$\tilde{G}_4 = N^a \Omega_4^a \rightarrow E_4^4 = N^a \left[\Omega_4^{a,g} + F^I \omega_{a,I}^g + F^I F^J \sigma_{a,IJ} \right]$$

$F^I = DA^I$: Background gauge fields for isometry group

Closure of E_4:

$$\iota_I \Omega_4^a + d\omega_{a,I} = 0, \quad \iota_I (\omega_{a,J} + d\sigma_{a,IJ}) = 0$$

The expansion along 2-forms is

$$E_4^2 = F^\alpha \left[\omega_{2,g}^\alpha + F^I \sigma_{\alpha,I} \right], \quad \iota_I \omega_2^\alpha + d\sigma_{\alpha,I} = 0$$

$F^\alpha = dA^\alpha$ – background field in QFT \iff Boundary value of bulk gauge field $f^\alpha = da^\alpha$
The extension \(E_4 \) has different components:

\[
E_4 = \sum_p E_4^p
\]

\(E_4^p \): expansion along a basis of \(H^p(M_{10-d}, \mathbb{Z})_{\text{free}} \)

\[
\tilde{G}_4 = N^a \Omega_4^a \quad \rightarrow \quad E_4^4 = N^a \left[\Omega_4^{4,g} + F^I \omega_{a,I}^g + F^I F^J \sigma_{a,IJ} \right]
\]

\(F^I = DA^I \): Background gauge fields for isometry group

Closure of \(E_4 \):

\[
\iota_I \Omega_4^a + d\omega_{a,l} = 0, \quad \iota_I (\omega_{a,J} + d\sigma_{a,IJ} = 0
\]

The expansion along 2-forms is

\[
E_4^2 = F^\alpha \left[\omega_2^{2,g} + F^I \sigma_{\alpha,I} \right], \quad \iota_I \omega_2^{2,\alpha} + d\sigma_{\alpha,l} = 0
\]

\(F^\alpha = dA^\alpha \) – background field in QFT \(\iff \) Boundary value of bulk gauge field \(f^\alpha = da^\alpha \)

Choices for \(E_4 \) labeled by \(G_{\text{isom}} \)-equivariant cohomology of \(M_{10-d} \)
Compute anomaly by considering local ansatz for metric and p-forms on M_{10-d} consistent with symmetry and topology

- Impose regularity conditions on E_4
- Regularity conditions related to integrals of internal forms $(\Omega^4, \omega^2, \ldots)$
- The Inflow anomaly depends on background fields and on flux parameters of M_{10-d}
Consider an $\text{AdS}_{d+1} \times \mathcal{M}_{10-d}$ solution in M-theory supported by a G_{ads}^4 flux.

We can identify $\mathcal{M}_{10-d} = M_{10-d}$ and $G_{ads}^4 = \bar{G}_4$.

The 4-form E_4 can be constructed and \mathcal{I}_{12} yields the anomaly for the dual SCFT.

The X_8 term in \mathcal{I}_{12} yields the $\frac{1}{N^2}$ corrections to the anomaly polynomial.

Extremization principles [Intriligator, Wecht '03; Benini, Bobev '15]

We expect the anomaly to be exact up to $O(1)$ corrections due to decoupled center-of-mass degrees of freedom.
1 Anomalies of SCFTs in M-theory

2 Topological mass terms and discrete symmetry
In the reduction of M-theory on M_{10-d}, there can be topological mass terms and part of the gauge symmetry is spontaneously broken.
In the reduction of M-theory on M_{10-d}, there can be topological mass terms and part of the gauge symmetry is spontaneously broken.

Example: consider an M_6 with closed p-forms, $(\lambda_{u}^{1}, \omega_{\alpha}^{2})$, one expects massless fluctuations for C_{3} of the form

$$\delta C_{3} = a_{1}^{\alpha} \land \omega_{\alpha}^{2} + b_{2}^{u} \land \lambda_{u}^{1} + c_{3} + t_{0}^{x} \Lambda_{x}^{3}$$

$(a_{1}^{\alpha}, b_{2}^{u}, c_{3})$: gauge fields in 5D spacetime for U(1) $(0, 1, 2)$-form gauge symmetries.
In the reduction of M-theory on M_{10-d}, there can be topological mass terms and part of the gauge symmetry is spontaneously broken.

Example: consider an M_6 with closed p-forms, $(\lambda^1_u, \omega^2_\alpha)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a^\alpha_1 \wedge \omega^2_\alpha + b^u_2 \wedge \lambda^1_u + c_3 + t^x_0 \Lambda^3_x$$

(a^α_1, b^u_2, c_3): gauge fields in 5D spacetime for U(1) $(0, 1, 2)$-form gauge symmetries.

M-theory Chern-Simons can lead to topological mass terms of the 5D theory

$$\mathcal{L} = \frac{1}{2\pi} \Omega_{uv} b^u_2 \wedge db^v_2 + \frac{N_\alpha}{2\pi} a^\alpha_1 \wedge dc_3 + \cdots$$

Gauge symmetry is spontaneously broken – dual continuous global symmetry is not present.
In the reduction of M-theory on M_{10-d}, there can be **topological mass terms** and part of the gauge symmetry is **spontaneously broken**

Example: consider an M_6 with closed p-forms, $(\lambda^1_u, \omega^2_\alpha)$, one expects massless fluctuations for C_3 of the form

$$\delta C_3 = a_1^\alpha \wedge \omega^2_\alpha + b^u_2 \wedge \lambda^1_u + c_3 + t^x_0 \Lambda^3_x$$

(a_1^α, b^u_2, c_3): gauge fields in 5D spacetime for $U(1) (0, 1, 2)$-form gauge symmetries

M-theory Chern-Simons can lead to **topological mass terms** of the 5D theory

$$\mathcal{L} = \frac{1}{2\pi} \Omega_{uv} b^u_2 \wedge db^v_2 + \frac{N_\alpha}{2\pi} a_1^\alpha \wedge dc_3 + \cdots$$

Gauge symmetry is spontaneously broken – dual continuous global symmetry is not present.

Topological mass terms have important consequences for anomaly inflow results!
Consider the 5d topological action \[S = \frac{M}{2\pi} \int_{\mathcal{M}_5} b_2 \wedge d\tilde{b}_2 + \frac{k}{2\pi} \int_{\mathcal{M}_5} c_3 \wedge da_1 \]

Large gauge transformations imply that \((M, k)\) are integers

On Shell: \(dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0 \) – no local operators
Consider the 5d topological action $[\text{Banks, Seiberg '11}]
\begin{align*}
S &= \frac{M}{2\pi} \int_{\mathcal{M}_5} b_2 \wedge d\tilde{b}_2 + \frac{k}{2\pi} \int_{\mathcal{M}_5} c_3 \wedge da_1 \\
\end{align*}

- Large gauge transformations imply that (M, k) are integers
- On Shell: $dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0$ – no local operators
- Observables: Holonomies of gauge fields – “Wilson lines”
\begin{align*}
W_c(C_3, n) &= \exp \left(i \ n \int_{C_3} c_3 \right), \\
W_a(C_1, n) &= \exp \left(i \ n \int_{C_1} a_1 \right) \\
W_b(C_2, n, \tilde{n}) &= \exp \left(i \int_{C_2} [\tilde{n} \ b_2 - n \ \tilde{b}_2] \right)
\end{align*}

Correlation functions of “Wilson lines” implies that c_3, a_1 are flat connections with holonomies in $\mathbb{Z}^k \in \mathbb{U}(1)$
b_2, \tilde{b}_2 are flat connections with holonomies in $\mathbb{Z}^M \in \mathbb{U}(1)$

Topological mass terms are dual to the Stückelberg action – Discrete symmetry left over from spontaneous breaking of $\mathbb{U}(1)$ symmetries
Consider the 5d topological action \[\text{[Banks, Seiberg '11]} \]

\[
S = \frac{M}{2\pi} \int_{\mathcal{M}_5} b_2 \wedge d\tilde{b}_2 + \frac{k}{2\pi} \int_{\mathcal{M}_5} c_3 \wedge da_1
\]

Large gauge transformations imply that \((M, k)\) are integers

On Shell: \(dc_3 = da_1 = db_2 = d\tilde{b}_2 = 0\) – no local operators

Observables: Holonomies of gauge fields – “Wilson lines"

\[
W_c(C_3, n) = \exp \left(i \ n \int_{C_3} c_3 \right), \quad W_a(C_1, n) = \exp \left(i \ n \int_{C_1} a_1 \right)
\]

\[
W_b(C_2, n, \tilde{n}) = \exp \left(i \int_{C_2} [\tilde{n} \ b_2 - n \ \tilde{b}_2] \right)
\]

Correlation functions of “Wilson lines” implies that

- \(c_3, a_1\) are flat connections with holonomies in \(\mathbb{Z}_k \in U(1)\)
- \(b_2, \tilde{b}_2\) are flat connections with holonomies in \(\mathbb{Z}_M \in U(1)\)

Topological mass terms are dual to the \textbf{Stückelberg action} – Discrete symmetry left over from spontaneous breaking of \(U(1)\) symmetries
In suitable normalization of gauge fields, and due to flux quantization, \((\Omega_{uv}, N_\alpha)\) are quantized.

The topological mass terms describe discrete gauge symmetries in the 5D supergravity.

For \(\Omega_{12} = M\), and \(k = \gcd(N_\alpha)\) the discrete gauge symmetries are:

\[
\begin{align*}
\mathbb{Z}_k & \quad \text{2-form with} \quad c_3 \\
\mathbb{Z}_k & \quad \text{0-form with} \quad a_1 = m_\alpha a_1^\alpha, \quad N_\alpha = k m_\alpha \\
\mathbb{Z}_M \times \mathbb{Z}_M & \quad \text{1-form with} \quad (b_2^1, b_2^2)
\end{align*}
\]
The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]

<table>
<thead>
<tr>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>Z$_k^0$-form symmetry</td>
</tr>
<tr>
<td>(b)</td>
<td>Z$_m^2$-form symmetry</td>
</tr>
<tr>
<td>(c)</td>
<td>Z$_m$-form symmetry</td>
</tr>
</tbody>
</table>
The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]

Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

<table>
<thead>
<tr>
<th>Case</th>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(c_3): free</td>
<td>(\mathbb{Z}_k) 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>(a_1): Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>(a_1): free</td>
<td>(\mathbb{Z}_k) 2-form symmetry</td>
</tr>
<tr>
<td></td>
<td>(c_3): Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>(k = mm')</td>
<td>(\mathbb{Z}_{m'}) 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>(c_3): free modulo (\mathbb{Z}_{m'})</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(a_1): free modulo (\mathbb{Z}_m)</td>
<td>(\mathbb{Z}_m) 2-form symmetry</td>
</tr>
</tbody>
</table>
Boundary discrete symmetry

- The boundary global symmetry dual to the discrete gauge symmetry depends on the choice of boundary condition for the gauge fields [Witten '99]

- Dirichlet boundary conditions cannot be imposed on both fields in a BF theory

<table>
<thead>
<tr>
<th>Case</th>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>c_3: free</td>
<td>\mathbb{Z}_k 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>a_1: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>a_1: free</td>
<td>\mathbb{Z}_k 2-form symmetry</td>
</tr>
<tr>
<td></td>
<td>c_3: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(c) $k = mm'$</td>
<td>c_3: free modulo $\mathbb{Z}_{m'}$</td>
<td>$\mathbb{Z}_{m'}$ 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>a_1: free modulo \mathbb{Z}_m</td>
<td>\mathbb{Z}_m 2-form symmetry</td>
</tr>
</tbody>
</table>

- Dirichlet boundary conditions fix a source for discrete symmetry in the dual theory [Gaiotto, Kapustin, Seiberg, Willett '14; Hofman, Iqbal, '18]

- Mixed boundary conditions between the fields lead to a larger class of possible choices of boundary discrete symmetry [Gaiotto, Kapustin, Seiberg, Willett '14]

- Similar choices exist for the 1-form discrete symmetry from (b_2, \tilde{b}_2)
<table>
<thead>
<tr>
<th>Case</th>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>c_3: free</td>
<td>\mathbb{Z}_k 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>a_1: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>a_1: free</td>
<td>\mathbb{Z}_k 2-form symmetry</td>
</tr>
<tr>
<td></td>
<td>c_3: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(c) $k = mm'$</td>
<td>c_3: free modulo $\mathbb{Z}_{m'}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>a_1: free modulo \mathbb{Z}_m</td>
<td>$\mathbb{Z}_{m'}$ 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>\mathbb{Z}_m 2-form symmetry</td>
</tr>
</tbody>
</table>

In case (c), there is a **mixed 't Hooft anomaly** between the two discrete symmetry

[Gaiotto, Kapustin, Seiberg, Willett '14; Bergman, Tachikawa, Zafrir '20]
Boundary discrete symmetry

<table>
<thead>
<tr>
<th>Case</th>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>c_3: free</td>
<td>\mathbb{Z}_k 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>a_1: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>a_1: free</td>
<td>\mathbb{Z}_k 2-form symmetry</td>
</tr>
<tr>
<td></td>
<td>c_3: Dirichlet</td>
<td></td>
</tr>
<tr>
<td>(c) $k = mm'$</td>
<td>c_3: free modulo $\mathbb{Z}_{m'}$</td>
<td>$\mathbb{Z}_{m'}$ 0-form symmetry</td>
</tr>
<tr>
<td></td>
<td>a_1: free modulo \mathbb{Z}_m</td>
<td>\mathbb{Z}_m 2-form symmetry</td>
</tr>
</tbody>
</table>

- In case (c), there is a mixed ’t Hooft anomaly between the two discrete symmetry
 [Gaiotto, Kapustin, Seiberg, Willett ’14; Bergman, Tachikawa, Zafrir ’20]

- Formally the anomaly polynomial includes
 $$I_6 \supset k \frac{dA_1}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \Omega_{uv} \frac{dB_2^u}{2\pi} \wedge \frac{dB_2^v}{2\pi}$$

- $(A_1, \tilde{C}_3, B_2^u, B_2^v)$ are the boundary values of the gauge field (a_1, c_3, b_2^u, b_2^v)
Boundary discrete symmetry

<table>
<thead>
<tr>
<th>Case</th>
<th>Boundary Condition</th>
<th>Boundary Symmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td>(c_3:) free (a_1:) Dirichlet</td>
<td>(\mathbb{Z}_k) 0-form symmetry</td>
</tr>
<tr>
<td>(b)</td>
<td>(a_1:) free (c_3:) Dirichlet</td>
<td>(\mathbb{Z}_k) 2-form symmetry</td>
</tr>
<tr>
<td>(c) (k = mm')</td>
<td>(c_3:) free modulo (\mathbb{Z}_{m'}) (a_1:) free modulo (\mathbb{Z}_m)</td>
<td>(\mathbb{Z}_{m'}) 0-form symmetry (\mathbb{Z}_m) 2-form symmetry</td>
</tr>
</tbody>
</table>

- In case (c), there is a **mixed ’t Hooft anomaly** between the two discrete symmetry
 [Gaiotto, Kapustin, Seiberg, Willett ’14; Bergman, Tachikawa, Zafrir ’20]
- Formally the anomaly polynomial includes
 \[
 I_6 \supset k \frac{dA_1}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \Omega_{uv} \frac{dB_{2u}^v}{2\pi} \wedge \frac{dB_{2v}^u}{2\pi}
 \]
- \((A_1, \tilde{C}_3, B_{2u}^v, B_{2v}^u)\) are the boundary values of the gauge field \((a_1, c_3, b_{2u}^v, b_{2v}^u)\)
- These anomalies determine the surface and line operators that can exist for the gauge theory
- From the bulk, the choice of boundary condition determines which bulk “Wilson lines” can end on the boundary
In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \mathcal{K}_\alpha \cdot \frac{F^\alpha}{2\pi} \wedge Q^\bullet_4 + \mathcal{K} \cdot \frac{d\tilde{C}_3}{2\pi} \wedge \tilde{Q}^\bullet_2 \\
+ \mathcal{K}_{\alpha\beta} \cdot \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge Q^\bullet_2 + \mathcal{K}_{\alpha\beta\gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \]

The \mathcal{K}’s are intersection numbers from various 2-forms in M_6, $F^\alpha = dA^\alpha$

The Q’s involve background fields for other symmetries including curvature terms for gravitational anomalies.
In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d\widetilde{C}_3}{2\pi} + \kappa_{\alpha\cdot} \frac{F^\alpha}{2\pi} \wedge Q_4^\bullet + \kappa_\bullet \frac{d\widetilde{C}_3}{2\pi} \wedge \widetilde{Q}_2^\bullet \]

\[+ \kappa_{\alpha\beta\cdot} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge Q_2^\bullet + \kappa_{\alpha\beta\gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \]

The \(\kappa \)'s are intersection numbers from various 2-forms in \(M_6 \), \(F^\alpha = dA^\alpha \)

The \(Q \)'s involve background fields for other symmetries including curvature terms for gravitational anomalies

Disclaimer: Anomaly polynomial and its component forms should be understood as field strength for differential co-cycles
Mixed ’t Hooft Anomalies

In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d \tilde{C}_3}{2\pi} + K_\alpha \bullet \frac{F^\alpha}{2\pi} \wedge Q_4^\bullet + K_\bullet \frac{d \tilde{C}_3}{2\pi} \wedge \tilde{Q}_2^\bullet + K_{\alpha\beta} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge Q_2^\bullet + K_{\alpha\beta\gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \]

The \(K \)'s are intersection numbers from various 2-forms in \(M_6 \), \(F^\alpha = dA^\alpha \)

The \(Q \)'s involve background fields for other symmetries including curvature terms for gravitational anomalies

Disclaimer: Anomaly polynomial and its component forms should be understood as field strength for differential co-cycles

A basis transformation \((A^\alpha) \longrightarrow (A_1, A_\alpha')\) that is consistent with quantization of flux is necessary

When successful mixed ’t Hooft anomalies between discrete and continuous symmetries can be read off from the anomaly polynomial
In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + K_{\alpha \bullet} \frac{F^\alpha}{2\pi} \wedge Q_4^\bullet + K_\bullet \frac{d\tilde{C}_3}{2\pi} \wedge \tilde{Q}_2^\bullet \]

\[+ K_{\alpha \beta \bullet} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge Q_2^\bullet + K_{\alpha \beta \gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \]

If we care only about perturbative anomalies, things are less subtle: Impose equation of motion for massive bulk fields on background fields

\[N_\alpha F^\alpha + K_\bullet \tilde{Q}_2^\bullet = 0 \]
Anomalies for continuous symmetries

- In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \mathcal{K}_\alpha \bullet F^\alpha \wedge Q^\bullet_4 + \mathcal{K} \bullet \frac{d\tilde{C}_3}{2\pi} \wedge \tilde{Q}^\bullet_2 \]

\[+ \mathcal{K}_{\alpha\beta} \bullet \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge Q^\bullet_2 + \mathcal{K}_{\alpha\beta\gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \]

- If we care only about perturbative anomalies, things are less subtle: Impose equation of motion for massive bulk fields on background fields

\[N_\alpha F^\alpha + \mathcal{K} \bullet \tilde{Q}^\bullet_2 = 0 \]

- \(\tilde{Q}^\bullet_2 \) is either field strength for a 0-form symmetry or products of \(dT_0^x \) – Boundary field strength for axions

- \(T_0^x \) – background dependent coupling parameters!
Anomalies for continuous symmetries

- In general, the anomaly polynomial includes terms

\[I_6 \supset N_\alpha \frac{F^\alpha}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + K_{\alpha\bullet} \frac{F^\alpha}{2\pi} \wedge Q_4^\bullet + K_{\bullet} \frac{d\tilde{C}_3}{2\pi} \wedge \tilde{Q}_2^\bullet \]

\[+ K_{\alpha\beta\gamma} \frac{F^\alpha}{2\pi} \wedge \frac{F^\beta}{2\pi} \wedge \frac{F^\gamma}{2\pi} \wedge \tilde{Q}_2^\bullet \]

- If we care only about perturbative anomalies, things are less subtle: Impose equation of motion for massive bulk fields on background fields

\[N_\alpha F^\alpha + K_{\bullet} \tilde{Q}_2^\bullet = 0 \]

\[\tilde{Q}_2^\bullet \text{ is either field strength for a 0-form symmetry or products of } dT_0^x \text{ – Boundary field strength for axions} \]

\[T_0^x \text{ – background dependent coupling parameters!} \]

- Constraints on background fields translate to constraints on symmetry generators \(J^\alpha \):

\[N_\alpha F^\alpha \rightarrow M_\alpha J^\alpha = 0 \]

a-maximization for CFT is sensitive to constraints over U(1) symmetries that can mix with the R-symmetry
Green-Schwarz terms [IB, Bonetti, Minasian, Nardoni '19]

- Constraint on anomalies for continuous symmetries in 6d
Green-Schwarz terms [IB, Bonetti, Minasian, Nardoni '19]

- Constraint on anomalies for continuous symmetries in 6d

\[I_8 \rightarrow I_8 + \frac{1}{4} \frac{d\tilde{C}_3}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \frac{d\tilde{C}_3}{2\pi} Q_4 \rightarrow I_8 - Q_4^2 \]
- **Constraint on anomalies for continuous symmetries in 6d**

 $$ I_8 \rightarrow I_8 + \frac{1}{4} \frac{d\tilde{C}_3}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \frac{d\tilde{C}_3}{2\pi} Q_4 \rightarrow I_8 - Q_4^2 $$

- **Anomaly inflow for 6D (1, 0) SCFTs from M5 branes at orbifolds** [Ohmori, Shimizu, Tachikawa, Yonekura, ’14]

 Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.
Green-Schwarz terms [IB, Bonetti, Minasian, Nardoni '19]

- Constraint on anomalies for continuous symmetries in 6d

\[I_8 \rightarrow I_8 + \frac{1}{4} \frac{d\tilde{C}_3}{2\pi} \wedge \frac{d\tilde{C}_3}{2\pi} + \frac{d\tilde{C}_3}{2\pi} Q_4 \rightarrow I_8 - Q_4^2 \]

- Anomaly inflow for 6D (1, 0) SCFTs from M5 branes at orbifolds [Ohmori, Shimizu, Tachikawa, Yonekura, '14]

- Interpreted as a Green-Schwarz term associated to the decoupled center of mass mode of the stack in Ohmori et al.

- Bulk equation of motion fix Green-Schwarz term!
In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]

Singletons: Pure gauge modes in the bulk and dynamical in the boundary

\[\frac{M}{2\pi} b_p \wedge da_{d-p-1} \rightarrow (p-1)\text{-form gauge field singleton} \]

SUSY partners from KK singletons
Singletons and Decoupled modes [IB, Bonetti, Minasian: 2007.15003]

- In presence of a boundary, BF theories admit singleton modes [Witten '99; Maldacena, Moore, Seiberg '01]
- Singletons: Pure gauge modes in the bulk and dynamical in the boundary
 \[
 \frac{M}{2\pi} b_p \wedge da_{d-p-1} \rightarrow (p-1)-\text{form gauge field singleton}
 \]
- SUSY partners from KK singletons
- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to \((b_p, a_{d-p-1})\) gauge fields
- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes
 \[
 I^{\text{inf}} + I^{\text{CFT}} + I^{\text{decoupled}} = 0
 \]
Singletons and Decoupled modes [IB, Bonetti, Minasian: 2007.15003]

- In presence of a boundary, BF theories admit singleton modes
 [Witten '99; Maldacena, Moore, Seiberg '01]

- Singletons: Pure gauge modes in the bulk and dynamical in the boundary

\[
\frac{M}{2\pi} b_p \wedge da_{d-p-1} \rightarrow (p-1)\text{-form gauge field singleton}
\]

- SUSY partners from KK singletons

- Singletons dual to Goldstone modes of the spontaneously broken boundary symmetry associated to \((b_p, a_{d-p-1})\) gauge fields

- Singletons contribute to the inflow anomaly and must be subtracted as part of the decoupled modes

\[
I^{\text{inf}} + I^{\text{CFT}} + I^{\text{decoupled}} = 0
\]

- Singletons account for all decoupling modes in SUSY compactifications of M5-branes on punctured Riemann surfaces! (not including orbifold theories)

The symmetry and topology of \(M_{10-d}\) completely fix the anomaly of SCFTs from M5-branes and its compactifications
Applications to orbifold theories

- Consider a stack of N $M5$-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity.
- The linking space $M_4 = S^4/\mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles.
- Space that define the QFT is $M_6 = M_4 \times \Sigma_g$ with a topological twist to preserve SUSY.
Consider a stack of N $M5$-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity

- The linking space $M_4 = S^4/\mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles
- Space that define the QFT is $M_6 = M_4 \times \Sigma_g$ with a topological twist to preserve SUSY
- In M-theory, resolve the fixed points by introducing $2k - 2$ two-cycles C_i^2
- Including the Riemann surface, there are $2k - 1$ two-cycles
Consider a stack of N $M5$-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity.

The linking space $M_4 = S^4/\mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles.

Space that define the QFT is $M_6 = M_4 \times \Sigma_g$ with a topological twist to preserve SUSY.

In M-theory, resolve the fixed points by introducing $2k - 2$ two-cycles C^i_2.

Including the Riemann surface, there are $2k - 1$ two-cycles.

Thread flux N^i units of four-form flux on $C^i_2 \times \Sigma_g$ to make large bubbles.

The system is labeled by $2k - 1$ flux parameters, (N, N^i).
Consider a stack of N $M5$-branes wrapped on a Riemann surface Σ_g and probing a $\mathbb{C}^2/\mathbb{Z}_k$ singularity.

The linking space $M_4 = S^4/\mathbb{Z}_k$, there are two \mathbb{Z}_k orbifold fixed points at the poles.

Space that define the QFT is $M_6 = M_4 \times \Sigma_g$ with a topological twist to preserve SUSY.

In M-theory, resolve the fixed points by introducing $2k - 2$ two-cycles C^i_2.

Including the Riemann surface, there are $2k - 1$ two-cycles.

Thread flux N^i units of four-form flux on $C^i_2 \times \Sigma_g$ to make large bubbles.

The system is labeled by $2k - 1$ flux parameters, (N, N^i).

There is an additional twist parameter from the $U(1)$ commutant of the R-symmetry in the isometry group of S^4.
Symmetry of system

One-cycles:

\[[\lambda^u, \tilde{\lambda}^u] \text{ on the } \Sigma_g, \ b^1(M_6) = 2g \]

- \(U(1)^{2g} \) 1-form gauge symmetry with \(Sp(2g, \mathbb{Z}) \) S-duality group
- Topological mass terms break gauge symmetry to \((\mathbb{Z}_N \times \mathbb{Z}_N)^g \) 1-form symmetry
Symmetry of system

One-cycles:

\[\lambda^u, \tilde{\lambda}^u \] on the \(\Sigma_g \), \(b^1(M_6) = 2g \)

- \(U(1)^{2g} \) 1-form gauge symmetry with \(Sp(2g, \mathbb{Z}) \) S-duality group
- Topological mass terms break gauge symmetry to \((\mathbb{Z}_N \times \mathbb{Z}_N)^g \) 1-form symmetry

Two-cycles:

\[C_2^\alpha = (C_i^j, \Sigma_g) \] on \(M_6 \), \(b^2(M_6) = 2k - 1 \)

- \(U(1)^{2k-1} \) 0-form gauge symmetry
- Since \(b^0(M_6) = 1 \), Topological mass term involving a linear combination \(N_\alpha a_1^\alpha \wedge c_3 \)
- There is \(\mathbb{Z}_k \) 2-form and \(U(1)^{2(k-1)} \times \mathbb{Z}_k \) 0-form gauge symmetry, \(k = \gcd(N_\alpha) \)

[\text{C´ordova, Freed, Lam, Seiberg, '19}]
Symmetry of system

One-cycles:
\[[\lambda^u, \tilde{\lambda}^u] \] on the \(\Sigma_g \), \(b^1(M_6) = 2g \)
- \(U(1)^{2g} \) 1-form gauge symmetry with \(Sp(2g, \mathbb{Z}) \) S-duality group
- Topological mass terms break gauge symmetry to \((\mathbb{Z}_N \times \mathbb{Z}_N)^g\) 1-form symmetry

Two-cycles:
\[[C_2^\alpha = (C_2^i, \Sigma_g)] \] on \(M_6 \), \(b^2(M_6) = 2k - 1 \)
- \(U(1)^{2k-1} \) 0-form gauge symmetry
- Since \(b^0(M_6) = 1 \), Topological mass term involving a linear combination \(N_\alpha a_1^\alpha \wedge c_3 \)
- There is \(\mathbb{Z}_k \) 2-form and \(U(1)^{2(k-1)} \times \mathbb{Z}_k \) 0-form gauge symmetry, \(k = \gcd(N_\alpha) \)

Three-cycles:
\((\lambda^u \times C_2^i, \tilde{\lambda}^u \times C_2^i) \) on the \(\Sigma_g \), \(b^3(M_6) = 4g(k - 1) \)
- \(4g(k - 1) \) bulk axions, Boundary value of axions correspond to marginal coupling parameters
- Anomaly involving the axions correspond to anomalies in the space of couplings

[Córdova, Freed, Lam, Seiberg, '19]
Anomalies for $k = 1, 2$ were studied [IB, Bonetti, Minasian '20], For $k > 2$, To appear!
Anomalies for $k = 1, 2$ were studied [IB, Bonetti, Minasian ’20], For $k > 2$, To appear!

Discrete symmetries and higher-form symmetries – role of **torsion in Cohomology group**

Anomalies related to large gauge transformations and duality groups of QFTs – Global anomalies

Defects and extended operators – higher-form discrete symmetry
- Anomalies for $k = 1, 2$ were studied [IB, Bonetti, Minasian ’20], For $k > 2$, To appear!
- Discrete symmetries and higher-form symmetries – role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs – Global anomalies
- Defects and extended operators – higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck ’20]), massive IIA
Anomalies for $k = 1, 2$ were studied [IB, Bonetti, Minasian ’20], For $k > 2$, To appear!

- Discrete symmetries and higher-form symmetries – role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs – Global anomalies
- Defects and extended operators – higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck ’20]), massive IIA
- Conformal blocks relating to Singleton physics and anomalies relating to $Sp(2g, \mathbb{Z})$ duality group (Similar to [Belov, Moore ’04])
Outlook

- Anomalies for $k = 1, 2$ were studied [IB, Bonetti, Minasian ’20], For $k > 2$, To appear!
- Discrete symmetries and higher-form symmetries – role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs – Global anomalies
- Defects and extended operators – higher-form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck ’20]), massive IIA
- Conformal blocks relating to Singleton physics and anomalies relating to $Sp(2g, \mathbb{Z})$ duality group (Similar to [Belov, Moore ’04])
- Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects
- Topological mass terms in 5d supergravity encode discrete global symmetries of the dual field theory
- The same bulk theory with different topological boundary conditions gives field theories with different discrete global symmetries
Summary

- Topological mass terms in 5d supergravity encode discrete global symmetries of the dual field theory
- The same bulk theory with different topological boundary conditions gives field theories with different discrete global symmetries
- We can capture ‘t Hooft anomalies with a 6-form inflow anomaly polynomial
- There is a rich interplay between all p-forms fields from expansion of M-theory C_3 potential
 - Higher-form symmetries
 - Discrete symmetries
 - Anomalies in the space of coupling constants, or “(–1)-form” symmetries
THANK YOU!
One can also consider brane systems in type II string theories

The polynomials that encode the anomalies are 11-forms, \mathcal{I}_{11} constructed from gauge invariant boundary conditions of various flux

The anomaly polynomial of IIA is related to the M-theory \mathcal{I}_{12} by a reduction, It is similarly characterized by IIA Chern-Simons terms

The anomaly polynomial for IIB receives a contribution from the kinetic term of the self-dual five-form flux

If we consider a stack of D3-branes supported by the five-form flux, F_5

$$F_5 = 2\pi(1 + \star)\rho(r)\bar{F}_5 + \cdots \text{ on } M_{10} = \mathbb{R}^+ \times W_d \times M_{9-2d}$$

The boundary term \bar{F}_5 on M_{9-2d} can be extended to E_5 on $W_d \times M_{9-2d}$

The 11-form and the inflow anomaly polynomial are given as

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \quad I_{2d+2}^{\text{inf}} = \int_{M_{9-2d}} \mathcal{I}_{11}$$
The 11-form and the inflow anomaly polynomial are given as
\[I_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge H_3 \wedge F_3, \quad I_{2d+2}^{\text{inf}} = \int_{M_{9-2d}} I_{11} \]

For \(\mathcal{N} = 4 \) SYM, \(E_5 \) is the global angular form of the 5-sphere, \(e_5 \). Integrating \(I_{11} \) yields the anomaly for the \(SO(6) \) R-symmetry group
\[E_5 = N e_5, \quad dE_5 = -N \pi^* \chi(SO(6)), \]
\[I_{6}^{\text{inf}} = \frac{1}{2} N^2 \chi(SO(6)) = \frac{1}{2} N^2 c_3(SU(4)) \]

For more general \(\mathcal{N} = 1 \), \(E_5 \) is the volume of \(SE_5 \) gauged over the world volume theory! Consistent with holographic analysis by [Benvenuti, Pando Zayas, Tachikawa 06]

Anomaly of \(\mathcal{N} = 4 \) SYM on punctured Riemann surface

This anomaly formula can be used to study compactifications of 4D SCFTs to 2D QFTs
Generalize type IIB with non-trivial axio-dilaton profile

Consider an elliptic fibration over the IIB background

$$E_\tau \hookrightarrow M_{12} \to M_{10}$$

The anomaly polynomial is

$$\mathcal{I}_{11} = \frac{1}{2} E_5 \wedge dE_5 - E_5 \wedge \pi_* \left[X_8(TM_{12}) + \frac{1}{2} \mathcal{E}_4 \wedge \mathcal{E}_4 \right]$$

F_3 and H_3 are encoded in \mathcal{E}_4, for trivial elliptic fiber

$$\mathcal{E}_4 = F_3 \wedge dx + H_3 \wedge dy$$

Anomalies of $\mathcal{N} = 4$ with varying coupling, τ_{YM}, can be studied with this generalization [Lawrie, Martelli, Schäfer-Nameki '18]
Things to do

- Compute the anomalies for $\mathcal{N} = 2$ Class S of A_N type with arbitrary punctures [IB, Nardoni, ’18; IB, Bonetti, Minasian, Nardoni ’19]

- The possible choices of E_4 from $M_6 = S^4 \times \Sigma_{g,n}$ is in one-to-one correspondence with the classification from Hitchin equations

- Choices come from different resolutions of punctures on $\Sigma_{g,n}$ in M_6

- This provides an alternate derivation of punctures and the data associated with them from bulk SUGRA

- Explore punctures for $\mathcal{N} = 1$ Class S [IB, Beem, Bobev, Wecht ’12] and from Class S_k [Gaiotto, Razamat, ’15; Hanany, Maruyoshi ’15 and S_Γ [Heckmann, Jefferson, Rudelius, Vafa, ’16]

- Study Class S from the D-series (Inflow for 6D SCFT from [Yi, ’00]) and E-string theories

- Example – Class S_2
Consider a stack of N M5-branes on Σ_g and probing a \mathbb{Z}_2 orbifold fixed point

Here $M_6 = M_4 \times \Sigma_g$ and M_4 is S^4/\mathbb{Z}_2 with resolution two cycles

The resolution is supported by threading flux (N^N, N^S) on 4-cycles made from the resolution 2-cycles combined with the Riemann surface

There are a total of three 4-cycles with three flux parameters (N, N^N, N^S), Associated to them are three closed 2-forms by Poincare duality

The isometry group is $U(1)_R \times SU(2)_F$ and the naive symmetry from C_3 is $U(1)^3$

From the 6d $(1, 0)$ theory, only $U(1)_N \times U(1)_S$ is visible, the third $U(1)_C$ is an accidental symmetry from the compactification!
A combination of the three $U(1)$s is broken by a topological mass – **Spontaneous symmetry break of a $U(1)$ global symmetry** for the field theory

The symmetry of low-energy theory is then $U(1)_N' \times U(1)_S' \times U(1)_R \times SU(2)_L$

The generators of the 2 $U(1)$s visible from the 6d SCFT are shifted as

$$T'_N = T_N - \frac{N^N}{N} T_C, \quad T'_S = T_S - \frac{N^S}{N} T_C$$

After obtaining anomaly polynomial, compute large N central charge by a-maximization [Intriligator, Wecht '03]

Inflow data can be matched with a family of $AdS_5 \times \mathcal{M}_6$ obtained in [Gauntlett, Martelli, Sparks, Waldram '04]
5d SUGRA theory admits a rich discrete gauge symmetry! Thus complex network of discrete symmetry in SCFT which is acted upon by $Sp(2g, \mathbb{Z})$

<table>
<thead>
<tr>
<th>multiplicity</th>
<th>fields</th>
<th>top. mass terms</th>
<th>bulk gauge symm.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b^2(M_6) = 3$</td>
<td>a_1^a</td>
<td>$\frac{1}{2\pi} N_a a_1^a \wedge dc_3$</td>
<td>$U(1)^2$ 0-form symm.</td>
</tr>
<tr>
<td>1</td>
<td>c_3</td>
<td></td>
<td>\mathbb{Z}_k 0-form symm.</td>
</tr>
<tr>
<td>$b^1(M_6) = 2g$</td>
<td>b_2^i, \tilde{b}_2^i</td>
<td>$\frac{1}{2\pi} M \tilde{b}_2^i \wedge db_2^i$</td>
<td>$(\mathbb{Z}_M \times \mathbb{Z}_M)^g$ 1-form symm.</td>
</tr>
<tr>
<td>$b^3(M_6) = 4g$</td>
<td>$a_0^{i\pm}, \tilde{a}_0^{i\pm}$</td>
<td>—</td>
<td>5D axions</td>
</tr>
</tbody>
</table>

There are $4g$ background 1-forms in the anomaly polynomial associated to the axions – Anomaly for background dependent couplings and “(-1)-form symmetry”? [Córdova, Freed, Lam, Seiberg, ’19]
Origin of decoupled modes from M_{10-d}

\[i_{\text{inf}} + i_{\text{QFT}} + i_{\text{decoupled}} = 0 \]

- Discrete symmetries and higher form symmetries – role of torsion in Cohomology group
- Anomalies related to large gauge transformations and duality groups of QFTs – Global anomalies
- Defects and extended operators – higher form discrete symmetry
- Explore general compactifications of 6D theories in IIB/F-theory (Inflow polynomial in [IB, Bonetti, Minasian, Weck '20]), massive IIA

Since the analysis relies less on SUSY, we hope to be able to study more general classes of compactifications with punctures and defects
THANK YOU!
When the stack of M5-branes is probing a $\mathbb{C}^2/\mathbb{Z}_k$ fixed point, $M_4 \cong S^4/\mathbb{Z}_k$

$\mathbb{Z}_k \subset SU(2)_L$ from $SU(2)_L \times SU(2)_R \subset SO(5)$ of the isometry group

When $k = 2$, the orbifold action preserves the $SU(2)_L \times SU(2)_R$ subgroup

On the branes, $SU(2)_L$ is a flavor symmetry and $SU(2)_R$ is an R-symmetry for the worldvolume $(1, 0)$ SCFT

There are two $\mathbb{R}^4/\mathbb{Z}_2$ fixed points on the sphere at the north and south poles

The fluctuations of the C_3 potential leads to an additional $SU(2)_N \times SU(2)_S$ flavor symmetry for the worldvolume theory

For the purpose of the SUGRA analysis, we consider a resolution of the orbifold fixed points by blowing up two-cycles at the poles of the sphere

Symmetry breaks:

$SU(2)_N \times SU(2)_S \times SU(2)_R \times SU(2)_L \rightarrow U(1)_N \times U(1)_S \times U(1)_R \times SU(2)_L$
The space M_4 is a circle fibration, S^1_ψ, over a cylinder $[\mu] \times S^2_\varphi$. The isometries of $S^1_\psi \times S^2_\varphi$ correspond to $U(1)_R \times SU_L(2)$

$S^1_\psi \times S^2_\varphi$ have a topology of S^3/\mathbb{Z}_2

The circle S^1_ψ shrinks at the end points of the μ-interval while the two sphere S^2_φ never shrinks

The non-shrinking sphere at the end of the μ-interval correspond to the blowup two-cycles of the orbifold fixed points
Now we consider the case when the branes wrap a Riemann surface Σ_g while probing the singularity.

This is equivalent to taking the 6D $(1,0)$ theory on a Riemann surface with a topological twist to preserve supersymmetry.

By anomaly matching, the anomaly of the 4D theories can be computed as

$$I_6 = \int_{\Sigma_g} I_8$$

Anomaly polynomial does not yield correct central charge for “potential” dual holographic solution.

Possible accidental symmetry and interesting decoupled modes!
In this case, $M_6 = M_4 \times \Sigma_g$. the R-symmetry circle, S^1_{ψ}, is twisted over the Riemann Surface with curvature $2(g - 1)$.

M_6 has three 4-cycles, two of them correspond to taking the product of the polar two-cycles of M_4 with Σ_g. The third is the embedding of M_4 in M_6.

Threading flux on these cycles yields three quantum number (N, N^N, N^S).

There are three closed 2-forms dual to the 4-cycles. The vector fluctuations of C_3 along these forms implies three $U(1)$ gauge fields in the bulk supergravity.

This suggests a $U(1)^3$ flavor symmetry for the 4d theory.

Compactification of the 6D $(1,0)$ theory only sees $U(1)_N \times U(1)_S$; the third $U(1)_C$ is an accidental symmetry!
In the reduction of M-theory on M_6, a combination of the vectors from C_3 acquires a topological mass term from M-theory CS term

$$S_{5d} \supset N^\alpha \int \gamma_3 \wedge da_\alpha, \quad C_3 \supset a_\alpha \wedge \omega_\alpha + \gamma_3$$

This topological mass term can dualized to St"uckelberg kinetic term with $N^\alpha a_\alpha$ eating the axion dual to γ_3

In the bulk supergravity this is spontaneous breaking of a $U(1)$ gauge symmetry and on the boundary, it corresponds to spontaneous breaking of a $U(1)$ global symmetry!

The symmetry of low-energy theory is then $U(1)_N' \times U(1)_S' \times U(1)_R \times SU(2)_L$

The generators are shifted as

$$T'_N = T_N - \frac{N^N}{N} T_C, \quad T'_S = T_S - \frac{N^S}{N} T_C$$
We write the 4-form as
\[
E_4 = N (\mathcal{V}_0^g + \cdots) + N^N (\mathcal{V}_N^g + \cdots) + N^S (\mathcal{V}_S^g + \cdots)
+ F^0 (\omega_0^g + \cdots) + F_{4d}^N (\omega_N^g + \cdots) + F_{4d}^S (\omega_S^g + \cdots)
\]

The field strength for the vector fluctuations of C_3 are $(F^0, F_{4d}^N, F_{4d}^S)$, one of them is removed by the constraint
\[
NF^0 + N^N F_{4d}^N + N^S F_{4d}^S = 0
\]

This constraint also follows from the tadpole condition

The 4d curvatures are related to the 6d curvatures as
\[
F^N = N^N V_\Sigma + F_{4d}^N, \quad F^S = N^S V_\Sigma + F_{4d}^S
\]

The flux (N^N, N^S) are background flux for the 6D flavor symmetry on the Riemann surface

\[
l_{6, \text{large } N}^{\text{infl}} = \frac{1}{(2\pi)^3} \left[\frac{1}{2} N (\chi N - N^N + N^S) F_R^2 (F_N + F_S) - \frac{1}{2} (N^N - N^S) F_R (F_N + F_S)^2 \right.
\]
\[
+ N^{-1} (N^N F_N + N^S F_S) (F_N^2 - F_S^2) - \frac{2}{3} \chi (F_N^3 + F_S^3) \right]
\]
To check for the existence of a SCFT fixed point, we look for an AdS solution of the form

$$ds^2 = e^{2\lambda} \left[ds^2(AdS_5) + e^{-6\lambda} ds^2(\tilde{M}_6) \right]$$

The solutions were already found by Gauntlett, Martelli, Sparks and Waldram in 2004!

By construction, symmetries and topology match

From our anomaly computation we can match the large N central charge with a-maximization!

Class S_2 with a torus is dual to the $AdS_5 \times Y^{p,q}$ solutions in IIB supergravity