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What is machine learning?

Dealing with incomplete or 
empirical physics. - the cutting 
edge is always unknown.

Dealing with an overload of data, 
often noisy, biased and 
incomplete.

Dealing with repeatable processes 
that can’t be described by simple 
linear relations.

Automating ourselves back into 
manual labor

Picture from: https://quickdraw.withgoogle.com/data
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Why use ML? Do we need it in physics?

Galaxy spectra -> Stellar mass, Star 
Formation Rate, Redshift.. and more

Problems: highly nonlinear relations, 
increasingly degenerate as we go to older 
ages, noisy, spec-z distribution not 
representative of larger photo-z sample.

Phase transitions in complex systems 
often don’t have analytic solutions. 
Additionally, simulating these systems 
often suffers from exponential growth of 
the space of possible configurations.
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Do we need it in physics? - II 

Techniques coming of age - proverbial black box starting to 
open … 

Experiments at the LHC are essentially cameras - Producing 
pretty pictures 

Datasets are really really huge and signal is very small 

New physics is elusive! We are searching for something that 
we do not know what it looks like!

We want something thats faster, better and essentially new 
and doesnt involve grad students running code for a very 
long time !

Might as well get comfortable with our future overlords 4



What is deep learning? (and why do we 
care?)

In cases with:

- Highly nonlinear problems
- Modeling time constraints 
- A lack of knowledge about feature 

space
- The need for accurate forecasting 

without creating a complete 
model…

Build a network with many layers, that 
won’t die when trained.
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Technical vs practical machine learning 
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Two main class of problems we deal with - 

- Identify if an object belongs to 
one of N subgroups

- Divide objects into distinct classes 
and find the discriminating 
feature(s) 

- Identify outliers / class of interest 
in a dataset

- Estimate the relation between 
observables and quantities of 
interest

- Both parametric (eg. fitting a line 
to data) and nonparametric (eg. 
splining / kriging)

- Interpolation and extrapolation
- Prediction and forecasting.

Classification Regression
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Resources [just google it] and Scikit-learn:::
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Three terms: [Training, Testing, Validation]

Training - giving (labeled or unlabeled) data to your method and letting it find a 
mapping between input and output variables

Validation - checking to see if this mapping still works when applied to data not in the 
training set. By being clever about this we can avoid overfitting - creating a mapping 
that describes the training data completely (noise and all) and nothing else.

Testing - after the training is done, this last piece of data is used to check if the 
mapping we’ve got works - determines the predictive power of the ML 
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Now for some biology 



https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/neural_networks.html
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Simple neural network 

Single hidden layer with one output 
layer 

Fully connected - Each node in the 
hidden layer has an input from the 
input layer 

Total number of parameters : ? 

4 x 5 + 5 + 5 + 1= 31 trainable 
parameters

Activation functions are dependent on 
your problem at hand.

What is are you training against? 

Is your feature symmetric? 

Is it bounded? Binary? 12
Comics from becoming human
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Predominantly used in astro and starting to 
gain popularity in HEX 



Visual Example - How a DCNN actually works 

http://scs.ryerson.ca/~aharley/vis/conv/ 

16

http://scs.ryerson.ca/~aharley/vis/conv/


Shawinski et al. (2017)17



Generative Adversarial Networks?

What if the cat and mouse game goes on 
forever? (model instabilities with 
oscillating solutions)

But they can still learn representations 
of, e.g., images, that can be rich in their 
own (linear) structure.
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Radford et al. 2016



Radio frequency interference

Square Kilometre Array 19



Doran (2013)

Radio frequency interference
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Self organising maps

Kind of NN used to produce a low-dimensional representation of complex data.

Metric on the map is some kind of distance. Points close on the map are similar, points 
distant are dissimilar. Maps can be self-growing, elastic, conformal...

Picture from Masters et al.2015. ArXiv: 1509.03318

22



Gaussian Processes

Class of Kernel machines. + Lazy 
learning

‘Process’? - generalization of a 
probability distribution to 
functions.

Can control the process' 
stationarity, isotropy, smoothness 
and periodicity through its 
covariance function.

The prediction is not just an 
estimate for that point, but also has 
uncertainty information
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Gaussian Processes

Class of Kernel machines. + Lazy 
learning

‘Process’? - generalization of a 
probability distribution to functions.

Can control the process' stationarity, 
isotropy, smoothness and periodicity 
through its covariance function.

The prediction is not just an estimate for 
that point, but also has uncertainty 
information
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Picture from: http://www.astroml.org/book_figures/chapter8/fig_gp_mu_z.html



Uncertainties and error estimation:

More on uncertainties:

Using input uncertainties. - improve 
accuracy and prevent overfitting
Getting output uncertainties. - especially 
important in any prediction

Probabilistic methods
Dropout layers in neural networks.
Information entropy measures

and more… a convergence of statistics 
and ML
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NNPDF - fits to deep inelastic data 



ML: Pitfalls to avoid

Know what training and test data you’re 
working with. 

- Missing data
- Unrepresentative distributions
- Outliers!
- Overfitting = your model sucks
- No free lunch theorem
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What have we learnt? 

Possibly nothing … (yet)

But this is very exciting and state of the art! 

Relatively easy to download datasets and 
get started on your own fun project

Very active dev and user community - Easy 
to find stack exchange pages with 
SOLUTIONS on exactly the error you are 
seeing

Go and try it out!  

Need more work here 
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Inference - in + ferus + ents
     (part of)            (wild)                (tree-hosts)

                   OLD ENGLISH       LATIN                 QUENYA

- Using the wild power of giant sentient trees to validate or invalidate 
conclusions based on logic and reasoning.
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Physics literature using ML techniques:

An automatic taxonomy of galaxy morphology using unsupervised 
machine learning

Alex Hocking (Hertfordshire), James E. Geach, Yi Sun, Neil Davey

(Submitted on 18 Sep 2017)

We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging 
surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no 
pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the HST 
Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another 
(MACS0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed 
training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST CANDELS fields, creating a catalogue of 
approximately 60,000 classifications. We show how the automatic classification groups galaxies of similar morphological (and 
photometric) type, and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the 
CANDELS machine-based classifications to human-based classifications from the Galaxy Zoo: CANDELS project. Although there is 
not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human 
and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present new lensed galaxy 
candidates from the CANDELS imaging.
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https://arxiv.org/find/astro-ph/1/au:+Hocking_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Geach_J/0/1/0/all/0/1
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Physics literature using ML techniques:

Photometric Supernova Classification With Machine Learning

Michelle Lochner, Jason D. McEwen, Hiranya V. Peiris, Ofer Lahav, Max K. Winter

(Submitted on 2 Mar 2016 (v1), last revised 7 Sep 2016 (this version, v3))

Automated photometric supernova classification has become an active area of research in recent years in light of current and 
upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic 
confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline, 
combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and 
classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely 
SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach. 
We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines, 
artificial neural networks and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the 
Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating 
Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieves an AUC of 
0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever 
the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the 
wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any 
redshift information.
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https://arxiv.org/find/astro-ph/1/au:+Lochner_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+McEwen_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Peiris_H/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lahav_O/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Winter_M/0/1/0/all/0/1
https://arxiv.org/abs/1603.00882v1


Physics literature using ML techniques:

A Hybrid Ensemble Learning Approach to Star-Galaxy Classification

Edward J. Kim, Robert J. Brunner, Matias Carrasco Kind

(Submitted on 8 May 2015 (v1), last revised 14 Jul 2015 (this version, v2))

There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present 
a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy 
classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine 
learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical 
Bayesian template fitting method. Using data from the CFHTLenS survey, we consider different scenarios: when a high-quality training 
set is available with spectroscopic labels from DEEP2, SDSS, VIPERS, and VVDS, and when the demographics of sources in a 
low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination 
technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine 
the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the 
Dark Energy Survey and the Large Synoptic Survey Telescope.
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https://arxiv.org/find/astro-ph/1/au:+Kim_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Brunner_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kind_M/0/1/0/all/0/1
https://arxiv.org/abs/1505.02200v1


Physics literature using ML techniques:

Estimating Extinction using Unsupervised Machine Learning

Stefan Meingast, Marco Lombardi, Joao Alves

(Submitted on 27 Feb 2017)

Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the 
systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique, 
PNICER, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new 
method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any 
combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction 
towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field 
observations. In this way it becomes possible to describe the extinction for observed sources with probability densities. PNICER 
effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the 
number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color 
distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within 
a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, PNICER offers a fast and reliable 
way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. PNICER 
also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps 
including the NICEST correction for cloud substructure. PNICER is offered to the community as an open-source software solution and 
is entirely written in Python.
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https://arxiv.org/find/astro-ph/1/au:+Meingast_S/0/1/0/all/0/1
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Physics literature using ML techniques:

Cosmological model discrimination with Deep Learning

Jorit Schmelzle, Aurelien Lucchi, Tomasz Kacprzak, Adam Amara, Raphael Sgier, Alexandre Réfrégier, Thomas Hofmann

(Submitted on 17 Jul 2017 (v1), last revised 18 Jul 2017 (this version, v2))

We demonstrate the potential of Deep Learning methods for measurements of cosmological parameters from density fields, focusing 
on the extraction of non-Gaussian information. We consider weak lensing mass maps as our dataset. We aim for our method to be 

able to distinguish between five models, which were chosen to lie along the σ8 - Ωm degeneracy, and have nearly the same two-point 

statistics. We design and implement a Deep Convolutional Neural Network (DCNN) which learns the relation between five cosmological 
models and the mass maps they generate. We develop a new training strategy which ensures the good performance of the network for 
high levels of noise. We compare the performance of this approach to commonly used non-Gaussian statistics, namely the skewness 
and kurtosis of the convergence maps. We find that our implementation of DCNN outperforms the skewness and kurtosis statistics, 

especially for high noise levels. The network maintains the mean discrimination efficiency greater than 85% even for noise levels 

corresponding to ground based lensing observations, while the other statistics perform worse in this setting, achieving efficiency less 

than 70%. datasets.This demonstrates the ability of CNN-based methods to efficiently break the σ8 - Ωm degeneracy with weak 

lensing mass maps alone. We discuss the potential of this method to be applied to the analysis of real weak lensing data and other 

33

https://arxiv.org/find/astro-ph/1/au:+Schmelzle_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lucchi_A/0/1/0/all/0/1
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https://arxiv.org/abs/1707.05167v1


Physics literature using ML techniques:

Probability density estimation of photometric redshifts based on machine 
learning

Stefano Cavuoti, Massimo Brescia, Valeria Amaro, Civita Vellucci, Giuseppe Longo, Crescenzo Tortora

(Submitted on 12 Jun 2017)

Photometric redshifts (photo-z's) provide an alternative way to estimate the distances of large samples of galaxies and are therefore 
crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised machine learning 
(ML) methods capable to interpolate the knowledge gained by means of spectroscopical data have proven to be very effective. 
METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) is a novel method designed to provide a reliable 
PDF (Probability density Function) of the error distribution of photometric redshifts predicted by ML methods. The method is 
implemented as a modular workflow, whose internal engine for photo-z estimation makes use of the MLPQNA neural network (Multi 
Layer Perceptron with Quasi Newton learning rule), with the possibility to easily replace the specific machine learning model chosen to 
predict photo-z's. After a short description of the software, we present a summary of results on public galaxy data (Sloan Digital Sky 
Survey - Data Release 9) and a comparison with a completely different method based on Spectral Energy Distribution (SED) template 
fitting.
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Physics literature using ML techniques:

Improving galaxy morphology with machine learning

P. H. Barchi, F. G. da Costa, R. Sautter, T. C. Moura, D. H. Stalder, R. R. Rosa, R. R. de Carvalho

(Submitted on 18 May 2017)

This paper presents machine learning experiments performed over results of galaxy classification into elliptical (E) and spiral (S) with 
morphological parameters: concetration (CN), assimetry metrics (A3), smoothness metrics (S3), entropy (H) and gradient pattern 
analysis parameter (GA). Except concentration, all parameters performed a image segmentation pre-processing. For supervision and 
to compute confusion matrices, we used as true label the galaxy classification from GalaxyZoo. With a 48145 objects dataset after 
preprocessing (44760 galaxies labeled as S and 3385 as E), we performed experiments with Support Vector Machine (SVM) and 
Decision Tree (DT). Whit a 1962 objects balanced dataset, we applied K- means and Agglomerative Hierarchical Clustering. All 
experiments with supervision reached an Overall Accuracy OA >= 97%.
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Physics literature using ML techniques:

Machine Learning of Explicit Order Parameters: From the Ising Model to 
SU(2) Lattice Gauge Theory

Sebastian Johann Wetzel, Manuel Scherzer

(Submitted on 16 May 2017)

We present a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input, 
provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network 
classifies the input. The procedure is embedded into a pipeline of machine learning algorithms able to detect the existence of different 
phases of matter, to determine the position of phase transitions and to find explicit expressions of the physical quantities by which the 
algorithm distinguishes between phases. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte 
Carlo-sampled configurations. The method is applied to the Ising Model and SU(2) lattice gauge theory. In both systems we deduce the 
explicit expressions of the known order parameters from the decision functions of the neural networks.
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https://arxiv.org/find/cond-mat/1/au:+Wetzel_S/0/1/0/all/0/1
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Physics literature using ML techniques:

Development of a Machine Learning Based Analysis Chain for the 
Measurement of Atmospheric Muon Spectra with IceCube

Tomasz Fuchs

(Submitted on 15 Jan 2017)

High-energy muons from air shower events detected in IceCube are selected using state of the art machine learning algorithms. 
Attributes to distinguish a HE-muon event from the background of low-energy muon bundles are selected using the mRMR algorithm 
and the events are classified by a random forest model. In a subsequent analysis step the obtained sample is used to reconstruct the 
atmospheric muon energy spectrum, using the unfolding software TRUEE. The reconstructed spectrum covers an energy range from 

104GeV to 106GeV. The general analysis scheme is presented, including results using the first year of data taken with IceCube in its 

complete configuration with 86 instrumented strings.
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Physics literature using ML techniques:

Rate Constants for Fine-Structure Excitations in O-H Collisions with Error 
Bars Obtained by Machine Learning

Daniel Vieira, Roman Krems

(Submitted on 8 Jan 2017)

We present an approach using a combination of coupled channel scattering calculations with a machine- learning technique based on 
Gaussian Process regression to determine the sensitivity of the rate constants for non-adiabatic transitions in inelastic atomic collisions 
to variations of the underlying adiabatic interaction potentials. Using this approach, we improve the previous computations of the rate 
constants for the fine-structure transitions in collisions of O(3Pj) with atomic H. We compute the error bars of the rate constants 
corresponding to 20 % variations of the ab initio potentials and show that this method can be used to determine which of the individual 
adiabatic potentials are more or less important for the outcome of different fine-structure changing collisions.

38

https://arxiv.org/find/astro-ph/1/au:+Vieira_D/0/1/0/all/0/1
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Physics literature using ML techniques:

What does a convolutional neural network recognize in the moon?

Daigo Shoji

(Submitted on 18 Aug 2017 (v1), last revised 21 Aug 2017 (this version, v2))

Many people see a human face or animals in the pattern of the maria on the moon. Although the pattern corresponds to the actual 
variation in composition of the lunar surface, the culture and environment of each society influence the recognition of these objects 
(i.e., symbols) as specific entities. In contrast, a convolutional neural network (CNN) recognizes objects from characteristic shapes in a 
training data set. Using CNN, this study evaluates the probabilities of the pattern of lunar maria categorized into the shape of a crab, a 
lion and a hare. If Mare Frigoris (a dark band on the moon) is included in the lunar image, the lion is recognized. However, in an image 
without Mare Frigoris, the hare has the highest probability of recognition. Thus, the recognition of objects similar to the lunar pattern 
depends on which part of the lunar maria is taken into account. In human recognition, before we find similarities between the lunar 
maria and objects such as animals, we may be persuaded in advance to see a particular image from our culture and environment and 
then adjust the lunar pattern to the shape of the imagined object.
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https://arxiv.org/find/cs/1/au:+Shoji_D/0/1/0/all/0/1
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Physics literature using ML techniques:
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Physics literature using ML techniques:
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Physics literature using ML techniques:

Machine Learning Spatial Geometry from Entanglement Features

Yi-Zhuang You, Zhao Yang, Xiao-Liang Qi

(Submitted on 5 Sep 2017)

Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that 
the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a 
concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor 
network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all 
subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement 
feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on 1D 
free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system 
towards the gapless critical point (CFT2 point).
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Physics literature using ML techniques:

The Fog of War: A Machine Learning Approach to Forecasting Weather on 
Mars

Daniele Bellutta

(Submitted on 26 Jun 2017)

For over a decade, scientists at NASA's Jet Propulsion Laboratory (JPL) have been recording measurements from the Martian surface 
as a part of the Mars Exploration Rovers mission. One quantity of interest has been the opacity of Mars's atmosphere for its importance 
in day-to-day estimations of the amount of power available to the rover from its solar arrays. This paper proposes the use of neural 
networks as a method for forecasting Martian atmospheric opacity that is more effective than the current empirical model. The more 
accurate prediction provided by these networks would allow operators at JPL to make more accurate predictions of the amount of 
energy available to the rover when they plan activities for coming sols.
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Physics literature using ML techniques:

A hybrid supervised/unsupervised machine learning approach to solar 
flare prediction

Federico Benvenuto, Michele Piana, Cristina Campi, Anna Maria Massone

(Submitted on 21 Jun 2017)

We introduce a hybrid approach to solar flare prediction, whereby a supervised regularization method is used to realize feature 
importance and an unsupervised clustering method is used to realize the binary flare/no-flare decision. The approach is validated 
against NOAA SWPC data.
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Physics literature using ML techniques:

Real-time detection of transients in OGLE-IV with application of machine 
learning

Jakub Klencki, Łukasz Wyrzykowski

(Submitted on 22 Jan 2016)

The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. 
We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on 
self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts ~ 97 % of real transients while 
removing up to ~ 97.5 % of artifacts.
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Physics literature using ML techniques:
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Physics literature using ML techniques:
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Physics literature using ML techniques:
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Physics literature using ML techniques:
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Physics literature using ML techniques:
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Some scenarios: 

Given a large amount of data...
- Is this email about your qualifier spam?
- Can you fit a line to this data? Is this the best line to fit?
- Can I extrapolate beyond my current measured values? With what confidence?
- Can I remove contaminants from my data?

- What can I say about my data? (are there groups? Interactions? structure?)
- Can I somehow use citizen science?

52



Clustering [1 slide]
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What is machine learning?

Automating ourselves back into 
manual labor
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What is machine learning?

Dealing with incomplete or 
empirical physics. - the cutting 
edge is always unknown.

Dealing with an overload of data, 
often noisy, biased and 
incomplete.

Dealing with repeatable processes 
that can’t be described by simple 
linear relations.

Automating ourselves back into 
manual labor

Picture from: https://quickdraw.withgoogle.com/data
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What is deep learning? (and why do we 
care?)
Possibly remove this 
slide, or at least replace 
it with something more 
relevant to us physics 
people. 

Yeah this is going 
straight to backup
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outline

~15 mins / person

What is machine learning? - in current timeframe - a way of hiding our ignorance of how intelligence works. [algorithms vs models]

2 kinds of ML: supervised - provide a model to train with (classification, regression) and unsupervised - find N things  (Derp learning, 
RNNs, CNN, RBMs.. )

Dive into classification, regression, more abstractions ...NNs and come what may.
What do we talk about? - regression, trees, RF, k-NN, bayes, curse of dimensionality, gaussian mixture models

The vices of ML - overfitting, blindly trusting your ML results, error estimation, training variance, dealing with noisy data / 
contaminants, computational complexity, demotivating chess /go players.  

Papers/quiz
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Resources

[move either to the end of the talk or right 
after the introduction]

Mnist
Scikit-learn
Theano/Tensorflow/Keras…
AstroML
/r/datasets, /r/dataisbeautiful …

Raghav, can you add more places to start off with CNNs? I haven’t added any of those 
yet apart from the representative Theano etc. 

Ive only used Keras and its easy to get started on. I have not used CNNs in other places 
actually… 
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Emacs all the way...
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Physics literature using ML techniques:

What is machine learning? Chang+16,  https://arxiv.org/abs/1709.10106v1
http://www.nature.com/nphys/journal/v13/n5/full/nphys4053.html
ML for physicists course at BU: http://physics.bu.edu/~pankajm/PY895-ML.html
Astronomy and Particle physics in general have a ton of data, so lots of papers there…
Condensed matter is also starting to catch on
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ML: Pitfalls to avoid

Know what training and test data you’re 
working with. 

- Missing data
- Unrepresentative distributions
- Outliers!
- Overfitting = your model sucks
- No free lunch theorem
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Mixture models [possibly backup]

Probabilistic models useful for identifying 
components of an observed distribution. 

Gaussian mixture models often used to 
separate fuzzy data.

Used in combination with other methods 
(MCMC, SVD, Spectral methods) to boost 
speed and/or accuracy.
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