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What is machine learning?
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Why use ML? Do we need it in physics?

Galaxy spectra -> Stellar mass, Star
Formation Rate, Redshift.. and more

Problems: highly nonlinear relations,
increasingly degenerate as we go to older

ages, noisy, spec-z distribution not

representative of larger photo-z sample.
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Phase transitions in complex systems
often don’t have analytic solutions.
Additionally, simulating these systems
often suffers from exponential growth of
the space of possible configurations.




Do we need it in physics? - |l

Techniques coming of age - proverbial black box starting to
open ...

Experiments at the LHC are essentially cameras - Producing
pretty pictures

Datasets are really really huge and signal is very small

New physics is elusive! We are searching for something that
we do not know what it looks like!

We want something thats faster, better and essentially new
and doesnt involve grad students running code for a very
long time !
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Might as well get comfortable with our future overlords DMB}WHE’[HI]]IE




What is deep learning? (and why do we

care?)
In cases with: \JHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK WHETHER
: : THEY'RE IN A NATIONAL PARK ...
- Highly nonlinear problems
L : SURE, EASY GIS LoOKUR
- Modeling time constraints GIMVE A FEW HOURS.
- Alack of knowledge about feature . AND CHECK UHETHER
space THEPHDTDI&GFHB{RD.
- The need for accurate forecasting T1L NEED A RESEARCH

without creating a complete TEAM AND FIVE YEARS.
model... /
Build a network with many layers, that
won’t die when trained.

INC5, IT CAN BE HARD TO EXFLAIN

THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.



Technical vs practical machine learning

Machine learning is the subfield of computer science
that, according to Arthur Samuel, gives "computers
the ability to learn without being explicitly
programmed.”

Machine learning - Wikipedia
https://en.wikipedia.org/wiki'Machine_learning

we will want Al to help us
debug our thinking by usmg all data from all
experiments optimally and “open our eyes” just as

AlphaGo opened the eyes of the professional go
players and enhance our intuition and creativity and
ability to break paradigms and boxes

Maria Spiropulu (Caltech)

THIS 1S YOUR MACHINE LEARNING SYSTEM?

YUP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLJERS ON THE OTHER SIDE.

WHAT IF THE ANSLERS ARE LIRONG? )

JUaT STIR THE PILE DNTIL
THEY START [OOKING RIGHT.




Two main class of problems we deal with -

Classification Regression
- Identify if an object belongs to - Estimate the relation between
one of N subgroups observables and quantities of
- Divide objects into distinct classes interest
and find the discriminating - Both parametric (eg. fitting a line
feature(s) to data) and nonparametric (eg.
- Identify outliers / class of interest splining / kriging)
in a dataset - Interpolation and extrapolation

- Prediction and forecasting.
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T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
To GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON IT.




Resources [just google itl and Scikit-learn:::

classification scikit-learn

algorithm cheat-sheet
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Three terms: [Training, Testing, Validation]

Training - giving (labeled or unlabeled) data to your method and letting it find a
mapping between input and output variables

Validation - checking to see if this mapping still works when applied to data not in the
training set. By being clever about this we can avoid overfitting - creating a mapping
that describes the training data completely (noise and all) and nothing else.

Testing - after the training is done, this last piece of data is used to check if the
mapping we’ve got works - determines the predictive power of the ML

Now for some biology



Real Neuron

AXon

Myelin sheath

g g Axon terminals
Dendrites ; .

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/neural_networks.html
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Artificial Neuron
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Simple neural network

Input Layer Hidden Layer Dutput Layer

Single hidden layer with one output
layer

Fully connected - Each node in the
hidden layer has an input from the
input layer

Total number of parameters:?

4x5+5+5+1=31trainable

parameters
@Pl?uc&_‘
. . . P ; ® Qurr
Activation functions are dependent on e D oz i A et
ﬂ\omwT M/ lr)qossn- \7@
T gy ATTER?
your problem at hand. g S
What is are you training against? \
¥
Crone
Is your feature symmetric? o
Is it bounded? Binary? 12

Comics from becoming human



A mostly complete chart of
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Markov Chain (MC) Hopfield Netwaork (HN) Boltzmann Machine (BM)  Restricted BM (REM) Deep Belief Network (DEN)
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Cenerative Adversarial Network (CAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)
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Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)
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Setting up a pC\WN

* Incre.aglng usgtge amon_gSt P. Baldi et al. 1603.09349 (W-tagging)

physicists for jets/calorimetry J. Barnard et al. 1609.00607 (W-tagging)

. Spec|f|ca||y utilized in P. Komiske et al. 1612.01551 (g/g-tagging)
. e . G. Kasieczka et al. 1701.08784 (top-taggi

classification (W/qg-g/top) aseeaeid tepiagging)

Convolutions Convolved Feature Layers

Max-Pooling

Predominantly used in astro and starting to
gain popularity in HEX
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Visual Example - How a DCNN actually works

http://scs.ryerson.ca/~aharley/vis/conv/
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http://scs.ryerson.ca/~aharley/vis/conv/

original degraded GAN recovered deconvolved
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Generative Adversarial Networks?

What if the cat and mouse game goes on
forever? (model instabilities with
oscillating solutions)

But they can still learn representations
of, e.g., images, that can be rich in their
own (linear) structure.

man man woman
with glasses without glasses without glasses

Radford et al. 2016

woman with glasses



Radio frequency interference

_Square Kilometre Array

SPDO Seanbiems Arlroncay Production



Radio frequency interference
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Doran (2013)
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Self organising maps

Kind of NN used to produce a low-dimensional representation of complex data.

Metric on the map is some kind of distance. Points close on the map are similar, points
distant are dissimilar. Maps can be self-growing, elastic, conformal...
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Picture from Masters et al.2015. ArXiv: 1509.03318



Gaussian Processes

Class of Kernel machines. + Lazy
learning

Prior Posterior Prediction with Uncertainty

‘Process’? - generalization of a
probability distribution to
functions.

Can control the process'
stationarity, isotropy, smoothness ¢ |
and periodicity through its :
covariance function.

-4

The prediction is not just an
estimate for that point, but also has
uncertainty information
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Gaussian Processes

Class of Kernel machines. + Lazy
learning

‘Process’? - generalization of a
probability distribution to functions.

Can control the process' stationarity,
isotropy, smoothness and periodicity
through its covariance function.

The prediction is not just an estimate for
that point, but also has uncertainty
information

Picture from: http://www.astroml.org/book_figures/chapter8/fig_gp_mu_z.html
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Uncertainties and error estimation:

More on uncertainties:

Using input uncertainties. - improve
accuracy and prevent overfitting

Getting output uncertainties. - especially
important in any prediction

Probabilistic methods
Dropout layers in neural networks.
Information entropy measures

and more... a convergence of statistics
and ML

xg(x, Q")

T IIIIlH‘ T T TTTTTI]

T T TTTTTIT

T T T TTTT

NMNPDF2.3 NNLO replicas
NNPDF2.3 NNLO mean value
NNPDF2.3 NNLO 1o error band
NMNPDF2.3 NNLO 68% CL band

IIJI![ 1 IIIIJH[

1 IIIIJIll 1

1 1 1911
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10°
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NNPDF - fits to deep inelastic data
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ML.: Pitfalls to avoid

Know what training and test data you’re
working with.

- Missing data

- Unrepresentative distributions
- Outliers!

- Overfitting = your model sucks
- No free lunch theorem

CERTAIN LETTERS AND NUMBERS ARE. USED
DISPROFORTIONATELY OFTEN IN CAR MODELS
COMPARED o REGULAR TEXT.
(sEe"REV-Y (R-X %3 Gb MAXX )

LETTER. AND NUMBER S(DEES BASED ON RELATIVE FREQUENCY IN CAR MODEL NAMES

BASED ON THESE SCORES, HERE ARE A

FEW SUGGESTIONS FOR (AR COMPANIES:
(ITH AVERAGE LETTER SLORES)

NAMES 0 AVID POTENTIAL HITS
HONDA ZCHAINZ (013 HONDA 3CHAINZ. (057
MITSUBISHI FHAWHGADS (-0.62) SUBARY ANDRE 3000 (1-30)
KIA H9AND GOTHY (-2.9¢) SUZUKI SEXISM (1.82)

(HEVROLET NICEGUY (-3.09) LINCOUN MARXISM (2.17)
OLDSMOBILE. GooDWooD 4.44) HYUNDAI CLIMAX, (2.49)
INFINITI TOoTHY6T (+4.51) PORSCHE ZIZEK 9000 (3.06)
Br) OUTHOUSE (-4.69) LEXUS 3x3CUTRIX (3.22)
VOLKSWAGEN LJOODFONY 70H7 (5700  ACURA PREZAJAZZ (350
CHRYSLER DH IONO (5:5) FORD SIXAXLE. HxY (3499

NISSAN DOODY (-5.84) TOYOTA CERVIXXX (4.85)
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What have we learnt?

Possibly nothing ... (yet)
But this is very exciting and state of the art!

Relatively easy to download datasets and
get started on your own fun project

Very active dev and user community - Easy
to find stack exchange pages with
SOLUTIONS on exactly the error you are
seeing

Go and try it out!

Need more work here

5 el 3 ; i

SR T T M
V| — e P 2
...“"' g a{tqﬁ" __...#I o

F oAk

www.shutterstock.com - 557723770
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Inference - in * ferus + ents

(part of) (wild) (tree-hosts)
OLD ENGLISH  LATIN QUENYA

- Using the wild power of giant sentient trees to validate or invalidate
conclusions based on logic and reasoning.

28



Physics literature using ML techniques

An automatic taxonomy of galaxy morphology using unsupervised
machine learning

Alex Hocking (Hertfordshire), James E. Geach, Yi Sun, Neil Davey

(Submitted on 18 Sep 2017)

We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging
surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no
pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the HST
Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another
(MACS0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed
training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST CANDELS fields, creating a catalogue of
approximately 60,000 classifications. We show how the automatic classification groups galaxies of similar morphological (and
photometric) type, and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the
CANDELS machine-based classifications to human-based classifications from the Galaxy Zoo: CANDELS project. Although there is
not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human
and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present new lensed galaxy
candidates from the CANDELS imaging.
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https://arxiv.org/find/astro-ph/1/au:+Hocking_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Geach_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Sun_Y/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Davey_N/0/1/0/all/0/1

Physics literature using ML techniques:

Photometric Supernova Classification With Machine Learning

Michelle Lochner, Jason D. McEwen, Hiranya V. Peiris, Ofer Lahav, Max K. Winter

(Submitted on 2 Mar 2016 (v1), last revised 7 Sep 2016 (this version, v3))

Automated photometric supernova classification has become an active area of research in recent years in light of current and
upcoming imaging surveys such as the Dark Energy Survey (DES) and the Large Synoptic Survey Telescope, given that spectroscopic
confirmation of type for all supernovae discovered will be impossible. Here, we develop a multi-faceted classification pipeline,
combining existing and new approaches. Our pipeline consists of two stages: extracting descriptive features from the light curves and
classification using a machine learning algorithm. Our feature extraction methods vary from model-dependent techniques, namely
SALT2 fits, to more independent techniques fitting parametric models to curves, to a completely model-independent wavelet approach.
We cover a range of representative machine learning algorithms, including naive Bayes, k-nearest neighbors, support vector machines,
artificial neural networks and boosted decision trees (BDTs). We test the pipeline on simulated multi-band DES light curves from the
Supernova Photometric Classification Challenge. Using the commonly used area under the curve (AUC) of the Receiver Operating
Characteristic as a metric, we find that the SALT2 fits and the wavelet approach, with the BDTs algorithm, each achieves an AUC of
0.98, where 1 represents perfect classification. We find that a representative training set is essential for good classification, whatever
the feature set or algorithm, with implications for spectroscopic follow-up. Importantly, we find that by using either the SALT2 or the
wavelet feature sets with a BDT algorithm, accurate classification is possible purely from light curve data, without the need for any
redshift information.
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https://arxiv.org/find/astro-ph/1/au:+Lochner_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+McEwen_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Peiris_H/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lahav_O/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Winter_M/0/1/0/all/0/1
https://arxiv.org/abs/1603.00882v1

Physics literature using ML techniques:

A Hybrid Ensemble Learning Approach to Star-Galaxy Classification

Edward J. Kim, Robert J. Brunner, Matias Carrasco Kind

(Submitted on 8 May 2015 (v1), last revised 14 Jul 2015 (this version, v2))

There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present
a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy
classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine
learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical
Bayesian template fitting method. Using data from the CFHTLenS survey, we consider different scenarios: when a high-quality training
set is available with spectroscopic labels from DEEP2, SDSS, VIPERS, and VVDS, and when the demographics of sources in a
low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination
technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine
the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the
Dark Energy Survey and the Large Synoptic Survey Telescope.
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https://arxiv.org/find/astro-ph/1/au:+Kim_E/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Brunner_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kind_M/0/1/0/all/0/1
https://arxiv.org/abs/1505.02200v1

Physics literature using ML techniques:

Estimating Extinction using Unsupervised Machine Learning

Stefan Meingast, Marco Lombardi, Joao Alves

(Submitted on 27 Feb 2017)

Dust extinction is the most robust tracer of the gas distribution in the interstellar medium, but measuring extinction is limited by the
systematic uncertainties involved in estimating the intrinsic colors to background stars. In this paper we present a new technique,
PNICER, that estimates intrinsic colors and extinction for individual stars using unsupervised machine learning algorithms. This new
method aims to be free from any priors with respect to the column density and intrinsic color distribution. It is applicable to any
combination of parameters and works in arbitrary numbers of dimensions. Furthermore, it is not restricted to color space. Extinction
towards single sources is determined by fitting Gaussian Mixture Models along the extinction vector to (extinction-free) control field
observations. In this way it becomes possible to describe the extinction for observed sources with probability densities. PNICER
effectively eliminates known biases found in similar methods and outperforms them in cases of deep observational data where the
number of background galaxies is significant, or when a large number of parameters is used to break degeneracies in the intrinsic color
distributions. This new method remains computationally competitive, making it possible to correctly de-redden millions of sources within
a matter of seconds. With the ever-increasing number of large-scale high-sensitivity imaging surveys, PNICER offers a fast and reliable
way to efficiently calculate extinction for arbitrary parameter combinations without prior information on source characteristics. PNICER
also offers access to the well-established NICER technique in a simple unified interface and is capable of building extinction maps
including the NICEST correction for cloud substructure. PNICER is offered to the community as an open-source software solution and
is entirely written in Python.
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https://arxiv.org/find/astro-ph/1/au:+Meingast_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lombardi_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Alves_J/0/1/0/all/0/1

Physics literature using ML techniques:

Cosmological model discrimination with Deep Learning

Jorit Schmelzle, Aurelien Lucchi, Tomasz Kacprzak, Adam Amara, Raphael Sqgier, Alexandre Réfréqgier, Thomas Hofmann

(Submitted on 17 Jul 2017 (v1), last revised 18 Jul 2017 (this version, v2))
We demonstrate the potential of Deep Learning methods for measurements of cosmological parameters from density fields, focusing
on the extraction of non-Gaussian information. We consider weak lensing mass maps as our dataset. We aim for our method to be
able to distinguish between five models, which were chosen to lie along the 08 - Qm degeneracy, and have nearly the same two-point

statistics. We design and implement a Deep Convolutional Neural Network (DCNN) which learns the relation between five cosmological
models and the mass maps they generate. We develop a new training strategy which ensures the good performance of the network for
high levels of noise. We compare the performance of this approach to commonly used non-Gaussian statistics, namely the skewness
and kurtosis of the convergence maps. We find that our implementation of DCNN outperforms the skewness and kurtosis statistics,

especially for high noise levels. The network maintains the mean discrimination efficiency greater than 85% even for noise levels
corresponding to ground based lensing observations, while the other statistics perform worse in this setting, achieving efficiency less
than 70%. datasets.This demonstrates the ability of CNN-based methods to efficiently break the 08 - Qm degeneracy with weak

lensing mass maps alone. We discuss the potential of this method to be applied to the analysis of real weak lensing data and other
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https://arxiv.org/find/astro-ph/1/au:+Schmelzle_J/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Lucchi_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Kacprzak_T/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Amara_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Sgier_R/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Refregier_A/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Hofmann_T/0/1/0/all/0/1
https://arxiv.org/abs/1707.05167v1

Physics literature using ML techniques:

Probability density estimation of photometric redshifts based on machine
learning

Stefano Cavuoti, Massimo Brescia, Valeria Amaro, Civita Vellucci, Giuseppe Longo, Crescenzo Tortora

(Submitted on 12 Jun 2017)
Photometric redshifts (photo-z's) provide an alternative way to estimate the distances of large samples of galaxies and are therefore
crucial to a large variety of cosmological problems. Among the various methods proposed over the years, supervised machine learning
(ML) methods capable to interpolate the knowledge gained by means of spectroscopical data have proven to be very effective.
METAPHOR (Machine-learning Estimation Tool for Accurate PHOtometric Redshifts) is a novel method designed to provide a reliable
PDF (Probability density Function) of the error distribution of photometric redshifts predicted by ML methods. The method is
implemented as a modular workflow, whose internal engine for photo-z estimation makes use of the MLPQNA neural network (Multi
Layer Perceptron with Quasi Newton learning rule), with the possibility to easily replace the specific machine learning model chosen to
predict photo-z's. After a short description of the software, we present a summary of results on public galaxy data (Sloan Digital Sky
Survey - Data Release 9) and a comparison with a completely different method based on Spectral Energy Distribution (SED) template

fitting.
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https://arxiv.org/find/astro-ph/1/au:+Cavuoti_S/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Brescia_M/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Amaro_V/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Vellucci_C/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Longo_G/0/1/0/all/0/1
https://arxiv.org/find/astro-ph/1/au:+Tortora_C/0/1/0/all/0/1

Physics literature using ML techniques:

Improving galaxy morphology with machine learning

P. H. Barchi, F. G. da Costa, R. Sautter, T. C. Moura, D. H. Stalder, R. R. Rosa, R. R. de Carvalho

(Submitted on 18 May 2017)

This paper presents machine learning experiments performed over results of galaxy classification into elliptical (E) and spiral (S) with
morphological parameters: concetration (CN), assimetry metrics (A3), smoothness metrics (S3), entropy (H) and gradient pattern
analysis parameter (GA). Except concentration, all parameters performed a image segmentation pre-processing. For supervision and
to compute confusion matrices, we used as true label the galaxy classification from GalaxyZoo. With a 48145 objects dataset after
preprocessing (44760 galaxies labeled as S and 3385 as E), we performed experiments with Support Vector Machine (SVM) and
Decision Tree (DT). Whit a 1962 objects balanced dataset, we applied K- means and Agglomerative Hierarchical Clustering. All
experiments with supervision reached an Overall Accuracy OA >= 97%.
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Physics literature using ML techniques:

Machine Learning of Explicit Order Parameters: From the Ising Model to
SU(2) Lattice Gauge Theory

Sebastian Johann Wetzel, Manuel Scherzer

(Submitted on 16 May 2017)

We present a procedure for reconstructing the decision function of an artificial neural network as a simple function of the input,
provided the decision function is sufficiently symmetric. In this case one can easily deduce the quantity by which the neural network
classifies the input. The procedure is embedded into a pipeline of machine learning algorithms able to detect the existence of different
phases of matter, to determine the position of phase transitions and to find explicit expressions of the physical quantities by which the
algorithm distinguishes between phases. We assume no prior knowledge about the Hamiltonian or the order parameters except Monte
Carlo-sampled configurations. The method is applied to the Ising Model and SU(2) lattice gauge theory. In both systems we deduce the

explicit expressions of the known order parameters from the decision functions of the neural networks.
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Physics literature using ML techniques:

Development of a Machine Learning Based Analysis Chain for the
Measurement of Atmospheric Muon Spectra with IlceCube

Tomasz Fuchs

(Submitted on 15 Jan 2017)

High-energy muons from air shower events detected in IceCube are selected using state of the art machine learning algorithms.

Attributes to distinguish a HE-muon event from the background of low-energy muon bundles are selected using the mRMR algorithm
and the events are classified by a random forest model. In a subsequent analysis step the obtained sample is used to reconstruct the
atmospheric muon energy spectrum, using the unfolding software TRUEE. The reconstructed spectrum covers an energy range from

104GeV to 106GeV. The general analysis scheme is presented, including results using the first year of data taken with IceCube in its

complete configuration with 86 instrumented strings.
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Physics literature using ML techniques:

Rate Constants for Fine-Structure Excitations in O-H Collisions with Error
Bars Obtained by Machine Learning

Daniel Vieira, Roman Krems

(Submitted on 8 Jan 2017)
We present an approach using a combination of coupled channel scattering calculations with a machine- learning technique based on
Gaussian Process regression to determine the sensitivity of the rate constants for non-adiabatic transitions in inelastic atomic collisions
to variations of the underlying adiabatic interaction potentials. Using this approach, we improve the previous computations of the rate
constants for the fine-structure transitions in collisions of O(3Pj) with atomic H. We compute the error bars of the rate constants
corresponding to 20 % variations of the ab initio potentials and show that this method can be used to determine which of the individual
adiabatic potentials are more or less important for the outcome of different fine-structure changing collisions.
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Physics literature using ML techniques:

What does a convolutional neural network recognize in the moon?

Daigo Shoji

(Submitted on 18 Aug 2017 (v1), last revised 21 Aug 2017 (this version, v2))

Many people see a human face or animals in the pattern of the maria on the moon. Although the pattern corresponds to the actual
variation in composition of the lunar surface, the culture and environment of each society influence the recognition of these objects
(i.e., symbols) as specific entities. In contrast, a convolutional neural network (CNN) recognizes objects from characteristic shapes in a
training data set. Using CNN, this study evaluates the probabilities of the pattern of lunar maria categorized into the shape of a crab, a
lion and a hare. If Mare Frigoris (a dark band on the moon) is included in the lunar image, the lion is recognized. However, in an image
without Mare Frigoris, the hare has the highest probability of recognition. Thus, the recognition of objects similar to the lunar pattern
depends on which part of the lunar maria is taken into account. In human recognition, before we find similarities between the lunar
maria and objects such as animals, we may be persuaded in advance to see a particular image from our culture and environment and

then adjust the lunar pattern to the shape of the imagined object.
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Machine learning phases of matter

Juan Carrasquilla! and Roger G. Melko*!

! Perimeter Institute for Theoretical Physics,
Waterloo, Ontario N2L 2Y5, Canada
2Department of Physics and Astronomy,

University of Waterloo, Ontario, N2L 3G1, Canada

Neural networks can be used to identify phases and phase transitions in condensed
matter systems via supervised machine learning. Readily programmable through
modern software libraries, we show that a standard feed-forward neural network
can be trained to detect multiple types of order parameter directly from raw state
configurations sampled with Monte Carlo. In addition, they can detect highly non-
trivial states such as Coulomb phases, and if modified to a convolutional neural
network, topological phases with no conventional order parameter. We show that this
classification occurs within the neural network without knowledge of the Hamiltonian
or even the general locality of interactions. These results demonstrate the power
of machine learning as a basic research tool in the field of condensed matter and

statistical physics.
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Physics literature using ML techniques:

Estimating hydrogen sulfide solubility in ionic liquids
using a machine learning approach

Ali Shafiei @ 2, Mohammad Ali Ahmadi P & &, Seyed Hayan Zaheri °, Alireza Baghban ©, Ali

Amirfakhrian 9, Reza Soleimani ©

Show more

https://doi.org/10.1016/j].supflu.2014.08.011 Get rights and content
Highlights
. An intelligent and simple-to-use approach for prediction H,S

solubility in various ionic liguids has been developed.

. Accurate, precise and extensive H,S solubility in various ionic
liquids data banks have been utilized.

. Statistical analysis was implemented to the outputs
generated by PSO-ANN model.
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Physics literature using ML techniques:

doi:10.1038/nature14964

Conventional superconductivity at 203 kelvin at high
pressures in the sulfur hydride system

A. P. Drozdov'*, M. 1. Eremets'*, 1. A. Troyan', V. Ksenofontov® & S. 1. Shylin®

A superconductor is a material that can conduct electricity without
resistance below a superconducting transition temperature, T,
The highest T, that has been achieved to date is in the copper oxide
system': 133 kelvin at ambient pressure® and 164 kelvin at high
pressures”. As the nature of superconductivity in these materials is
still not fully understood (they are not conventional superconduc-
tors), the prospects for achieving still higher transition tempera-
tures by this route are not clear. In contrast, the Bardeen-Cooper-
Schrieffer theory of conventional superconductivity gives a guide
for achieving high T, with no theoretical upper bound—all that is
needed is a favourable combination of high-frequency phonons,
strong electron-phonon coupling, and a high density of states®.
These conditions can in principle be fulfilled for metallic hydrogen
and covalent compounds dominated by hydrogen®”, as hydrogen
atoms provide the necessary high-frequency phonon modes as well
as the strong electron-phonon coupling. Numerous calculations
support this idea and have predicted transition temperatures in
the range 50-235 kelvin for many hydrides’, but only a moderate T,
of 17 kelvin has been observed experimentally®. Here we investigate
sulfur hydride®, where a T of 80 kelvin has been predicted'”. We
find that this system transforms to a metal at a pressure of approxi-
mately 90 gigapascals. On cooling, we see signatures of supercon-
ductivity: a sharp drop of the resistivity to zero and a decrease of
the transition temperature with magnetic field, with magnetic sus-
ceptibility measurements confirming a T, of 203 kelvin. Moreover,
a pronounced isotope shift of T in sulfur deuteride is suggestive of
an electron-phonon mechanism of superconductivity that is con-
sistent with the Bardeen-Cooper-Schrieffer scenario. We argue
that the phase responsible for high-T. superconductivity in this
system is likely to be H;S, formed from H,8 by decomposition
under pressure. These findings raise hope for the prospects for
achieving room-temperature superconductivity in other hydro-
gen-based materials.

superconductivity®, Similarly to pure hydrogen, they have high Debye
temperatures. Moreover, heavier elements might be beneficial as they
contribute to the low frequencies that enhance electron-phonon coup-
ling. Importantly, lower pressures are required to metallize hydrides in
comparison to pure hydrogen. Asheroft’s general idea was supported
in numerous calculations™® predicting high values of T, for many
hydrides. So far only a low T, (~17 K) has been observed experiment-
ally®.

For the present study we selected H,S, because it is relatively easy to
handle and is predicted to transform to a metal and a superconductor
at a low pressure Pe=100 GPa with a high T,=80 K (ref 10).
Experimentally, H,S is known as a typical molecular compound with
a rich phase diagram'. At about 96 GPa, hydrogen sulphide trans-
forms to a metal'. The transformation is complicated by the partial
dissociation of H,S and the appearance of elemental sulfur at P > 27
GPa at room temperature, and at higher pressures at lower tempera-
tures™. Therefore, the metallization of hydrogen sulphide can be
explained by elemental sulfur, which is known to become metallic
above 95 GPa (ref. 16). No experimental studies of hydrogen sulphide
are known above 100 GPa

In a typical experiment, we performed loading and the initial pres-
sure increase at temperatures of ~200 K; this is essential for obtaining
a good sample (Methods). The Raman spectra of H,8 and D.8 were
measured as the pressure was increased, and were in general agreement
with the literature data'™* (Extended Data Fig. 1). The sample starts to
conductat P = 50 GPa. At this pressure itis a semiconductor, as shown
by the temperature dependence of the resistance and pronounced
photoconductivity, At 90-100 GPa the resistance drops further, and
the temperature dependence becomes metallic. No photoconductive
response is observed in this state. It is a poor metal—its resistivity at
~100Kis =3 X 107" ochmmat 110 GPaand p = 3 X 1077 chm m
at ~200 GPa

During the cooling of the metal at pressures of about 100 GPa
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Physics literature using ML techniques:

Machine Learning Spatial Geometry from Entanglement Features

Yi-Zhuang You, Zhao Yang, Xiao-Liang Qi

(Submitted on 5 Sep 2017)
Motivated by the close relations of the renormalization group with both the holography duality and the deep learning, we propose that
the holographic geometry can emerge from deep learning the entanglement feature of a quantum many-body state. We develop a
concrete algorithm, call the entanglement feature learning (EFL), based on the random tensor network (RTN) model for the tensor
network holography. We show that each RTN can be mapped to a Boltzmann machine, trained by the entanglement entropies over all
subregions of a given quantum many-body state. The goal is to construct the optimal RTN that best reproduce the entanglement
feature. The RTN geometry can then be interpreted as the emergent holographic geometry. We demonstrate the EFL algorithm on 1D
free fermion system and observe the emergence of the hyperbolic geometry (AdS3 spatial geometry) as we tune the fermion system

towards the gapless critical point (CFT2 point).
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Physics literature using ML techniques:

The Fog of War: A Machine Learning Approach to Forecasting Weather on
Mars

Daniele Bellutta

(Submitted on 26 Jun 2017)

For over a decade, scientists at NASA's Jet Propulsion Laboratory (JPL) have been recording measurements from the Martian surface
as a part of the Mars Exploration Rovers mission. One quantity of interest has been the opacity of Mars's atmosphere for its importance
in day-to-day estimations of the amount of power available to the rover from its solar arrays. This paper proposes the use of neural
networks as a method for forecasting Martian atmospheric opacity that is more effective than the current empirical model. The more
accurate prediction provided by these networks would allow operators at JPL to make more accurate predictions of the amount of

energy available to the rover when they plan activities for coming sols.
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Physics literature using ML techniques:

A hybrid supervised/unsupervised machine learning approach to solar
flare prediction

Federico Benvenuto, Michele Piana, Cristina Campi, Anna Maria Massone

(Submitted on 21 Jun 2017)

We introduce a hybrid approach to solar flare prediction, whereby a supervised regularization method is used to realize feature

importance and an unsupervised clustering method is used to realize the binary flare/no-flare decision. The approach is validated
against NOAA SWPC data.
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Physics literature using ML techniques:

Real-time detection of transients in OGLE-IV with application of machine
learning

Jakub Klencki, tukasz Wyrzykowski

(Submitted on 22 Jan 2016)

The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates.
We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on
self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts ~ 97 % of real transients while
removing up to ~ 97.5 % of artifacts.
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Physics literature using ML techniques:

CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

Michela Paganini®", Luke de Oliveira®, and Benjamin Nachman*

" Lawrence Berkeley National Laboratory, ! Cyclotron Rd, Berkeley, CA, 94720, USA
" Department of Physics, Yale University, New Haven, CT 06520, USA

E-mail: michela.paganini@yale.edu, lukedeoliveira®lbl.gov, bnachman@cern.ch
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Physics literature using ML techniques:

Classification without labels:
Learning from mixed samples in high energy physics

Eric M. Metodiev,” Benjamin Nachman,” and Jesse Thaler®

® Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

E-mail: metodiev@mit.edu, bpnachman@lbl.gov, jthaler@mit.edu
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Physics literature using ML techniques:

Pileup Mitigation with Machine Learning (PUMML)

Patrick T. Komiske,® Eric M. Metodiev,* Benjamin Nachman,” Matthew D. Schwartz®

® Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

® Department of Physics, Harvard University, Cambridge, MA (21558, USA

E-mail: pkomiske@mit.edu, metodiev@mit.edu, bpnachman@lbl.gov,

schwartz@physics.harvard.edu
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Physics literature using ML techniques:

Jet-lmages — Deep Learning Edition

Luke de Oliveira,” Michael Kagan,” Lester Mackey,” Benjamin Nachman,” and Ariel

Schwartzman”

* Institute for Computational and Mathematical Fnginecring, Stanford University, Stanford, CA 94305, USA
"SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Rd, Menlo Park, CA 94025,

U.5.A.
® Department of Statistics, Stanford University, Stanford, CA 94305, USA

FE-mail: 1lukedeo@stanford.edu, mkagan@cern.ch, lmackey@stanford.edu,
bnachman®@cern.ch, sch@slac.stanford.edu
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Physics literature using ML techniques:

Deep learning in color: towards automated quark/gluon
jet discrimination

Patrick T. Komiske,” Eric M. Metodiev,” and Matthew D. Schwartz’

“Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
b Department of Physics, Harvard University, Cambridge, MA 02138, USA
E-mail: pkomiske@mit.edu, metodiev@mit. edu,

schwartz@physics.harvard.edu

ABSTRACT: Artificial intelligence offers the potential to automate challenging data-processing
tasks in collider physics. To establish its prospects, we explore to what extent deep learning
with convolutional neural networks can discriminate quark and gluon jets better than ob-
servables designed by physicists. Our approach builds upon the paradigm that a jet can be
treated as an image, with intensity given by the local calorimeter deposits. We supplement
this construction by adding color to the images, with red, green and blue intensities given
by the transverse momentum in charged particles, transverse momentum in neutral particles,
and pixel-level charged particle counts. Owverall, the deep networks match or outperform tra-
ditional jet variables. We also find that, while various simulations produce different quark and
gluon jets, the neural networks are surprisingly insensitive to these differences, similar to tra-
ditional observables. This suggests that the networks can extract robust physical information
from imperfect simulations.
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Some scenarios:

Given a large amount of data...

- Is this email about your qualifier spam?

- Canyou fit a line to this data? Is this the best line to fit?

- Can | extrapolate beyond my current measured values? With what confidence?
- Can I remove contaminants from my data?

- What can | say about my data? (are there groups? Interactions? structure?)
- Can I somehow use citizen science?
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What is machine learning?

Automating ourselves back into

manual labor

R%0.06

REXTHOR, THE DOG-BEARER

T DONT TRUST LINEAR REGRESSIONS WHEN ITS HARDER
o GUESS THE DIRECTION OF THE CORRELATION FROM THE
SCATTER PLOT THAN TO FIND NELJ CONSTELLATIONS ON IT.
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What is machine learning?
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What is deep learning? (and why do we

care?)

Possibly remove this
slide, or at least replace
it with something more
relevant to us physics
people.

Yeah this is going
straight to backup
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outline

~15 mins / person
What is machine learning? - in current timeframe - a way of hiding our ignorance of how intelligence works. [algorithms vs models]

2 kinds of ML: supervised - provide a model to train with (classification, regression) and unsupervised - find N things (Derp learning,
RNNs, CNN, RBMs..)

Dive into classification, regression, more abstractions ...NNs and come what may.
What do we talk about? - regression, trees, RF, k-NN, bayes, curse of dimensionality, gaussian mixture models

The vices of ML - overfitting, blindly trusting your ML results, error estimation, training variance, dealing with noisy data /
contaminants, computational complexity, demotivating chess /go players.

Papers/quiz
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Resources

[move either to the end of the talk or right
after the introduction]

Mnist

Scikit-learn
Theano/Tensorflow/Keras...
AstroML

/r/datasets, /r/dataisbeautiful ...

Raghav, can you add more places to start off with CNNs? | haven’t added any of those
yet apart from the representative Theano etc.

lve only used Keras and its easy to get started on. | have not used CNNs in other places
actually...
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Emacs all the way...

nano? REAL HEY. REAL WELL, REAL NO, REAL | [REAL PROGRAMMERS EXCUSE ME, BUT
PROGRAMMERS PRCGRAMMERS | | PROGRAMMERS | | PROGRAMIMERS | | USE A MAGNETIZED REAL PROGRAMMERS
USE emacs USE vim. VSE ed. USE (ot NEEDLE AND A USE BUTTERFLIES.

%

f
THE DISTURBANCE RIPPLES  WHICH ACT AS LENSES THAT NICE.
THEY DPEN THEIR OUTWARD, CHANGING THE FLOW  DEFLECT INCOMING COSMIC COURSE, THERES AN EMACS
HANDS AND LET'THE. | OF THE EDDY CURRENTS  RAYS, FOCUSING THEM TO mmmmtr TO DO THAT.
DELICATE WINGS FLAPONCE.|  \N THE UPPER FﬂT‘E}SF‘HEEE STRIKE THE DRIVE PLATTER |
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Physics literature using ML techniques:

What is machine learning? Chang+16, https://arxiv.org/abs/1709.10106v1
http://www.nature.com/nphys/journal/v13/n5/full/nphys4053.html

ML for physicists course at BU: http://physics.bu.edu/~pankajm/PY895-ML.html
Astronomy and Particle physics in general have a ton of data, so lots of papers there...
Condensed matter is also starting to catch on
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ML.: Pitfalls to avoid

Know what training and test data you’re
working with.

Missing data

Unrepresentative distributions
Outliers!

Overfitting = your model sucks
No free lunch theorem
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Mixture models [possibly backupl

Probabilistic models useful for identifying
components of an observed distribution.

Gaussian mixture models often used to
separate fuzzy data.

Used in combination with other methods
(MCMC, SVD, Spectral methods) to boost
speed and/or accuracy.
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