Rutgers University Department of Physics and Astronomy

2005-06 Handbook for Physics and Astronomy Graduate Students

previous section - table of contents - next section

Research Programs

Theoretical Elementary Particle Physics

Theoretical particle physics has advanced its frontiers enormously in recent years. The success of the Weinberg-Salam model of electroweak interactions, culminating in the discovery of the W+/- and Zo, has led to efforts to find a unified theory including quantum chromodynamics and perhaps general relativity as well. A theory of all interactions and particles usually has far-reaching implications, for instance predicting proton decay, and affecting the development of the universe in the first few moments after the big bang. Thus particle physics now relates to problems in cosmology, such as galaxy formation and the observed predominance of matter over antimatter. The most ambitious of these unified theories - superstrings - is being intensively studied at Rutgers, which has one of the strongest particle theory groups in the world. Other problems, such as developing methods to study non-abelian gauge theories in nonperturbative regimes, electroweak baryogenesis, and computational methods, are also being studied. Advances in the understanding of field theory have yielded techniques and predicted phenomena which are relevant to mathematics, statistical mechanics, and condensed matter physics.

Professor Tom Banks

Since 1996 I have been primarily working on the nonperturbative formulation of superstring theory invented by Steve Shenker, myself and our collaborators. This defines string theory as the limit of quantum mechanical systems whose basic variables are matrices, and incorporates many of the results of string duality. I retain my interests in supersymmetric field theory, supersymmetry phenomenology, and cosmology.

Professor John Bronzan

My current interest is in non-pertubative Hamiltonian QCD and related field theories.

Professor Diuliu-Emanuel Diaconescu

Professor Michael Douglas

My research is in string theory as a theory of fundamental interactions and quantum gravity, and in non-perturbative methods in field theory. I am currently studying large N field theories, to develop ideas for the non-perturbative definition of string theories, and for possible application to QCD physics. I also work on supersymmetric gauge theory and on conformal field theory, and I maintain an interest in computational techniques for theoretical physics.

Professor Daniel Friedan

I work on two projects: one concerning the fundamental laws of physics, the other concerning certain condensed matter systems that might eventually be useful in quantum computers. Both projects use the technology of two-dimensional quantum field theory. I have formulated and am investigating a physical mechanism that at least formally determines the background spacetime for string theory. The hope is that this mechanism will actually produce the combination of General Relativity and the Standard Model of particle physics that has so accurately described physics across an astonishingly wide range of distance scales. I am also trying to understand the basic properties of near-critical quantum circuits. These are one-dimensional condensed matter systems near a low temperature critical point. I have argued that such systems are the only physical systems that are practical for asymptotically large-scale quantum computers. These systems behave in universal ways which are described by 1+1 dimensional quantum field theories. Universal physical properties of these systems can be discovered by investigating the general structures of 1+1 dimensional quantum field theories. See my web page, Daniel Friedan, for links to my papers and some recent talks.

Professor Claud Lovelace

I am working on string field theory. Long ago, when I discovered the critical dimension (Phys.Lett.B34,500(1971)), I showed that strings can lead to a composite graviton. Witten (Nucl.Phys. B268, 253, 1986) took this much further by proving that a field theory of open strings can generate the complete perturbation expansion. Unfortunately there are severe mathematical and computational difficulties, and further progress has been slow. If this approach could be fully realized, it would imply the astonishing conclusion that we actually live in 10 flat dimensions, and the world we see is an illusion created by the deformation of our measuring instruments by matter fields. There have been many related speculations that black holes require a form of holography, but this would go further. A paper I wrote with D.Belov (hep-th/0304158) solves one mathematical difficulty, but far more work is needed.

Professor Sergei Lukyanov

My research activities are in the areas of quantum field theory, mathematical physics and statistical mechanics. Currently I am mostly interested in exactly soluble low dimensional models.

Professor Gregory Moore

Professor Herbert Neuberger

My area of specialization is Field Theory and I am mostly interested in its non-perturbative aspects.

Professor Joel Shapiro

My work has been centered primarily on string theory, especially the understanding of closed strings as they appear in an open string theory, and of the Green-Schwarz string in curved superspace backgrounds, and the connection of the necessary constraints on such backgrounds with supergravity.

Professor Scott Thomas

Professor Alexander Zamolodchikov

I am working on quantum field theory in relation to both high-energy physics and statistical physics. More specifically, I am looking for exact solutions to model quantum field theories, and trying to elaborate mathematical structures of such solutions as well as applications to physics of criticality, strings and gravity. Presently I am interested in various aspects of the fascinating interplay between integrable field theories, conformal field theories, and string theory.

previous section - table of contents - next section

Back to Rutgers Physics Home Page

Please send any comments on this page to

Revised July, 2005