Rutgers University Department of Physics and Astronomy

2017-18 Handbook for Physics and Astronomy Graduate Students

previous section - table of contents - next section

Research Programs


The recent technological advances in molecular biology forces us to take a more quantitative take on the subject. Mathematical and physical approaches in biology cover a wide variety of topics. They incorporate well established disciplines like molecular biophysics and structural biology to resurgent areas like system level dynamical analysis of biochemical networks. Rutgers faculty, in Physics and in other departments, are pursuing this approach to reach a deeper understanding of biology.

Professor Gyan Bhanot

The availability of high throughput data has created the exciting new field of systems biology which is changing the face of clinical care and leading to new advances in our understanding of the genetic and molecular underpinnings of phenotypic diversity and disease processes. The research in my group is focused on developing algorithms to extract novel information from such data sets. In cancer biology, we are trying to identify bio-markers which can identify disease initiation, progression and metastasis. We then analyze these to understand altered biological mechanisms in the disease state. The goal of this research is to develop assays to quantitate disease risk, assess metastatic potential, identify pharmaceutically relevant drug targets and help the clinican to provide better care. We work closely with surgeons, clinicians and researchers in several hospitals to ensure that this research remains focused on the patient and is relevant to improving patient care and treatment outcome. In population genetics, we are trying to understanding the genetic basis of complex phenotypes in human diseases and evolution. We apply novel methods to analyze SNP and sequence data to study the interplay between selection, adaptation and population dynamics, the role of linked polymorphisms in complex disease processes and in the interconnected evolution of diverse organisms, from viruses to mammals. Contact:, 848-391-7508.

Professor Paul Falkowski (Geological Sciences and Marine and Coastal Sciences)

Falkowski's lab is a world leader in experimental, environmental biophysics. His work focuses on how light leads to life. His book "Life's Engines" is the essence of nano machines that convert energy to life. Falkowski's lab works on understanding how energy from the environment is transduced to making life on Earth and potentially on other terrestrial planets outside of our solar system.

Professor Sang-Hyuk Lee

Our research goal is to understand cellular processes at high spatial and temporal resolution by using novel single-molecule manipulation and imaging methods such as Holographic Optical Tweezers, smFRET, and super-resolution PALM/STORM microscopy. We are currently most interested in the molecular mechanism of innate immune response of human cells. Using various innovative experimental methods, we are trying to understand how cells detect viral RNA in a very specific manner and further relay the signal to a great amplification. We aim for interdisciplinary research that integrates state-of-the-art instrumentation, biological problems of great importance, and quantitative data analysis and modeling in light of statistical physics.

Professor Ronald M. Levy (Chemistry)

We use computer simulations and statistical mechanics to study the structure, function, folding, and dynamics of proteins. Current research projects include the study of mechanisms for molecular recognition by proteins, homology modeling, and protein dynamics on longer time scales.  We are interested in the interplay between computational models and experimental studies of biological assemblies at different levels of resolution. We are engaged in research in the area of Computational Molecular Biology - including the development of computational tools which will be useful for predicting the functions and structures of newly sequenced genes, as well as for studying the basic physical principles of protein folding.

Professor Alexandre Morozov

The goal of my current research is to analyze gene regulation on a whole-genome scale using methods from physics and statistics, including the stochastic and deterministic variations caused by environmental signals, developmental stage, and disease state.  Broadly speaking, I seek to improve the current understanding of the "transcriptional and post-transcriptional regulatory code" that links the DNA sequence with gene expression levels. To this end, I and the members of my lab study chromatin structure and its effect on gene regulation,biophysical models of protein evolution, and evolution and energetics of DNA-binding proteins.

Professor Wilma Olson (Chemistry)

Our research combines a variety of computational approaches (e.g., Metropolis-Monte Carlo, energy minimization, polymer statistical mechanics, normal mode analysis) with developments in polymer theory to study the sequence, structure, properties, and function of nucleic acids at different levels of resolution. Problems of current interest include: elastic models of the long threadlike DNA double helix that account for its local structure, direct recognition, mesoscopic looping, super coiling and knotting; conformational changes, including the overstretching and over twisting of single molecules; electrostatic effects governing macromolecular structure and recognition; interactions with proteins, drugs, and carcinogens.

Professor Anirvan Sengupta

Our research aims to understand information processing in the cellular enviroment. We are mostly focused on studying signaling and transcription. Our interests range from information theory of signaling cascades to bioinformatic tools for discovery of the transcriptional networks that affect gene expression as a result signaling events. We are also analyzing bistable genetic systems that can hold two different states for the same external cue. Currently, to complement our computational and theoretical work, we have set up a wet lab in the Waksman Institute to test our predictions and to generate data for further model building.

previous section - table of contents - next section

Back to Rutgers Physics Home Page

Please send any comments on this page to

Revised October, 2017