
 
 

CM-A   Solution 
 

(a) To the right. 
(b) Tcosθ = Ff . Now,  τ=I α ⇒Tr1-Ffr2=0 since α=0⇒  Tr1=Ffr2 
Thus, Tr1=T (cosθ)r2. ⇒ θ =arccos (r1/r2) 
(c) For the critical angle and maximum tension, Ff=µsFN and FN=mg-Tmaxsinθc. In 

addition, Tmaxcosθc = Ff=µsFN. These lead to FN=mg-Tmaxsinθc 

=Tmax(cosθc)/µs=Tmaxr1/µ sr2. Thus, Tmax(r1/µ sr2+sinθc)=mg. ⇒ 
Tmax=mg/[r1/µsr2+( r2

2-r1
2)1/2/r2]. 

 



CM - B Solution:

Consider the rocket and exhaust just before and after the ejection of an amount of mass
dme. The momentum of the system must be the same before and after the ejection. If the
rocket has velocity v and mass m before ejection, then its momentum then is mv. After
ejection, the momentum of the rocket plus exhaust is, to first order in small quantities

(m− dme)(v + dv) + dme(v − ue) = mv + mdv − dme v − dme dv + dme v − dme ue(1)

= mv + mdv − dme ue. (2)

Equating the two momenta yields

mv = mv + mdv − dme ue (3)

⇒ mdv = dme ue (4)

Now the change in the mass of the rocket is dm = −dme, so

⇒
∫ v

0
dv = −

∫ mf

mi

(dm/m)ue (5)

⇒ v = ln(mi/mf )ue. (6)



CM - C1 Solution

We consider more general case with β 6= π
2
−α, as shown in Figs.1, 2. Let ~w be the acceleration

of M and ~a be the linear acceleration of the ball with respect to the incline. Let also ~F , ~N
and ~FI = −m ~w be, respectively, the friction force, the normal force and the inertial force
acting on the ball in the non-inertial reference frame related to the incline. The second
Newton law for the ball in the non-inertial reference frame gives (see Fig.1)
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ma = mg sin(α + β)− F −mw cos(α) , m g cos(α + β) + mw sin(α) = N .

An angular acceleration of the ball is given by

α =
a

R
and I α = F R ,

where I is the moment of inertia of the ball. Hence

F = γ ma =
γ m

1 + γ

[
g sin(α + β)− w cos(α)

]
, N = m g cos(α + β) + mw sin(α) ,

where γ = I
mR2 .

The second Newton law for M gives (see Fig.2):

M w = M g sin(β) + F cos(α)−N sin(α)

= M g sin(β) +
γ m

1 + γ

[
g sin(α + β)− w cos(α)

]

−m
[
g cos(α + β) + w sin(α)

]
sin(α) .
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Solving this equation with respect to w, one finds

w = g

[
sin(β) + γ µ

1+γ
sin(α + β) cos(α)− µ sin(α) cos(α + β)

1 + γµ
1+γ

cos2(α) + µ sin2(α)

]

= g

[ (
1 + γ(1 + µ)

)
sin(β)− µ sin(α) cos(α + β)

(1 + γ)(1 + µ)− µ cos2(α)

]
, with µ =

m

M
.

Notice that for the uniform ball γ = I
mR2 = 2

5
. Finally, for α + β = π

2
one obtains,

w =
g (7M + 2 m) cos(α)

7 (m + M)− 5 m cos2(α)
.
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CM-C2  Solution: 
 
 
 

 
(a) T=M3g and T=M2a, leading to M3g=M2a. Thus, a=M3g/M2 
 
(b) FN=M3a=M3

2g/M2. In addition, F-T-FN=M1a. 
Thus, F=M1a+T+FN=M1M3g/M2+M3g+M3

2g/M2=(M1+M2+M3)M3g/M2 
 
 
 
 
 

F 

T 

T 

FN FN 



CM - D1 Solution

a) Adopt a coordinate system centered on the top end of the string. Let
(xcm, ycm) be the coordinates of the center of mass of the bar, which is located
half-way down its length. Let (x1, y1) be the coordinates of the connection
between the string and bar. Then

xcm = x1 +
3L

4
sin(θ) = L sin(φ) +

3L

4
sin(θ) (1)

ycm = y1 − 3L

4
cos(θ) = −L cos(φ)− 3L

4
cos(θ). (2)

Taking the time derivative yields the velocity of the center of mass:

ẋcm = L cos(φ)φ̇ +
3L

4
cos(θ)θ̇ (3)

ẏcm = L sin(φ)φ̇ +
3L

4
sin(θ)θ̇. (4)

The Lagrangian of the system is the kinetic energy of the bar minus its
potential energy, L = K − U . The potential energy is simply related to the
height of the center of mass of the bar, U = Mgycm. The kinetic energy is
the sum of the kinetic energy of the center-of-mass motion and that of the
rotational motion:

K = Kcm + Krot (5)

=
1

2
M

(
(ẋcm)2 + (ẏcm)2

)
+

1

2
I(θ̇)2 (6)

=
1

2
M

((
L cos(φ)φ̇ +

3L

4
cos(θ)θ̇

)2

+
(
L sin(φ)φ̇ +

3L

4
sin(θ)θ̇

)2
)

+

1

2

(
1

12
M(3L/2)2

)
(θ̇)2 (7)

=
1

2
ML2

[
(φ̇)2 +

9

16
(θ̇)2 +

3

2
(cos(φ) cos(θ) + sin(φ) sin(θ)) φ̇θ̇ +

3

16
(θ̇)2

]
(8)

=
1

2
ML2

[
(φ̇)2 +

3

4
(θ̇)2 +

3

2
cos(φ− θ)φ̇θ̇

]
. (9)

In equation 6, I is the moment of inertia of the bar. Thus, the Lagrangian is

L =
1

2
ML2

[
(φ̇)2 +

3

4
(θ̇)2 +

3

2
cos(φ− θ)φ̇θ̇

]
+ MLg

(
cos(φ) +

3

4
cos(θ)

)

(10)
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To derive the Lagrangian for small oscillations, keep terms up to second order
in the angles:

L =
1

2
ML2

[
(φ̇)2 +

3

4
(θ̇)2 +

3

2
φ̇θ̇

]
+ MLg

(
(1− 1

2
φ2) +

3

4
(1− 1

2
θ2)

)
. (11)

b) The Euler-Lagrange equations are

d

dt

(
∂L

∂φ̇

)
− ∂L

∂φ
= 0 (12)

and
d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0. (13)

Substituting in the Lagrangian appropriate for small oscillations yields (using
the full Lagrangian and then finding the appropriate limit yields the same
result):

d

dt

(
1

2
ML2(

3

2
θ̇ +

3

2
φ̇)

)
−MLg

(
−3

4
θ
)

= 0 (14)

⇒ 3

4
ML2

(
θ̈ + φ̈

)
+

3

4
MLgθ = 0 (15)

⇒ Lθ̈ + Lφ̈ + gθ = 0. (16)

and

d

dt

(
1

2
ML2(2φ̇ +

3

2
θ̇)

)
−MLg (−φ) = 0 (17)

⇒ ML2
(
φ̈ +

3

4
θ̈
)

+ MLgφ = 0 (18)

⇒ Lφ̈ +
3

4
Lθ̈ + gφ = 0 (19)

c) In the normal modes, both φ and θ vary sinusoidally with the same fre-
quency. Thus, the modes have the form φ = Aφ sin(ωt) and θ = Aθ sin(ωt).
Intuitively, we expect that one mode with have the same sign for Aφ and
Aθ and the other will have opposite signs. Plugging these forms into the
equations of motion produces

−AθLω2 sin(ωt)− AφLω2 sin(ωt) + gAθ sin(ωt) = 0

⇒ Aθ + Aφ =
g

Lω2
Aθ ⇒ Aφ =

(
g

Lω2
− 1

)
Aθ (20)
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and

−AφLω2 sin(ωt)− 3

4
AθLω2 sin(ωt) + gAφ sin(ωt) = 0

⇒ Aφ +
3

4
Aθ =

g

Lω2
Aφ ⇒ Aφ =

3

4

(
g

Lω2
− 1

)−1

Aθ.(21)

Equating equations 20 and 21 yields ω:

(
g

Lω2
− 1

)
Aθ =

3

4

(
g

Lω2
− 1

)−1

Aθ ⇒
(

g

Lω2
− 1

)2

=
3

4
⇒ g

Lω2
−1 = ±

√
3

4

⇒ ω = ±
√

g/L
√

1±
√

3/4
. (22)

The leading ± determines only whether the pendulum initially swings left or

right. Plugging in the frequency ω± =

√
(g/L)/(1±

√
3/4) into equation 20

yields

Aφ = (1±
√

3

4
− 1)Aθ = ±

√
3

4
Aθ. (23)

Thus, the two normal modes are

θ = A sin(ω+t) φ =

√
3

4
A sin(ω+t) ω+ =

√
g/L

√
1 +

√
3/4

(24)

and

θ = A sin(ω−t) φ = −
√

3

4
A sin(ω−t) ω− =

√
g/L

√
1−

√
3/4

. (25)

In the low-frequency normal mode the top and bottom of the bar move in
phase. In the high-frequency normal mode the top and the bottom of the
bar move in opposite directions. For both normal modes the amplitude of

the motion of φ is smaller than that of θ by
√

3/4.

d) A force F applied horizontally to the bottom of the vertically-hanging bar
will cause it to both displace and rotate. The string will initially exert no
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horizontal force and, hence, no torque on the bar. The change in θ can be
calculated from the torque exerted on the bar. The simplest way to determine
the change in φ is to find the horizontal displacement of the point where the
rod connects to the string, x1. That displacement is a combination of the
displacement of the center of mass of the rod and the rotation of the rod.
For infinitesimal displacements,

φ = x1/L = (xcm − θ(3L/4))/L

⇒ φ̇ = ẋcm/L− (3/4)θ̇. (26)

After a time ∆t, Mẋcm = F∆t from Newton’s second law. The force exerts
a torque F (3L/4) on the bar, so after ∆t

Iθ̇ = F
(

3L

4

)
∆t (27)

⇒ 1

12
M

(
3L

2

)2

θ̇ =
(

3L

4

)
F∆t (28)

⇒ θ̇ = 4
F∆t

ML
. (29)

Plugging these results into equation 26 for φ̇ yields

φ̇ =
F∆t

ML
− 3

4

(
4
F∆t

ML

)
(30)

= −2
(

F∆t

ML

)
. (31)

Thus, for small ∆t, θ = −2φ. Note that both normal modes are excited by
the force.
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CM - D2 Solution

x

2

x

x

1

1. Constraints:

x = x1 + h , x + x1 + x2 + 2πR = L , (s.1)

2. Kinetic energy:

Rope, piece x2 :
ρ x2

2
ẋ2

2

Rope, piece over PII :
ρ πR

2
ẋ2

2

Rope, piece x1 :
ρ x1

2
ẋ2

1

Rope, piece under PI : ρ πR ẋ2

Pulley PI :
M

2
ẋ2 +

I

2R2
ẋ2

Pulley PII :
I

2R2
ẋ2

2

where

I =
1

2
MR2

is the moment of inertia of the pulley.
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3. Potential energy:

Rope, piece x2 : −gρ

2
x2

2

Rope, piece x1 : −gρ

2
x2

1

Rope, piece x : −gρ

2
x2

Pulley PI : −gM x

4. Excluding x1 and x2 and the associated velocities through (s.1), one
finds for the full kinetic and potential energies

K =
1

2
(Ax + B) ẋ2 ,

with
A = −9 ρ , B = ρ(4L− 2π R + 5 h) + M + 5I/R

and
U = −gM x− gρ

2
((L− 2πR + h− 2x)2 + (h− x)2 + x2) .

5. The equation of motion then reads

(A x + B) ẍ +
A

2
ẋ2 + gρ (2L− 4πR + 3h− 6x)− gM = 0

When the rope is released we have ẋ = 0 and x = x0. Then

ẍ =
gM − gρ(2L + 3h− 4πR− 6x0)

7M/2 + ρ(4L + 5h− 2πR− 9x0)
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