
QM - A SOLUTION

a) The possible measured values for JZ for a particle in an j = 1 state are JZ = +h̄, 0, −h̄.
Since the particle is in an JZ eigenstate with eigenvalue mh̄ = +h̄, the probability of
measuring JZ = +h̄ is 100% with the probabilities of measuring JZ = 0 or JZ = −h̄
equal to zero.

b)
〈J2〉 = j(j + 1)h̄2 = 2h̄2 ⇒ 〈J2

X〉+ 〈L2
Y 〉+ 〈L2

Z〉 = 2h̄2

〈J2
Z〉 = m2h̄2 = h̄2 and by symmetry 〈J2

X〉 = 〈J2
Y 〉

⇒ 〈J2
X〉 = 〈J2

Y 〉 =
h̄2

2

〈J2
X〉 = h̄2Prob(JX = +h̄) + 0Prob(JX = 0) + h̄2Prob(JX = −h̄)

By symmetry Prob(JX = +h̄) = Prob(JX = −h̄)

⇒ Prob(JX = +h̄) = Prob(JX = −h̄) =
1

4

Since Prob(JX = +h̄) + Prob(JX = 0) + Prob(JX = −h̄) = 1

Prob(JX = 0) =
1

2



QM – B  SOLUTION 
 
 
If the girl constrains the marbles to have position very close to the desired, they will have 
a substantial spread in their horizontal momenta, according to the uncertainty principle: 

  

∆px ≥ h
2∆x0

, 

where ∆x0 is the uncertainty in initial position. This means that as the marbles fall, the 
uncertainty in their position is going to grow: 
 

  

∆x ≥ ∆x0 + t
∆px

M
= ∆x0 + t

h
2M∆x0

. 

 
If, on the other hand, she constraints the horizontal momentum of the particles, the initial 
∆x0 is going to be large. This means that there is some optimal value of ∆x0 that 
minimized the final ∆x. 

 
The girl needs to minimize ∆x after the time t = 2H /g  which is how long it takes for 

the marbles to fall. At the optimal ∆x0 the derivative d(∆x)/d(∆x0) should be zero: 
 

  

d(∆x)
d(∆x0)

=1− h
2M(∆x0)2 t =1− h

2M(∆x0)2

2H

g
 

 

  

∆x0 = h
2M

2H

g
4 . 

 
Substituting this back to the formula for ∆x we get 
 

  

∆x ≥ ∆x0 + 2H

g

h
2M∆x0

= 2
h

2M

2H

g
4 ∝ h

M

 
 
 

 
 
 

1/ 2
H

g

 

 
 

 

 
 

1/ 4

. 

 
For the given mass and height we get ∆x > 4×10-16 m, smaller than size of nucleus. 
 

 



QM – C1  SOLUTION 
 
 
(a)  We have 
 

 ���, �� � � sin � cos � � �� sin � ���� � ����� � �� �� ���� ��� �  � ���� ��� � � ! 

 
Simplify by using Dirac notation:  ���, �� " |$�% , � ' " |$� ' %    
 

Then we have:   |$�% � �� ���� ��� �|$�  % � |$� � %� 

 
Now, since:    (�|�) � 1,    +� ' ,� ' - � 1,   and +� ' ,� 0 - � 0    
 

We have:   1 � (�|�) � �� ��� ��2�  $| � 2� � $|� �|$�  % � |$� � %�� 

� �� 243 �2�  $|$�  % � 2� � $|$� � %� 

� �� 443   7 � � 8 344 

 

So:  |$�% � � � �9���� ���� ��� �|$�  % � |$� � %� � �  √� �|$�  % � |$� � %� 

 
 
(b)  Since:   ;<|$�=>% � ?@|$�=>%   and   ;�|$�=>% � ?A�A � 1�|$�=>%    
 

We have:   ;<|$�% � �  √� �?|$�  % � ?|$� � %� � � ?√� �|$�  % �|$� � %� 

 

So :  2;<% � (�|;<|�) � ?� ��2�  $| � 2� � $|� �|$�  % � |$� � %�� � ?� �2�  $|$�  % � 2� � $|$� � %� �?� �1 � 1� � 0 

 
 

Similarly:     ;�|$�% � �  √� �;�|$�  % � ;�|$� � %� � � ?�
√� �2|$�  % � 2|$� � %� � 2?�|$�% 

 
So:     2;�% � (�|;�|�) � 2?�2�$|$�% � 2?�  
 
 
 



QM – C2  SOLUTIONS 
 
 
(a)  To get the eigenvalues, one needs to solve  H|ψ> = E|ψ>: 
 

E0

1 λ
λ −1

 

 
 

 

 
 

x

y

 

 
 
 

 
 = E

x

y

 

 
 
 

 
 

E0 − E E0λ
E0λ −E0 − E

 

 
 

 

 
 

x

y

 

 
 
 

 
 = 0

E = ±E0 1+ λ2

 

 
(b)  In the unperturbed case, the eigenvectors are |U> and |D>, corresponding to 
eigenvalues of +E0 and –E0 respectively. To get to the second order, we write 
 

EU = E0 + U HV U +
D HV U

2

E0 − (−E0)
= E0 + 0+ E0

2λ2

2E0

= E0 1+ λ2

2

 

 
 

 

 
 

ED = −E0 + D HV D +
U HV D

2

−E0 − E0

= −E0 + 0− E0
2λ2

2E0

= −E0 1+ λ2

2

 

 
 

 

 
 

    

 

Expanding the exact answer from 1) in powers of λ  we get E = ±E0 1+ λ2

2
− λ4

8
+ ...

 

 
 

 

 
  

which coincides with the perturbation theory answer up to λ2. 
 
(c) First, let us determine the eigenvectors of the system. They are given by equation 
 

(E0 − E)x + E0λy = 0. 
 
Substituting results for E from (b) we get two vectors: 

 

ψ1 = 1− 1
8

λ2 
 
 

 
 
 

1

1
2

λ

 

 

 
 
 

 

 

 
 
 

= 1− 1
8

λ2 
 
 

 
 
 U + 1

2
λ D

ψ2 = 1− 3

8
λ2 

 
 

 
 
 

− λ
2

1+ λ2

4

 

 

 
 
 

 

 

 
 
 

= − 1

2
λ U + 1− 1

8
λ2 

 
 

 
 
 D

 

 
It is easy to show that |U> and |D> can be represented as 

 



U = 1− 1
8

λ2 
 
 

 
 
 ψ1 − 1

2
λ ψ2

D = 1
2

λ ψ1 + 1− 1
8

λ2 
 
 

 
 
 ψ2

 

 
If a system was initially in a state |ψk>, after a time t its wavefunction will be  

  
ψk (t) = ψk (0) × e

− i
Ek

h
t
. 

 
Therefore if the system was initially in state |U>, 
 

  

ψ(t) = 1− 1
8

λ2 
 
 

 
 
 ψ1 e

− i
EU

h
t
− 1

2
λ ψ2 e

− i
ED

h
t

=

= 1− 1
8

λ2 
 
 

 
 
 U + 1

2
λ D

 

 
 

 

 
 e

− i
EU

h
t
+ − 1

8
λ2 U − 1

2
λ D

 
 
 

 
 
 e

− i
ED

h
t
 

 
The probability to find the system in the state |D> is <D|ψ(t)>2: 
 

  

P(t) = 1
2

λ ⋅ e
− i

EU

h
t
⋅ 1− e

−i
ED −EU

h
t 

 
 

 

 
 

2

= λ2

2
1− cos

2E0 1+ λ2

2

 

 
 

 

 
 t

h

 

 

 
 
 
 

 

 

 
 
 
 

 



QM - D1 SOLUTION

a) We need to add three angular momenta with sB = 1/2, sC = 1 and l to get a total
angular momentum sA = 1/2. Use the rule when adding angular momenta, j1 and j2

that |j1− j2| ≤ j ≤ j1 + j2. First add sB and sC .

|s1 − s2| ≤ s ≤ s1 + s2 → 1/2 ≤ s ≤ 3/2

Possibilities are: s = 1/2, 3/2

Now add s and l to get sA

|1/2− l| ≤ 1/2 ≤ 1/2 + l → l = 0, 1

|3/2− l| ≤ 1/2 ≤ 3/2 + l → l = 1, 2

Answer is l = 0, 1, 2

b) Since l = 0, we only need to consider the addition of sB and sC . From the given
Clebsch-Gordon coefficients, we see that

| 3/2, 1/2 〉 = 〈 1, 1; 1/2,−1/2 | 3/2, 1/2 〉 | 1, 1; 1/2,−1/2〉

+ 〈 1, 0; 1/2, 1/2 | 3/2, 1/2 〉 | 1, 0; 1/2, 1/2〉

=
√

1/3 | 1, 1; 1/2,−1/2〉 +
√

2/3 | 1, 0; 1/2, 1/2〉

Now the state that we’re interested in is | 1/2, 1/2 〉. This state is orthogonal to
| 3/2, 1/2 〉 so

| 1/2, 1/2 〉 =
√

2/3 | 1, 1; 1/2,−1/2〉 −
√

1/3 | 1, 0; 1/2, 1/2〉

So if the initial state is | 1/2, 1/2 〉, the probability for the final state to be in the state
| 1, 0; 1/2, 1/2〉 with the spin of particle B in the +z-direction is 1/3.

Note that we have used:

〈 1, 1; 1/2,−1/2 | 3/2, 1/2 〉 =
√

1/3 〈 1, 0; 1/2, 1/2 | 3/2, 1/2 〉 =
√

2/3



QM – D2   SOLUTION 
 
To first order, the amplitude for transition to state |n’> is given by 

��′��� �  �	

 � �
′����
�������′�����/
�

��
�� 

 
Where to is the onset of the perturbation HI.  The perturbation is the electric field:  ����  ����  �⁄  
 
with corresponding potential energy:    �� � ��"��  ����  �⁄  
 

Now, for the harmonic oscillator, the x-operator may be written as:  "�# � � 

$%&�'/$ �� ( �)�   

 
In terms of the raising and lowering operators:  

�|+
, � 
'/$|+
 � 1,  ;  �)|+
, � �
 ( 1/2�'/$|+
 ( 1, 
 
For the matrix element, with the initial state   |+
, � |+2,  we have: 

�
′����2� � �� / 

2012

'/$
��  ����  �⁄ �
′��� ( �)��2� 

 
The only non-zero terms will be  31|�|24 � √231|14 � √2  and  33|�)|24 � √333|34 � √3 . 
 
So, there are transitions to two states: 

�'��� �  �	

 � �� / 


2012
'/$

√2��  ����  �⁄ ���&��
�

�∞
�� 

�7��� �  �	

 � �� / 


2012
'
$ √3��  ����  �⁄ ��&��

�

�∞
�� 

 
From the given integral, we have    

�  ����  �⁄ �8�&��
∞

�∞
�� � 9:�� �&��/; 

 

So:     <$' � |�'�∞�|$ � $=���> �
$%
& �� �&��/$      and   <$7 � |�7�∞�|$ � 7=���> �

$%
& �� �&��/$ 

 
No other transitions occur to first order. 
 

(b)  The value of t that maximizes this probability is given by 
?@� �

? � 0.    

In both cases, <�9�  ~  9$�� �&��/$ 
 

So:   
?@� �

?   ~   C29�� �&��/$ � 971�$�� �&��/$D � 0  which occurs when 2 � 9$1�$ � 0  E
  9 � √$

&  


