Rutgers University – Physics Graduate Qualifying Exam Quantum Mechanics – August 31, 2009

Work problems A and B and (C1 or C2) and (D1 or D2). Work each problem in a separate blue book. Each problem is worth a total of 10 points.

QM - A

A particle is in a state that is an eigenstate of both total angular momentum and the z-component of angular momentum, $| \cdot j_i m \rangle$ with j = 1 and m = 1

a) If the angular momentum of the particle in the \$z\$-direction is measured, what are the possible values that can be obtained and what is the probability for each?

b) If the angular momentum of the particle in the *x*-direction is measured, what are the possible value that can be obtained and what is the probability for each?

QM - B

A boy standing on a ladder drops marbles of mass M from a height H. He tries to hit a point on the ground. Show that even if he is very careful, the marbles are going to miss the point by and

average distance Δx which is proportional to $\left(\frac{\hbar}{M}\right)^{1/2} \left(\frac{H}{g}\right)^{1/4}$, where g is the gravitational

acceleration. How large is the average distance for M = 1g and H = 2m? Compare with the size of an atom and atomic nucleus.

QM - C1

The angular wave function of a particle is given by $Y(\theta, \phi) = Asln(\theta) cos(\phi)$:

(a) [4 points] Find the normalization constant A.

(b) [6 points] Evaluate the expectation values (L_z) and (L_z) of this state.

QM - C2

Consider a quantum system that is described by Hamiltonian $H = E_0 \begin{pmatrix} 1 & \lambda \\ \lambda & -1 \end{pmatrix}$. Any wave function $|\psi\rangle$ may be written as a linear combination of the two basis states, $|U\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|D\rangle = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$|D\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$
.

a) Obtain exact energy eigenvalues of this system.

b) Consider the Hamiltonian as $H = H_W + H_V$, where $H_W = E_0 \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ and $H_V = E_0 \begin{pmatrix} 0 & \lambda \\ \lambda & 0 \end{pmatrix}$,

and, assuming that $\lambda \ll 1$, obtain the energy eigenvalues to second order in perturbation theory. Compare them to exact results and explain the difference.

c) Suppose at $t_0 = 0$ the system is in state $|U\rangle$. What is the probability to find it in state $|D\rangle$ after a time *t*?

QM - D1

A particle A with spin 1/2 decays at rest into two particles B and C, where B has spin 1/2 and C has spin 1.

a) What are the possible values of the **orbital** angular momentum of the final state?

b) If the orbital angular momentum of the final state is 0, and if A is polarized with its spin in the +z direction, what is the probability that the z-component of the spin of B will also be in the +z direction? You may find the following Clebsch-Gordon coefficients $\{f_1, m_1, f_2, m_2\}$ useful.

QM - D2

An electron is trapped in a one dimensional harmonic potential characterized by the classical angular frequency ω . At time $t = -\infty$ the electron is in the n = 2 eigenstate. The system is subjected to a time dependent electric field E(t) that acts from $t = -\infty$ to $t = +\infty$ and is given by

$$B(t) = B_0 e^{-\frac{t^2}{\tau^2}}$$

(a) To first order, what is the probability that the electron will be in the state n' at time $t = -\infty$? [Note: ignore any interactions associated with the vector potential]

(b) What characteristic time, τ , of the electric field will result in the highest probability that the electron will be found in the state n'?

Possibly useful information: $e^{\frac{N^2}{\alpha^2}s^{tbx}}dx = a\sqrt{\pi}e^{-\frac{\alpha^2b^2}{4}}$