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Rutgers - Physics Graduate Qualifying Exam 
Quantum Mechanics – January 18, 2008 

 
 
 
 
QA 
A free particle of mass m moving in one dimension is known to be in the initial state: 
 

)sin()0,( xkAtx o==Ψ  
  

(a) [3 pts.]  What is ),( txΨ  at a later time t? 
 
(b) [4 pts.]  What is the probability distribution that a measurement of the momentum of this 

particle at this time t will find a value p? 
 

(c) [3 pts.]  If p is measured at t = to seconds and the value oKh  is found, then what would be 
),( txΨ for times t > to? 

 
 
 
QB 
A quantum mechanical particle of mass m is moving in a cubical box of length L (0 ≤ x, y, z ≤ L).  
 

(a) [2 pts.]  What is the energy and normalized wave function of the ground state?  
 

One wall of the box is suddenly moved from x = L to x = 4L.  
 
(b) [3 pts.]  What is the energy and wave function in the ground and first excited states of a 

particle in the enlarged box? 
(c) [5 pts.]  What is the probability that the system which was in the ground state of the cube 

is still in the ground state of the enlarged box? 
 

Useful integral: sin( ) sin( )(sin sin )
2( ) 2( )
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− +∫ , where (m2 ≠ n2) 
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QC1 
Prove the virial theorem (average kinetic energy = average potential energy) for the nth eigenstate 
of the simple harmonic oscillator.   
 
 
QC2 
Consider a particle of mass m in three dimensions in the following potential: 
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where Vo > 0. 
 

(a) [3 pts.]  Recall that the energy levels in any central potential can be labeled by radial, nr, 
and angular momentum, l, quantum numbers. Show that for fixed nr the energy lnr

E  of 
bound states (when they exist) increases as the angular momentum l is increased. 

 
(b) [4 pts.]  What is the condition on the parameters Vo, a and m such that there is at least one 

bound state? 
 
(c) [3 pts.]  Determine the number of s-states (i.e. bound states with l = 0). 
 

 
 
 
 
QD1 
Recall that the kinetic energy of a plane rotator moving in the xy-plane is: 
 

I
lz

2
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where lz is the z-component of the angular momentum operator. Suppose the rotator has an 
electric dipole moment d and a strong electric field E in the rotation plane (dE >> I/2h ) is 
applied.  Determine approximately the low lying energy spectrum. What is the condition of 
applicability of your approximation? 
 
Hint: Convince yourself that in a strong electric low energy states are localized in the region | φ | 
<< 1, where φ is the angle between d and E. Then, you can expand the interaction energy of the 
rotator with the field in φ to the lowest nontrivial order to obtain a familiar Hamiltonian. 
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QD2 
This problem explores the basic ideas behind the phenomenon of magnetic circular dichroism.  
 
The eigenfunctions for non-interacting electrons in a hydrogenic potential can be written as a product 
wave function of the spatial and spin degrees of freedom as follows: 

↑=↑=↑ ),()(),,(,,, , φθφθψ m
llnnlm YrARrmln  

where )(, rR ln  is a Leguerre polynomial and ),( φθm
lY  a spherical harmonic, ↑  and ↓  indicate the 

component of the electron spin parallel or antiparallel to the quantization axis, and A is a normalization 
constant. The quantum numbers are: n, the principal quantum number, l the quantum number of the 
orbital angular momentum operator L, and m the quantum number of the operator for the z-component of 
the orbital angular momentum Lz. In this problem, consider the 2p level, i.e., n = 2, l = 1. 
 

(a) [1 pts.]  What are the possible values of m? 
 
(b) [1 pts.]  The total angular momentum operator is J = L + S with quantum numbers j, and the 

operator for the z-component of total angular momentum is Jz = Lz + Sz with quantum numbers 
mj.  What are the possible values for j and their associated mj‘s? 

 
(c) [3 pts.]  Find the simultaneous eigenfunctions of the operators J and Jz as linear combinations of 

the set ↑,,1,2 m  and ↓,,1,2 m  with appropriate values of m. 

 
The probability for optical transitions are governed by the dipole matrix element  

22 ˆ iffi rM Ψ•Ψ=
rε  

 
Suppose the atom under consideration is spin polarized, so that optical transitions can only occur between 
initial states that are the eigenstates from part (c) to final states of the (degenerate) 3d levels of the form: 

↓,,2,3 m . 

 
(d) [2 pts.]  Consider dipole transitions excited by linearly polarized light where ẑˆ =ε .  Show that 

such excitations obey the selection rules: 1±= if ll  and if mm = .   
 

(e) [3 pts.]  Now, consider dipole transitions excited by circularly polarized light, where 
)ˆˆ(ˆ yix ±=ε  for left and right circular polarization, respectively.  Show that the selection rules 

now become 1±= if ll  and 1±= if mm .  Show that the asymmetry [(Ileft – Iright)j’ / (Ileft – Iright)j] 
is -1, where I is the intensity of the transition.   
 

The asymmetry in part (e) is called magnetic circular dichroism and, since optical transitions energies are 
different for different elements, is used to identify the atomic source of ferromagnetism in many complex 
materials. 

 
Possibly useful:  1,)1()1(, ±±−+=± jjjj mjmmjjmjJ h ;  similar for L and S. 


