
 
SOLUTIONS  TP-A 
 
 

(a)     H=U+PV; Use U=TS-pV+uN gives H=TS+uN=TS+G  (u is mu) 
 
(b)  dH=dQ+T(dS)+u(dN)=T(dS) + V(dP)+u(dN) 
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             G also has a Maxwell relation from  
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             (c)   For P(V-bN)=NkT 
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SOLUTION  TP-B 
 
 
 
Spin 1 particles are bosons and you can put any number in a level. The spin degeneracy is 

sg = 3.  
There are 11 configurations such that 6 particles have total energy U= ε6 . 
Let jN  equal number of particles in level with energy εj . 
The number of ways of putting bosons in levels (any number in a level) for a choice of 
{ 610 ,....,, NNN } N

r
≡  is )(NK
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Ω for each configuration K . This is given by: 
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Configuration K               Distribution of           )(NK

r
Ω        

    =N { 610 ,....,, NNN }       Energy as   
1.          ( 5,0,0,0,0,0,1)         6=6                             63 
2.          ( 4,1,0,0,0,1,0)         6=5+1                       135 
3.          ( 4,0,1,0,1,0,0)         6=4+2                       135 
4.          ( 3,2,0,0,1,0,0)         6=4+1+1                   180 
5.          ( 4,0,0,2,0,0,0)         6=3+3                         90 
6.          ( 3,1,1,1,0,0,0)         6=3+2+1                   270 
7.          ( 2,3,0,1,0,0,0)         6=3+1+1+1               180 
8.          ( 3,0,3,0,0,0,0)         6=2+2+2                   100 
9.          ( 2,2,2,0,0,0,0)         6=2+2+1+1               216 
10.        ( 1,4,1,0,0,0,0)         6=2+1+1+1+1           135 
11.        ( 0,6,0,0,0,0,0)         6=1+1+1+1+1+1         28 
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Solution TP-C1

(a) The density of states of a photon gas is

D(ε)dε = αV ε2dε,

where α is a constant.

Hence the partition function

F = −
∫

D(ε) ln(1− e−β)dε, (1)

p =
1
β

∂

∂V
F (2)

= −α

β

∫
ε2 ln(1− e−β)dε, (3)

Integrating by parts we have

p =
1

3V

∫ ∞

0

V αε2 ε

eβε − 1
dε =

U

3V
.

(b) For thermal radiation, we have

U(T, V ) = u(T )V.

Using the following formula of thermodynamics
(

∂U

∂V

)

T

= T

(
∂p

∂T

)

v

− p

we get u = T
3

du
dT - u

3 , i.e. u = γT4, where γ is a constant.



Solution TP-C2

a) The canonical partition function is:

Zcan =
1

N !

[
3N∏
i=1

∫ L

0

dxi

∫ ∞

−∞
dpi

]
exp−

[
3N∑
i=1

p2
i

2m
+ Nupot(v)

]
/kBT. (1)

(Note that we left out a constant factor of h3N which one needs to make Zcan dimension-
less).

Treat molecules as billiard balls and place them one by one into the container of
volume V , so that the 1st molecule can occupy volume V = L3, the 2nd molecule: V −vc,
the 3rd molecule: V − 2vc, and so on:

1

V N

[
3N∏
i=1

∫ L

0

dxi

]
=

N−1∏
m=1

(1−m
vc

V
) ' 1−

(
N−1∑
m=1

m

)
vc

V
= 1−(N − 1)N

2

vc

V
'

(
1− N

2

vc

V

)N

,

(2)
where we used N À 1 and vc ¿ V .
Hence

Zcan =
1

N !

(
V − N

2
vc

)N

exp

(
−Nupot(v)

kBT

)[∫ ∞

−∞
dp exp

(
− p2

2mkBT

)]3N

(3)

=
1

N !

(
V − N

2
vc

)N

exp

(
−Nupot(v)

kBT

)
(2mkBTπ)

3N
2 .

Using Stirling’s approximation we obtain:

f(v, T ) = − 1

N
kBT log Zcan = kBT

[
f0 − log[(v − vc/2)T 3/2]

]
+ upot(v), (4)

where v = V/N is the volume per particle, and f0 = −1− 3/2 log(2πm) is the part of the
free energy that is independent of v and T .

Now, (∂f/∂v) |T = −p gives

(
p +

∂upot

∂v

)
(v − vc/2) = kBT, (5)

the van der Waals equation of state.
(∂f/∂T ) |v = −s gives

s =
1

T
(upot(v)− f) +

3kB

2
, (6)

or

f =
3

2
kBT − Ts + upot(v), (7)

which shows that u = upot(v) + 3
2
kBT , as expected.
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Solution TP-D1
(a) The partition function takes the form

ZN =
1

N !
(Z1(tr))

N(Z1(mag))
N , (1)

where Z1(tr) is the translational contribution for a single molecule and Z1(mag)

is the magnetic contribution for a single molecule. The sincle particle transla-
tional partition function can be written Z1(tr) = V/λ3

T , where λT = h/
√

2πmkBT
is the thermal wavelength.

Let us now compute the partition function due to the magnetic degrees
of freedom. Each atom will have magnetic energy E(s) = −sµB, where
−S ≥ s ≤ S. The magnetic partition function for a single atom is

Z1(mag) =
∑
s=

esβµB = sinh((S + 1/2)βµB)/ sinh(1/2βµB). (2)

The partition function for the gas is

ZN =
1

N !
(
2V

λ3
T

)N [sinh((S + 1/2)βµB)/ sinh(1/2(βµB))]N . (3)

(b) The internal energy is given by

U = −(
∂ ln ZN

∂β
) =

3

2
NkBT −N∂β[sinh((S + 1/2)βµB)/ sinh(1/2(βµB))].

(4)
The heat capacity is

CV,N = (
∂U

∂T
)V,N,B =

3

2
NkB−T 2N∂T ∂T [sinh((S+1/2)βµB)/ sinh(1/2(βµB))]).

(5)
(c) The magnetization is given by M = −(∂Φ/∂B)T,N where Φ is the free
energy for this problem, Φ = −KBT ln(ZN) and

M = −(
∂Φ

∂B
)T,N . (6)
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Solution TP-D2

The entropy for a fixed number of molecules of both types (NX , NY ) (NX + NY = N)
is given by:

Ω(NX , NY ; U, V )

Ω(NX + NY , 0; U, V )
=

N !

NX !NY !
≡ exp

(
NsM(x)

kB

)
, (8)

where x = NX/N . Here Ω(NX + NY , 0; U, V ) is the entropy if all particles are of type X
(same as for the monoatomic ideal gas), and sM(x) is the mixing entropy for a specific
(NX , NY ). Note that all position and momentum dependent contributions to the total
number of states cancel out in Eq. (8).

We obtain the total mixing entropy by summing over all values of (NX , NY ):

exp

(
Nstot

M

kB

)
=

∑

NX ,NY |NX+NY =N

N !

NX !NY !
= 2N , (9)

or stot
M = kB log 2. Here we used the binomial expansion:

(a + b)N =
∑

NX ,NY |NX+NY =N

N !

NX !NY !
aNXbNY . (10)

Using Stirling’s formula we obtain:

NsM(x) = kB log

(
N !

NX !NY !

)
' kB log

(
NN

NNX
X NNY

Y

)
= −kBN log

[(
NX

N

)x (
NY

N

)y]
,

(11)
with x = NX/N, y = NY /N, x + y = 1. Therefore, the mixing entropy per particle is:

sM(x) = −kB [x log x + (1− x) log(1− x)] , (12)

and stot
M can be written as:

exp

(
Nstot

M

kB

)
= N

∫ 1

0

dx exp

(
NsM(x)

kB

)
. (13)

Note that this expression is not exact: stot
M = kB log 2 does not hold under this approxi-

mation anymore.
b)

∂sM(x)

∂x
= −kB [log x− log(1− x)] = 0 (14)

gives log xmax = log(1− xmax), or xmax = 1/2. Then

stot
M ' sM(xmax) = kB log 2. (15)
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This is the same as our exact result from part (a) - the errors introduced by the Stirling’s
approximation and by the max term approximation to the integral cancel out! In general,
the errors scale as log N/N as thus vanish in the thermodynamic limit [we will verify this
explicitly in the next section].

c)
∂2sM(x)

∂x2
|xmax = −kB

[
1

xmax

+
1

1− xmax

]
= −4kB. (16)

Then under the saddle-point approximation

N

∫ 1

0

dx exp

(
NsM(x)

kB

)
' N exp

(
NsM(xmax)

kB

) ∫ 1

0

dx exp
(−2N(x− xmax)

2
)
(17)

' N exp

[
NsM(xmax)

kB

+ 1/2 log(π/2N)

]
.

Note that we extended the upper limit of the Gaussian integral to +∞ (this is possible
because N À 1). The Gaussian correction is indeed of order log N/N .
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