
Physics Qualifying Exam, August 2008
Electricity and Magnetism

EM-A, Solutions

When the charge q is at x, its image −q is at −x, so the force between
them is

F = − 1

4πεO

q2

4x2
= −dU

dx
.

Thus U = − q2

16πεox
. By energy conservation
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(
dx

dt

)2

− q2

16πεox
= − q2

16πεoD

Thus

dx

dt
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√
q2

8πεom

(
D − x

xD

)
.

t =

√
8πεomD

q2

∫ D

o

√
xdx√

D − x
.

To do this integral, write x = D sin2 y, getting t = π
q

√
2πε0mD3.



EM-B   Solutions 
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Gauss’s law for the whole: 
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Similarly: 
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EM C-1, Solutions

In units with c = 1,

P1 = (γm, 0, 0, γβm)

P2 = (m, 0, 0, 0).

Since P 2
i = m2, energy and momentum conservation gives P3 · P4 =

P1 · P2 = γm2.

If both final particles have the same energy E, the magnitudes of their
momenta must also be equal. Thus

γm2 = (P3 · P4) = E2 − (E2 −m2) cos ϑ.

where by energy conservation

2E = γm + m,

giving

cos ϑ = γ−1
γ+3



 
 
 
Solution EM_C2 
 
(a)  An electromagnetic plane wave is given by 
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tie ω−= krHH  HB µ=  ED ε= , where taking the real part is 

implied. The divergences of D and B are zero provided that 0Ek ⊥  and 0Hk ⊥ , satisfying two 
of the Maxwell equations. The other two, involving the curl of E and H, in the absence of free 

sources read 
t∂

∂
−=×∇

BE  and 
t∂

∂
=×∇

DH , which upon substitution of the wave become 

    00 HEk ωµ=×      (1) 
and  

    00 EHk ωε−=× .     (2) 
It is equations (1) and (2) we now seek to satisfy. For 0>ε  and 0>µ we find, by combining the 

two equations: 0
2

0 EEkk εµω−=×× , which is satisfied for 0Ek ⊥  and εµω=k . Choosing 
E0 along the x-axis and k along the z-axis, the solution (in Cartesian column vector notation) 
therefore is 
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The vectors k, E, and H form a right-handed triplet. 

The Poynting vector is given by ( )tkz
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points (poynts?) in the same direction as k. There is no energy dissipation. 
 
 
 
 
 
 
 
 



 
 
 
(b)  0<ε  and 0>µ : 
Keeping E0 real, we find that to satisfy equations (1) and (2), k and H0 must be imaginary: 
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Due to the imaginary k, the wave is nonoscillatory in space but decays exponentially. It does not 
propagate. Instead, it is an evanescent wave. 

The Poynting vector is ( ) ( )tkztkz
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HES , and its time 

average is zero 0=S . The evanescent wave does not transport energy. There is no energy 

dissipation. The medium does not support propagating waves. 
 
 
 
 

0>ε  and 0<µ : 
Keeping E0 real, we find that to satisfy equations (1) and (2), k and H0 must be imaginary: 
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Due to the imaginary k, the wave is nonoscillatory in space but decays exponentially. It does not 
propagate. Instead, it is an evanescent wave. 
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HES , and its time 

average is zero 0=S . The evanescent wave does not transport energy. There is no energy 

dissipation. The medium does not support propagating waves. 
 
 
 
 
 
 



 
 
 
 
(c) 0<ε  and 0<µ : 
In this case E0, k and H0 are all real again:  
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These vectors form a left-handed triplet. Due to the real k, the wave oscillates in space and 
propagates, just like in the ordinary case (a). The difference is that k is reversed. 

The Poynting vector is ( )tkz
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of k: The phase fronts move in one direction, while the energy flows in the other. There is no 
energy dissipation. 
 



Solution EM_D1 

(a)  

Inductance:  d
a
rrL 00 28ln βµµ =⎟

⎠
⎞

⎜
⎝
⎛ −= , with geometry factor ( ) 931.2232ln2 ≈−=β  

Capacitor plate area: 
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  (with speed of light 8
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c m/s) 

The resonance frequency thus increases like 1/d as d is reduced. 

(b) 

Consider a uniform displacement of the electrons along the wire by a small distance x. This 
will charge the capacitor with a charge AnexQ = , where e is the charge of the electron. The 
capacitor voltage is CQV /= , and inside the conductor we have an electric restoring field E 
along the wire which integrates to V as we go from one capacitor plate around the ring to the 

other: ∫= EdlV . To obtain the total restoring force on all the electrons (assumed rigid) we 

perform a volume integral over the ring, ∫ ∫ ===Ω=
0

22

γε
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Since the restoring force is proportional to the displacement x, we may define a spring 

constant 
x
Fk =  for this degree of freedom, and obtain the resonance frequency

m
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using the oscillating mass of electrons enAlmm = . l is the length of the wire around the ring: 

( )142 −=−= ππ ddrl , where we have subtracted the gap width d from the circumference. 

Putting it all together, we have pf ω
π
α
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= , where pω is the bulk plasma frequency 
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α . The resonance frequency thus becomes 141050.5 ×≈f  Hz, 

independent of the length scale d!  (This frequency corresponds to visible light in the yellow-
green part of the spectrum. If d is small enough, we thus expect our split-ring resonator to 
efficiently absorb light of this wavelength.) 

(c) 

We set up an effective Lagrangian for the oscillation:  

PEKE −=Λ , with 
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= and a kinetic term containing both the actual kinetic energy 

and the inductive energy: 22
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and I is the current. The latter quantities are related via AnevI = , so the Lagrangian 

becomes 
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independent of d: pαωω = . 

 



EM-D2, Solution

(a)We use Gauss’ law:

∇ · E =
ρ

ε

Using a cylindrical Gaussian surface of height `, radius r

2πr`Er =
`λ

ε

Therefore

Er =
1

2πε

λ

r

Potential of the inner surface w.r.t. the outer surface is

∆V = −
∫ a

r=b
E · dr = −
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(b) Magnetic
Energy stored in the coaxial cable per unit length is

U =
1

2
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∫
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∇×B = µoJ ⇒
∮

B · dl = µoI

⇒ 2πrBφ = µoI ⇒ Bφ =
µo

2π

I

r
, a < r < b

[symmetry implies B = Bφφ̂]
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(c)

V (x)− Ldx
∂I

∂t
− IRdx = V (x + dx) (6)

I(x)− cdx
∂V

∂t
= I(x + dx)

⇒ dV (x) = −Ldx
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(d)

∂2I

∂x2
= LC
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With I = Io ei(kx−wt)

⇒ −k2 = −LCω2 → k = ±
√

LCω

since the signal propagates along +x, k =
√

LCω
Therefore:

I = Iocos
(√

LCωx− ωt + φ
)

(11)

where Io, and φ need to be determined.
part (c) gives
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at all times,

and Io

√
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√
C
L
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Thus

I(x, t) =

√
C

L
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√
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Zc ≡ V (x, t)

I(x.t)
=

√
L

C
(15)




