EM-A, Solutions

When the charge q is at x, its image $-q$ is at $-x$, so the force between them is

$$F = -\frac{1}{4\pi\varepsilon_0} \frac{q^2}{4x^2} = -\frac{dU}{dx}. $$

Thus $U = -\frac{q^2}{16\pi\varepsilon_0x}$. By energy conservation

$$\frac{1}{2}m\left(\frac{dx}{dt}\right)^2 - \frac{q^2}{16\pi\varepsilon_0x} = -\frac{q^2}{16\pi\varepsilon_0D}$$

Thus

$$\frac{dx}{dt} = \sqrt{\frac{q^2}{8\pi\varepsilon_0m} \left(\frac{D - x}{xD} \right)}.$$

$$t = \sqrt{\frac{8\pi\varepsilon_0mD}{q^2}} \int_0^{D} \frac{\sqrt{x}dx}{\sqrt{D - x}}.$$

To do this integral, write $x = D \sin^2 y$, getting $t = \frac{q}{q} \sqrt{2\pi\varepsilon_0mD^3}$.

EM-B Solutions

\[\vec{E}_{\text{whole}}(\vec{r}) = \vec{E}_{\text{cavity}}(\vec{r}) + \vec{E}_{\text{part}}(\vec{r}) \]

Gauss’s law for the whole:

\[\oint \vec{E}_{\text{whole}} \cdot d\vec{A} = \frac{1}{\varepsilon_0} \frac{4\pi}{3} r^3 \rho \]

\[\Rightarrow \vec{E}_{\text{whole}}(\vec{r}) 4\pi r^2 = \frac{4\pi}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

\[\Rightarrow \vec{E}_{\text{whole}}(\vec{r}) = \frac{\vec{r}}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

Similarly:

\[\Rightarrow \vec{E}_{\text{part}}(\vec{r}) = \frac{\vec{r}'}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

\[\Rightarrow \vec{E}_{\text{part}}(\vec{r}) = \frac{\vec{r} - \vec{a}}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

So:

\[\vec{E}_{\text{cavity}}(\vec{r}) = \vec{E}_{\text{whole}}(\vec{r}) - \vec{E}_{\text{part}}(\vec{r}) \]

\[= \frac{\vec{r}}{3} \left(\frac{\rho}{\varepsilon_0} \right) - \frac{\vec{r} - \vec{a}}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

\[= \frac{\vec{a}}{3} \left(\frac{\rho}{\varepsilon_0} \right) \]

\[r' = r - a \]

Whole

Cavity

Part
EM C-1, Solutions

In units with $c = 1$,

$P_1 = (\gamma m, 0, 0, \gamma \beta m)$

$P_2 = (m, 0, 0, 0)$.

Since $P_i^2 = m^2$, energy and momentum conservation gives $P_3 \cdot P_4 = P_1 \cdot P_2 = \gamma m^2$.

If both final particles have the same energy E, the magnitudes of their momenta must also be equal. Thus

$\gamma m^2 = (P_3 \cdot P_4) = E^2 - (E^2 - m^2) \cos \vartheta$.

where by energy conservation

$2E = \gamma m + m$,

giving

$\cos \vartheta = \frac{2\gamma - 1}{\gamma + 3}$
Solution EM_C2

(a) An electromagnetic plane wave is given by
\[E = E_0 e^{i(kr - \omega t)} \quad H = H_0 e^{i(kr - \omega t)} \quad B = \mu H \quad D = \varepsilon E, \]
where taking the real part is implied. The divergences of \(D \) and \(B \) are zero provided that \(\mathbf{k} \perp \mathbf{E}_0 \) and \(\mathbf{k} \perp \mathbf{H}_0 \), satisfying two of the Maxwell equations. The other two, involving the curl of \(\mathbf{E} \) and \(\mathbf{H} \), in the absence of free sources read \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \) and \(\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} \), which upon substitution of the wave become
\[\mathbf{k} \times \mathbf{E}_0 = \omega \mu \mathbf{H}_0 \]
(1)
and
\[\mathbf{k} \times \mathbf{H}_0 = -\omega \varepsilon \mathbf{E}_0. \]
(2)
It is equations (1) and (2) we now seek to satisfy. For \(\varepsilon > 0 \) and \(\mu > 0 \) we find, by combining the two equations: \(\mathbf{k} \times \mathbf{k} \times \mathbf{E}_0 = -\omega^2 \varepsilon \mu \mathbf{E}_0 \), which is satisfied for \(\mathbf{k} \perp \mathbf{E}_0 \) and \(k = \omega \sqrt{\varepsilon \mu} \). Choosing \(\mathbf{E}_0 \) along the \(x \)-axis and \(\mathbf{k} \) along the \(z \)-axis, the solution (in Cartesian column vector notation) therefore is
\[\mathbf{k} = \sqrt{\varepsilon \mu} \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \quad \mathbf{E}_0 = \begin{pmatrix} E_0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{H}_0 = \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ E_0 \end{pmatrix}. \]
The vectors \(\mathbf{k}, \mathbf{E}, \) and \(\mathbf{H} \) form a right-handed triplet.

The Poynting vector is given by \(\mathbf{S} = \text{Re}(\mathbf{E}) \times \text{Re}(\mathbf{H}) = \frac{\varepsilon}{\mu} \begin{pmatrix} 0 \\ 0 \\ E_0^2 \end{pmatrix} \cos^2(kz - \omega t) \). Upon time-averaging, we get the average energy flux \(\langle \mathbf{S} \rangle = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ 0 \\ E_0^2 \end{pmatrix} \). Note that the Poynting vector points (poynts?) in the same direction as \(\mathbf{k} \). There is no energy dissipation.
(b) \(\varepsilon < 0 \) and \(\mu > 0 \):
Keeping \(\mathbf{E}_0 \) real, we find that to satisfy equations (1) and (2), \(\mathbf{k} \) and \(\mathbf{H}_0 \) must be imaginary:

\[
\mathbf{k} = -i \sqrt{\varepsilon |\mu|} \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \quad \mathbf{E}_0 = \begin{pmatrix} E_0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{H}_0 = -i \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ E_0 \\ 0 \end{pmatrix}.
\]

Due to the imaginary \(\mathbf{k} \), the wave is nonoscillatory in space but decays exponentially. It does not propagate. Instead, it is an evanescent wave.

The Poynting vector is \(\mathbf{S} = \text{Re}(\mathbf{E}) \times \text{Re}(\mathbf{H}) = \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ 0 \\ E_0^2 \end{pmatrix} \cos(kz - \omega t) \sin(kz - \omega t) \), and its time average is zero \(\langle \mathbf{S} \rangle = 0 \). The evanescent wave does not transport energy. There is no energy dissipation. The medium does not support propagating waves.

\(\varepsilon > 0 \) and \(\mu < 0 \):
Keeping \(\mathbf{E}_0 \) real, we find that to satisfy equations (1) and (2), \(\mathbf{k} \) and \(\mathbf{H}_0 \) must be imaginary:

\[
\mathbf{k} = i \sqrt{\varepsilon |\mu|} \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix} \quad \mathbf{E}_0 = \begin{pmatrix} E_0 \\ 0 \\ 0 \end{pmatrix} \quad \mathbf{H}_0 = -i \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ E_0 \\ 0 \end{pmatrix}.
\]

Due to the imaginary \(\mathbf{k} \), the wave is nonoscillatory in space but decays exponentially. It does not propagate. Instead, it is an evanescent wave.

The Poynting vector is \(\mathbf{S} = \text{Re}(\mathbf{E}) \times \text{Re}(\mathbf{H}) = \sqrt{\frac{\varepsilon}{\mu}} \begin{pmatrix} 0 \\ 0 \\ E_0^2 \end{pmatrix} \cos(kz - \omega t) \sin(kz - \omega t) \), and its time average is zero \(\langle \mathbf{S} \rangle = 0 \). The evanescent wave does not transport energy. There is no energy dissipation. The medium does not support propagating waves.
(c) $\varepsilon < 0$ and $\mu < 0$:

In this case E_0, k and H_0 are all real again:

$$k = -\sqrt{\varepsilon \mu} \begin{pmatrix} 0 \\ 0 \\ \omega \end{pmatrix}, \quad E_0 = \begin{pmatrix} E_0 \\ 0 \\ 0 \end{pmatrix}, \quad H_0 = \sqrt{\frac{\varepsilon}{\mu}} E_0 \begin{pmatrix} 0 \\ E_0 \end{pmatrix}.$$

These vectors form a left-handed triplet. Due to the real k, the wave oscillates in space and propagates, just like in the ordinary case (a). The difference is that k is reversed.

The Poynting vector is $S = \text{Re}(E) \times \text{Re}(H) = \sqrt{\frac{\varepsilon}{\mu}} E_0^2 \cos^2(kz - \omega t)$, and its time average is

$$\langle S \rangle = \frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}} E_0^2,$$

just like in case (a). However, in this case it points in the opposite direction of k: The phase fronts move in one direction, while the energy flows in the other. There is no energy dissipation.
Solution EM_D1

(a)

Inductance: \(L = \mu_0 r \left(\ln \frac{8r}{a} - 2 \right) = \beta \mu_0 d \), with geometry factor \(\beta = 2(\ln 32 - 2) \approx 2.931 \)

Capacitor plate area: \(A = \pi \left(\frac{d}{2} \right)^2 \)

Capacitance: \(C = \gamma \varepsilon_0 A = \frac{\gamma \pi}{4} \varepsilon_0 d \)

Resonance frequency: \(\omega_0 = \frac{1}{\sqrt{LC}} = \frac{2c}{d \pi \beta \gamma} \Rightarrow f = \frac{\omega_0}{2\pi} \approx 0.0692 \frac{c}{d} \)

(with speed of light \(c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}} = 3 \times 10^8 \text{ m/s} \))

The resonance frequency thus increases like \(1/d \) as \(d \) is reduced.

(b)

Consider a uniform displacement of the electrons along the wire by a small distance \(x \). This will charge the capacitor with a charge \(Q = An e x \), where \(e \) is the charge of the electron. The capacitor voltage is \(V = Q / C \), and inside the conductor we have an electric restoring field \(E \) along the wire which integrates to \(V \) as we go from one capacitor plate around the ring to the other: \(V = \int Edl \). To obtain the total restoring force on all the electrons (assumed rigid) we perform a volume integral over the ring, \(F = \int neEd\Omega = Ane \int Edl = AneV = \frac{An^2 e^2 xd}{\gamma \varepsilon_0} \).

Since the restoring force is proportional to the displacement \(x \), we may define a spring constant \(k = \frac{F}{x} \) for this degree of freedom, and obtain the resonance frequency \(f = \frac{1}{2\pi} \sqrt{k} \), using the oscillating mass of electrons \(m = nA m_e \). \(l \) is the length of the wire around the ring: \(l = 2\pi r - d = d(4\pi - 1) \), where we have subtracted the gap width \(d \) from the circumference.

Putting it all together, we have \(f = \frac{\alpha}{2\pi} \omega_p \), where \(\omega_p \) is the bulk plasma frequency

\[\omega_p = \sqrt{\frac{ne^2}{m \varepsilon_0}} \approx 1.783 \times 10^{16} \text{ rad/s}, \quad \text{and } \alpha \text{ is a geometry factor given by} \]
The resonance frequency thus becomes \(f \approx 5.50 \times 10^{14} \) Hz, independent of the length scale \(d \)! (This frequency corresponds to visible light in the yellow-green part of the spectrum. If \(d \) is small enough, we thus expect our split-ring resonator to efficiently absorb light of this wavelength.)

(e)

We set up an effective Lagrangian for the oscillation:

\[
\Lambda = KE - PE, \quad \text{with} \quad PE = \frac{1}{2} \frac{Q^2}{C}
\]

and a kinetic term containing both the actual kinetic energy and the inductive energy: \(KE = \frac{1}{2} mv^2 + \frac{1}{2} LI^2 \), where \(v \) is the drift velocity of the electrons and \(I \) is the current. The latter quantities are related via \(I = Anev \), so the Lagrangian becomes \(\Lambda = \frac{1}{2} L' I^2 - \frac{1}{2} \frac{Q^2}{C} \), with the “effective” inductance \(L' = L + \frac{lm}{Ane^2} \). Since \(I = \dot{Q} \), the equation of motion is \(\frac{d}{dt} \frac{\partial \Lambda}{\partial I} = \frac{\partial \Lambda}{\partial Q} \), which becomes \(\dot{Q} = -\frac{1}{L' C} Q \) and is solved by an oscillation at angular frequency \(\omega = \frac{1}{\sqrt{L'C}} = \frac{1}{\sqrt{LC + \frac{1}{\alpha^2 \omega_p^2}}} \). To determine the crossover length scale, we set \(\frac{\omega_d}{\omega_p} = \frac{1}{\alpha^2 \omega_p^2} \) and solve for \(d \), obtaining

\[
d_0 = \frac{2}{\alpha \sqrt{\pi \beta \gamma}} \frac{c}{\omega_p} \approx 2.24 \frac{c}{\omega_p} \approx 38 \text{ nm.}
\]

For \(d >> 38 \text{ nm} \), the resonance frequency approaches \(\omega_0 = \frac{1}{\sqrt{LC}} \propto d^{-1} \), while for \(d << 38 \text{ nm} \), the resonance frequency becomes independent of \(d \): \(\omega = \alpha \omega_p \).
EM-D2, Solution

(a) We use Gauss’ law:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon}$$

Using a cylindrical Gaussian surface of height ℓ, radius r

$$2\pi r\ell E_r = \frac{\ell \lambda}{\varepsilon}$$

Therefore

$$E_r = \frac{1}{2\pi \varepsilon} \frac{\lambda}{r}$$

Potential of the inner surface w.r.t. the outer surface is

$$\Delta V = - \int_{r=b}^{a} \mathbf{E} \cdot d\mathbf{r} = - \int_{b}^{a} \frac{1}{2\pi \varepsilon} \frac{\lambda}{r} dr$$

$$= \frac{\lambda}{2\pi \varepsilon} \ln(b/a)$$

$$Q = \Delta VC\ell$$

$$\rightarrow C = \frac{\lambda}{\Delta V} = \frac{2\pi}{\ln(b/a)}$$
(b) Magnetic

Energy stored in the coaxial cable per unit length is

\[U = \frac{1}{2} \frac{1}{\mu_0} \int_{\text{unit length}} B^2 d^3r \]

\[= \frac{1}{2} LI^2 \]

\[\nabla \times B = \mu_0 J \Rightarrow \oint B \cdot dl = \mu_0 I \]

\[\Rightarrow 2\pi r B_\phi = \mu_0 I \Rightarrow B_\phi = \frac{\mu_0 I}{2\pi r}, a < r < b \]

[symmetry implies \(B = B_\phi \hat{\phi} \)]

\[\Rightarrow U = \frac{1}{2\mu_0} \left(\frac{\mu_0}{2\pi}\right)^2 I^2 \int_{r=a}^{b} \frac{1}{r^2} d^3\gamma \]

\[= \frac{\mu_0}{8\pi^2} I^2 \int_{r=a}^{b} \frac{1}{r^2} 2\pi r dr \]

\[= \frac{\mu_0}{4\pi} I^2 \ln(b/a) \]

\[= \frac{1}{2} LI^2 \]

Therefore: \(L = \frac{\mu_0}{2\pi} \ln(b/a) \)
\[
V(x) - Ldx \frac{\partial I}{\partial t} - IRdx = V(x + dx) \quad (6)
\]

\[
I(x) - cdx \frac{\partial V}{\partial t} = I(x + dx)
\]

\[
\Rightarrow dV(x) = -Ldx \frac{\partial I}{\partial t} - IRdx
\]

\[
\frac{\partial V}{\partial x} = -L \frac{\partial I}{\partial t} - IR
\]

\[
dI(x) = -cdx \frac{\partial v}{\partial t} \quad (7)
\]

\[
\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}
\]

\[
\Rightarrow \frac{\partial^2 I}{\partial x^2} = -C \frac{\partial^2 V}{\partial x \partial t} = +c \left[L \frac{\partial^2 I}{\partial t^2} + R \frac{\partial I}{\partial t} \right] \quad (8)
\]

\[
\frac{\partial^2 I}{\partial x^2} = LC \frac{\partial^2 I}{\partial t^2} + RC \frac{\partial I}{\partial t}
\]

Similarly

\[
\frac{\partial^2 V}{\partial x^2} = LC \frac{\partial^2 V}{\partial t^2} + RC \frac{\partial V}{\partial t} \quad (9)
\]
(d) \[
\frac{\partial^2 I}{\partial x^2} = LC \frac{\partial^2 I}{\partial t^2}
\] (10)

With \(I = I_o e^{i(kx - \omega t)} \)

\[\Rightarrow -k^2 = -LC\omega^2 \rightarrow k = \pm \sqrt{LC}\omega \]

since the signal propagates along +x, \(k = \sqrt{LC}\omega \)

Therefore:

\[I = I_o \cos \left(\sqrt{LC}\omega x - \omega t + \phi \right) \] (11)

where \(I_o \) and \(\phi \) need to be determined.

part (c) gives

\[
\frac{\partial I}{\partial x} = -C \frac{\partial V}{\partial t}
\] (12)

\[
\frac{\partial I}{\partial x} \bigg|_{x=0} = -I_o \sqrt{LC}\omega \sin(-\omega t + \phi)
\]

\[
\frac{\partial V}{\partial t} \bigg|_{x=0} = -V_o \omega \sin(\omega t)
\] (13)

since \(\frac{\partial I}{\partial x} \bigg|_{x=0} = -C \frac{\partial V}{\partial t} \bigg|_{x=0} \) at all times,

and \(I_o \sqrt{LC}\omega = CV_o \omega \Rightarrow I_o = \sqrt{\frac{C}{L}}V_o \)

Thus

\[I(x, t) = \sqrt{\frac{C}{L}} V_o \cos(\sqrt{LC}\omega x - \omega t) \] (14)

\[
Z_e = \frac{V(x, t)}{I(x, t)} = \sqrt{\frac{L}{C}}
\] (15)