Physics Qualifying Exam, August 2008
Electricity and Magnetism

EM-A, Solutions

When the charge ¢ is at z, its image —q is at —x, so the force between
them is

B 1 ¢ v
 dmepdx? dx’
Thus U = ——£ By energy conservation

16meox

1 dr\’ q> q*
—-m _ — e
2 dt 16me,x 16mwe, D

Thus

e (5)
dt — \ 8re,m \ zD /)’

‘o |8ne,mD (P \/xdx
N q2 o \/D—I'.

To do this integral, write x = Dsin?y, getting t = T+/2meomD?3.
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EM-B Solutions

r=r-a r’

EWhole (F) = Ecavity (F) + Epart (F)
Gauss’s law for the whole:

§ Ewhole ’ dA = i4_7z' r3p
g 3

0

3
= EWhole (F)47Z1'2 = 4t (ﬁj
3 le

= I ¢
= Ewhole(r) = _{ P j
3\ &,

Similarly:
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So:

E.cavity (F) = E>whole (F) - E part (F)

_rfp)| r-alp
0 3 80

w| =
™

w |
|



EM C-1, Solutions
In units with ¢ = 1,
P = (ym,0,0,v6m)
Py = (m,0,0,0).
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Since P? = m

Pl-P2:7m2.

, energy and momentum conservation gives P - Py =

If both final particles have the same energy E, the magnitudes of their
momenta must also be equal. Thus

ym? = (Py- P)) = E* — (E* — m?) cos 9.

where by energy conservation

2FE = ym +m,
giving
cost = 1=+

v+3



Solution EM_C2

(a) An electromagnetic plane wave is given by
E=Ee'™* ™ H=H,'®® B=uH D = £E, where taking the real part is
implied. The divergences of D and B are zero provided that k L E; and k L H, satisfying two

of the Maxwell equations. The other two, involving the curl of E and H, in the absence of free

sources read VxE = —%3 and VxH= 86—? , which upon substitution of the wave become

kxE, =wouH, (1)
and

kxH, =-wsE,. (2)
It is equations (1) and (2) we now seek to satisfy. For £ >0 and x> 0 we find, by combining the
two equations: K x k x E; = —~@’guE,, which is satisfied for k L E, and k = a)\/; . Choosing

E, along the x-axis and k along the z-axis, the solution (in Cartesian column vector notation)
therefore is

0 E, 0
k =+feu| 0 E,=| 0 H, =% E, |.
® 0 o

The vectors k, E, and H form a right-handed triplet.

0
The Poynting vector is given by S = Re(E) xRe(H) = £l 0 |cos? (kZ - a)t) Upon time-
Hl e 2
. 0
averaging, we get the average energy flux <S> =~ |£| 0 |. Note that the Poynting vector
M=
EO

points (poynts?) in the same direction as K. There is no energy dissipation.



(b) e<0and p>0:
Keeping E real, we find that to satisfy equations (1) and (2), k and Hy must be imaginary:

0 E, 0
k=—i\le|ul 0 E,=| 0 H,=-i lel E, |
Y2
0] 0 0

Due to the imaginary K, the wave is nonoscillatory in space but decays exponentially. It does not
propagate. Instead, it is an evanescent wave.

0
The Poynting vector is S = Re(E) x Re(H) = /ﬂ 0 [cos(kz — at)sin(kz — et), and its time
H| s
E

average is zero <S> =0 . The evanescent wave does not transport energy. There is no energy

dissipation. The medium does not support propagating waves.

e>0and u<0:
Keeping E, real, we find that to satisfy equations (1) and (2), k and H, must be imaginary:
0 E, 0
k=ielul 0 E,=| 0 H, =i |-2-| E, |.
| ]
10} 0 0

Due to the imaginary K, the wave is nonoscillatory in space but decays exponentially. It does not
propagate. Instead, it is an evanescent wave.

0
The Poynting vector is S = Re(E) x Re(H) = /|—8‘ 0 |cos(kz — at)sin(kz — at), and its time
H| =2
E

average is zero <S> =0 . The evanescent wave does not transport energy. There is no energy

dissipation. The medium does not support propagating waves.



(c) e<0 and u<0:

In this case Eo, k and Hy are all real again:

0 E, 0
k=—gu 0 E,=| 0 H, =% E, |.
o 0 o

These vectors form a left-handed triplet. Due to the real K, the wave oscillates in space and
propagates, just like in the ordinary case (a). The difference is that K is reversed.

0
The Poynting vector is S = Re(E) x Re(H) = \/E 0 |cos’ (kZ — a)t), and its time average is
Hl e 2
. 0
<S> =3 ‘o , just like in case (a). However, in this case it poynts in the opposite direction
Hl >
EO

of k: The phase fronts move in one direction, while the energy flows in the other. There is no
energy dissipation.



Solution EM_D1
(a)

Inductance: L= ,uor(lng - 2) = Bu,d , with geometry factor £ =2(In32-2)~ 2.931
a
d 2
Capacitor plate area: 4 = E(Ej

Capacitance: C = ye, g = %god

1 2c @, c
VLC  d\npy 4 27 d

Resonance frequency: o,

(with speed of light ¢ = =3x10°m/s)

1
\ Ho&o

The resonance frequency thus increases like 1/d as d is reduced.

(b)

Consider a uniform displacement of the electrons along the wire by a small distance x. This
will charge the capacitor with a charge Q = Anex , where e is the charge of the electron. The
capacitor voltage is V' = Q/C, and inside the conductor we have an electric restoring field E
along the wire which integrates to J”as we go from one capacitor plate around the ring to the
other: V = IEa’l . To obtain the total restoring force on all the electrons (assumed rigid) we

2 2
perform a volume integral over the ring, F = [ neEdQ = Ane| Edl = AneV = An"e"xd

7éo
Since the restoring force is proportional to the displacement x, we may define a spring
constant k = L for this degree of freedom, and obtain the resonance frequency f = ZL L2 ,
. TNm

using the oscillating mass of electrons m = ndim, . [ is the length of the wire around the ring:

[ =2 —d = d(4x —1), where we have subtracted the gap width & from the circumference.

Putting it all together, we have " = Zia)p, where o, is the bulk plasma frequency
T

2
ne

~1.783x 10" rad/s, and « is a geometry factor given by

w, =
p
me,



1

independent of the length scale d! (This frequency corresponds to visible light in the yellow-
green part of the spectrum. If d is small enough, we thus expect our split-ring resonator to
efficiently absorb light of this wavelength.)

(©)

We set up an effective Lagrangian for the oscillation:

~0.194 . The resonance frequency thus becomes f ~5.50 x10" Hz,

2
A = KE - PE, with PE = %% and a kinetic term containing both the actual kinetic energy

and the inductive energy: KE = %mvz JF%LI2 , Where v is the drift velocity of the electrons

and 7 is the current. The latter quantities are related via / = Anev, so the Lagrangian

2
becomes A =~ L' 12 —EQ—, with the “effective” inductance L'= L + lmez .Since 1 =0,
2 2 C Ane
the equation of motion is 4 oA = oA , which becomes O = —LQ and is solved by an
dt o 0Q Lc
I 1 1 1
oscillation at angular frequency w = = = .To
JL'C 1 1 1
LC+ 2 2 2 + 2 2
a‘w, ®, Ao,
determine the crossover length scale, we set iz = —— and solve for d, obtaining
®, o,
d, = 2 ¢ ~2.24-° ~38 nm. For d >> 38 nm the resonance frequency
o~ 7Py @, ,

approaches o, = 1 oc d 7, while for d << 38 nm the resonance frequency becomes

JLC

independent of d: @ = aw,.



EM-D2, Solution

(a)We use Gauss’ law:
vop_?
£

Using a cylindrical Gaussian surface of height ¢, radius r

2N
2nrlE, = —
€
Therefore
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2mer

Potential of the inner surface w.r.t. the outer surface is
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(b) Magnetic
Energy stored in the coaxial cable per unit length is

11
v=s— | Bd*r
2/,60 unitlength
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= _LI’
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[symmetry implies B = Bq@]
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Therefore: L = £21In(b/a)



I
V(z) — dea— — IRdx =V (z + dx)

ot
I(z) — cd$a—v = I(z +dx)
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(d)
L T
or? ot?
With [ = ], e'(ke=wt)

= k= —-LCw? > k=+VILCOw

since the signal propagates along +x, k = vV LCw
Therefore:

I = 1I,cos (\/wa —wt+ gb)

where I,, and ¢ need to be determined.
part (c) gives

oI oV
o2
Ox ot
oI .
(9735‘96:0 = —I,V LCwsin (—wt + ¢)
%‘t/!;p:o = —V,wsin(wt)
since % —-— _C%:/ _at all times,
and I,v/ICw = CVyw = I, = /SV,
Thus

I(z,t) = \/f‘/;cos(\/ﬁwm — wt)
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