Solution CM-A

Using conservation of angular momentum and mechanical energy and considering the
final state (primed) to where the rocket achieves maximum height, we have,

v'=0

mRvy=m(R+H)vy'

5 m (vg'+v,”) — GMm/R = % mv's” — GMm/(R+H)

where m 1s the mass of the rocket, and M is the mass of the Earth.
Combining the last two equations, we get:

5 m (vg'+v,”) — GMm/R = % m [R/(R+H)]* vs’ — GMm/(R+H)
which gives the maximum height H.

Considering only terms that are first order in H/R, we have:

5 m (ve'+v,”) — GMm/R = %2 m (1-2H/R) vi — GMm/R (1-H/R)
Solving for H, H= v ’R/[(2(GM/R — v{°).

For a vertical launch, vy =0, v, = v and H= v}/2(GM/R?) = v*/2g; the expected result.



Solution CM-B

Let N, be the force exerted by the table to the moving part of the chain. The second Newton
law for this part of the chain reads as follows,

d

3 (#P9) = Na+2pg

where z is a vertical coordinate of the end A and p = % The impulse sustained by the table
from the piece of the chain of length Az is given by

piAz =N, At = N, =p3*

and, hence,
. gt?
P=—g = z(t):L—T.

The normal force exerted by the chain on the table is

R=N.+ (M —zp)g=pz*+p(L—2)g = R(t)=3 plgt)”.

The end A falls onto the table at the instant 7 = , /%, so that

3 oL
R(r) =2 pg> 22 =3 Mg .
(7) 5 P9 g



Solution CM-C1

This is treated in detail in freshman textbooks, e.g. Sears and Zemansky’s University Physics
by Young and Friedman, volume 1, 12th edition, pages 498-504.

The power P crossing a point will be the energy per unit length (¢) at that point times
the propagation speed ( v = /T /p ). This energy density ¢ is given by

1 Jy 2 dy 2_ oy 2
6—5“(5) +§T(a—x> =1 oz

with the final equality following because at finite times, x is replaced by z — vt. Carrying
out the required derivative and substituting, one obtains for the power

4€%Ty
P=cv=-—"—"0—
(14¢2)
where £ = (b — vt)/a.

If your memory had forgotten the relationship between wave speed v and p and 7', and
dimensional analysis had failed to refresh it, you may derive it as follows. Denoting partial
t derivatives by an overdot and partial x derivatives by a prime, the Lagrangian is

L= / e [pj(e)? = Ty («)’] = 5 Z (1 Gn — T K2 yius]

where y; is the fourier representation of y(x). The Lagrange equations are

d ([ dL dL 0
dt \ dyr dyy
and the complex conjugates. One obtains ugy + Tk*y = 0 or pij(z) — Ty"(x) = 0, i.e.

the equation for a wave moving with the velocity v as given above. A more cumbersome
derivation based on Newton’s laws is given in the freshman textbook mentioned above.




Solution CM-C2

a) Equations of motion:

m; [d*r/dt® — r (d6/dt)*] =-T (1)
mr*do/dt=m;h  (2)

T —mog = my d’r/dt* (3)

Where m;h is the constant angular momentum.

Eliminate T:
(m; +my)d’r/dt? — m; 1 (d6/dt)? + mpg =0 (4)

Using (2) and (4) to eliminate 0,

(m; +my)d’r/d? — mh?/r = -myg . (5)

Since d’r/dt* = dr/dt - d(dr/dt)/dr = Y% d (dr/dt)? / dr, we can now integrate (5)
Y5 (my + my) (dr/dt)* + mh?/2r* = -mygr + C  (6)

At t=0, =R, and dr/dt= V( cose r d6/dt =V, sin ¢, where ¢ is the angle between
Roand V,. Thus,

h= R,V sin ¢, and
C= 1 [(m; + my) Vo* cos” @ and m; Vi’ sin” @] + magRy
For r to be an extremum, dr/dt=0, and (6) becomes:

2mopgr’ — 2Cr* +m;h* = 0, whose solutions give the maximum and minimum radial
distances.

b) When the orbit is circular, d*r/dt* = 0 and (5) gives:

h? =m2gr03 /m; , where ry is the radius of the circular orbit.
For small deviations, let r =1y + x, where x <<rj,. Now, (5) becomes:

(m; + mp)d*x/dt* — m; h*/ (1o +x)° = -myg.



(ro+x)” =10~ (1 +x/10)”> = 10~ (1-3x/10) ,

So,

(my + mp)d*x/dt* —my h* / (rg” - 3xre™) = -mpg.
Substituting for h,
(m; + mp)d*x/dt* + 3mpgx/ry = 0.

This is SHO, with @/2rn = 1/21 V [3mag/(m; +my)ro]



Solution CM-D1

Let Qt be the angle between the diameter going through the rotation point O and the x
axis. Then we may write the cartesian coordinates of the mass as

r = bcost + bcos(d + Q)

= bsin Q¢ + bsin(6 + )
The kinetic energy is then
Lo o oo mb® 2
T = 3m (&* +9°) = N [Q% + (24 w)* 4+ 2Q(Q + w) cos ],

where w = . Applying the Lagrange equation
d (0T dr 0
dt \ 06 do

6+ O%sinf =0,

which is the required equation. This is the same as the equation for a simple pendulum of
length g/92. From this we conclude that the motion is oscillatory for |wy| < 2§ and circular
for jwy| > 2Q. The period T' = 27/ for |wy| < Q and increases, becoming very long when
lwo| ~ 2€2. For |wy| > 2§ the period decreases again with increasing |wy|, and approaches
27 [|wp| for |wo| > 2.

To find the force of constraint, we allow a virtual displacement of the mass in a direction
perpendicular to the wire. If we let this displacement be r — b, then the cartesian coordinates
of the mass become

gives [w =0 |

= bcosQt + rcos(f + Q)
= bsinQt + rsin(6 + Qt)

The kinetic energy is then
1
T:§m@?+f%:%Pﬂf+ﬁ+W%Q+wy+%ﬂmm9+%HXQ+wk%ﬂ,

The Lagrange equation for the r degree of freedom is

d (0T dT
Bl e I
dt ((97'") dr "

where F,. is the force of constraint to be determined. Taking the required derivatives of T
and then setting r = constant = b gives the desired result

F.=—mb [QQ cosf 4 (0 + Q)Q] :



Solution CM-D2

Substitution the ansatz u(z,t) = y(r) with 7 = & — vt into the KdV equation leads to the
ordinary differential equation

y &%y dy
— 6 =0
dr * dr3 oy dr ’
or, integrating with respect to 7,
d?y
— =—-A+vy -3,
dr? vy

where A is a constant of integration. Interpreting the independent variable 7 above as a
time variable, this means y satisfies Newton’s equation of motion in a cubic potential

d2y dU Voo, 3
P:—d—y, where U(y):Ay—Ey +y .

The energy conservation law for this one-dimensional motion gives

fd ()

Depending on the value of the real constants A and v the cubic polynomial U(y) may have
one or tree real roots. We are interesting in finding of nontrivial (y # 0) finite motions such
that y(7) < const as 7 — £o0o0. The motion is finite if U(y) has three real roots and

Umin S E S Umax .

Otherwise the motion is infinite. Therefore there are three possible types of automodel
solutions:

e Constant solution, u(x,t) = const:
E = Umzn y Y = Ymin = const .
e The so called cnoidal waves corresponding to the periodic motions with

Unin < E < Uz -

e [inite motion with

E=U,u -

W



u(x,t)
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In this case the profile y(7) starts at ¥ = Ymax = @ at “time” 7 — —o0, eventually
slides down to the local minimum, then back to the other side, reaching at y = b an
equal height U.., then reverse direction, ending up at y = ymax = @ again at “time”
T = +00.

A

For this motion

1 sdy\2 B B ) K
B (E> =Unax —Uy) =(y—a)* (b—y) , where b= 5~ 2a,
and, hence,

dy .
i/@—a) o=y

Changing the integration variable

b—a
cosh?(%)

dz
PN Y.
/F_Z b—a)r.

y=a+(b—-—a)z=a+

one obtains



u(x,t)

or

b—a

cosh? (\/% (T — 1)) .

If the parameters are adjusted so that a = Y, = 0, then y(7) approaches to 0 as
7T — Z00. In this case

y(t)=a+

v

2cosh® (4 (x — vt — 20)) .

Usol (.T, t) = Ysol (LE - Ut) =

It describes a right-moving localized wave packet, i.e., soliton.





