
 
Solution CM-A 
 
 
Using conservation of angular momentum and mechanical energy and considering the 
final state (primed) to where the rocket achieves maximum height, we have, 
 
vr' = 0 
 
mRvθ=m(R+H)vθ' 
 
½ m (vθ2+vr2) – GMm/R = ½ mv'θ2 – GMm/(R+H) 
 
where m is the mass of the rocket, and M is the mass of the Earth. 
 
Combining the last two equations, we get: 
 
½ m (vθ2+vr2) – GMm/R = ½ m [R/(R+H)]2 vθ2 – GMm/(R+H) 
 
which gives the maximum height H. 
 
Considering only terms that are first order in H/R, we have: 
 
½ m (vθ2+vr2) – GMm/R ≈ ½ m (1-2H/R) vθ2 – GMm/R (1-H/R) 
 
Solving for H,   H≈ vr

2R/[(2(GM/R – vθ2). 
 
For a vertical launch, vθ = 0, vr = v  and H≈ v2/2(GM/R2) = v2/2g; the expected result. 



Solution CM-B

Let Nz be the force exerted by the table to the moving part of the chain. The second Newton
law for this part of the chain reads as follows,

d

dt
(zρż) = Nz + zρg ,

where z is a vertical coordinate of the end A and ρ = M
L

. The impulse sustained by the table
from the piece of the chain of length ∆z is given by

ρż∆z = Nz ∆t =⇒ Nz = ρż2

and, hence,

z̈ = −g =⇒ z(t) = L− gt2

2
.

The normal force exerted by the chain on the table is

R = Nz + (M − zρ)g = ρż2 + ρ(L− z)g =⇒ R(t) =
3

2
ρ(gt)2 .

The end A falls onto the table at the instant τ =
√

2L
g

, so that

R(τ) =
3

2
ρg2 2L

g
= 3 Mg .
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Solution CM-C1

This is treated in detail in freshman textbooks, e.g. Sears and Zemansky’s University Physics
by Young and Friedman, volume 1, 12th edition, pages 498–504.

The power P crossing a point will be the energy per unit length (ε) at that point times
the propagation speed ( v =

√
T/µ ). This energy density ε is given by

ε =
1

2
µ

(
∂y

∂t

)2

+
1

2
T

(
∂y

∂x

)2

= T

(
∂y

∂x

)2

with the final equality following because at finite times, x is replaced by x − vt. Carrying
out the required derivative and substituting, one obtains for the power

P = εv =
4ξ2Tv

(1 + ξ2)4

where ξ = (b− vt)/a.
If your memory had forgotten the relationship between wave speed v and µ and T , and

dimensional analysis had failed to refresh it, you may derive it as follows. Denoting partial
t derivatives by an overdot and partial x derivatives by a prime, the Lagrangian is

L =
1

2

∫
dx

[
µẏ(x)2 − Ty′(x)2

]
=

1

2

∑

k

[
µ ẏ∗kẏk − T k2y∗kyk

]
,

where yk is the fourier representation of y(x). The Lagrange equations are

d

dt

(
dL

dẏk′

)
− dL

dyk′
= 0

and the complex conjugates. One obtains µÿk′ + Tk2yk′ = 0 or µÿ(x) − Ty′′(x) = 0, i.e.
the equation for a wave moving with the velocity v as given above. A more cumbersome
derivation based on Newton’s laws is given in the freshman textbook mentioned above.
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Solution  CM-C2  
 

a) Equations of motion: 
 
 m1 [d2r/dt2 – r (dθ/dt)2] = -T   (1) 
 
m1 r2 dθ/dt = m1 h      (2) 
 
T –m2g = m2 d2r/dt2    (3) 
 

Where  m1h is the constant angular momentum. 
 
Eliminate T: 
(m1 +m2)d2r/dt2 – m1 r (dθ/dt)2 + m2g = 0    (4) 
 
Using  (2) and (4) to eliminate θ,  
 
(m1 +m2)d2r/dt2 – m1h2/r3 = -m2g  .    (5) 
 
Since d2r/dt2 = dr/dt · d(dr/dt)/dr  = ½ d (dr/dt)2 / dr, we can now integrate (5) 
 
½ (m1 + m2) (dr/dt)2 + m1h2/2r2 = -m2gr + C     (6) 
 
At t= 0, r=R0  and dr/dt= V0 cosφ  r dθ/dt = V0 sin φ,  where φ is the angle between 
R0 and V0.  Thus,   
 
h= R0V0 sin φ, and  
 
C= ½ [(m1 + m2) V0

2 cos2 φ and m1 V0
2 sin2 φ] + m2gR0 

 
For r to be an extremum,  dr/dt=0, and (6) becomes: 
 
2m2gr3 – 2Cr2 +m1h2 = 0,  whose solutions give the maximum and minimum radial 
distances. 
 
b) When the orbit is circular, d2r/dt2 = 0  and (5) gives: 
 
h2 =m2gr0

3/m1 ,  where r0 is the radius of the circular orbit. 
For small deviations, let r = r0 + x,  where x << r0.  Now, (5) becomes: 
 
(m1 + m2)d2x/dt2 – m1 h2 / (r0 +x)3 = -m2g. 



 
(r0 + x)-3 = r0

-3 (1 +x/r0)-3 ≈ r0
-3 (1-3x/r0) , 

 
So,  
 

 (m1 + m2)d2x/dt2 – m1 h2 / (r0
-3  - 3xr0

-4) = -m2g. 
 
 Substituting for h, 
  
 (m1 + m2)d2x/dt2  + 3m2gx/r0 = 0. 
 
 This is SHO, with  ω/2π = 1/2π √ [3m2g/(m1 +m2)r0] 
  
 



Solution CM-D1

Let Ωt be the angle between the diameter going through the rotation point O and the x
axis. Then we may write the cartesian coordinates of the mass as

x = b cos Ωt+ b cos(θ + Ωt)

y = b sin Ωt+ b sin(θ + Ωt)

The kinetic energy is then

T =
1

2
m
(
ẋ2 + ẏ2

)
=
mb2

2

[
Ω2 + (Ω + ω)2 + 2Ω(Ω + ω) cos θ

]
,

where ω = θ̇. Applying the Lagrange equation

d

dt

(
∂T

∂θ̇

)
− dT

dθ
= 0

gives [ ω = θ̇ ]
θ̈ + Ω2 sin θ = 0,

which is the required equation. This is the same as the equation for a simple pendulum of
length g/Ω2. From this we conclude that the motion is oscillatory for |ω0| < 2Ω and circular
for |ω0| > 2Ω. The period T = 2π/Ω for |ω0| � Ω and increases, becoming very long when
|ω0| ∼ 2Ω. For |ω0| > 2Ω the period decreases again with increasing |ω0|, and approaches
2π/|ω0| for |ω0| � 2Ω.

To find the force of constraint, we allow a virtual displacement of the mass in a direction
perpendicular to the wire. If we let this displacement be r−b, then the cartesian coordinates
of the mass become

x = b cos Ωt+ r cos(θ + Ωt)

y = b sin Ωt+ r sin(θ + Ωt)

The kinetic energy is then

T =
1

2
m
(
ẋ2 + ẏ2

)
=
m

2

[
b2Ω2 + ṙ2 + r2(Ω + ω)2 + 2bΩṙ sin θ + 2brΩ(Ω + ω) cos θ

]
,

The Lagrange equation for the r degree of freedom is

d

dt

(
∂T

∂ṙ

)
− dT

dr
= Fr,

where Fr is the force of constraint to be determined. Taking the required derivatives of T
and then setting r = constant = b gives the desired result

Fr = −mb
[
Ω2 cos θ + (θ̇ + Ω)2

]
.
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Solution CM-D2

Substitution the ansatz u(x, t) = y(τ) with τ = x − vt into the KdV equation leads to the
ordinary differential equation

−v
dy

dτ
+

d3y

dτ 3
+ 6y

dy

dτ
= 0 ,

or, integrating with respect to τ ,

d2y

dτ 2
= −A + v y − 3y2 ,

where A is a constant of integration. Interpreting the independent variable τ above as a
time variable, this means y satisfies Newton’s equation of motion in a cubic potential

d2y

dτ 2
= −dU

dy
, where U(y) = Ay − v

2
y2 + y3 .

The energy conservation law for this one-dimensional motion gives

E =
1

2

(dy

dτ

)2

+ U(y) .

Depending on the value of the real constants A and v the cubic polynomial U(y) may have
one or tree real roots. We are interesting in finding of nontrivial (y 6= 0) finite motions such
that y(τ) < const as τ → ±∞. The motion is finite if U(y) has three real roots and

Umin ≤ E ≤ Umax .

Otherwise the motion is infinite. Therefore there are three possible types of automodel
solutions:

• Constant solution, u(x, t) = const:

E = Umin , y = ymin = const .

• The so called cnoidal waves corresponding to the periodic motions with

Umin < E < Umax .

• Finite motion with
E = Umax .
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Umax

Umin

a b

ymin

EE

U(y)

y

U(y)

y

x

u(x,t)
v

In this case the profile y(τ) starts at y = ymax = a at “time” τ → −∞, eventually
slides down to the local minimum, then back to the other side, reaching at y = b an
equal height Umax, then reverse direction, ending up at y = ymax = a again at “time”
τ = +∞.

For this motion

1

2

(dy

dτ

)2

= Umax − U(y) = (y − a)2 (b− y) , where b =
v

2
− 2a,

and, hence,

±
∫

dy

(y − a)
√

2(b− y)
= τ .

Changing the integration variable

y = a + (b− a)z = a +
b− a

cosh2( θ
2
)

one obtains ∫
dz

z
√

1− z
= −θ = ±

√
2(b− a) τ ,
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a

b

u(x,t)

x

v

or

y(τ) = a +
b− a

cosh2
(√

b−a
2

(τ − τ0)
) .

If the parameters are adjusted so that a = ymax = 0, then y(τ) approaches to 0 as
τ → ±∞. In this case

usol(x, t) = ysol(x− vt) =
v

2 cosh2
(√

v
2

(x− vt− x0)
) .

It describes a right-moving localized wave packet, i.e., soliton.
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