Solution: Quantum Mechanics 3A

If $\Psi(r)$ is the radial wave function then the equation for $\Phi(r) = r \Psi(r)$ can be written as:

$$
-\frac{\hbar^2}{2M} \Phi''(r) + \left[V(r) + \frac{l(l+1)\hbar^2}{2Mr^2} \right] \Phi(r) = E \Phi(r),
$$

with $\Phi''(r) = \frac{d^2}{dr^2} \Phi(r)$ and $V(r) = -a \delta(|r| - \sigma)$

Note: (i) The minimum binding corresponds to $l = 0$
(ii) $\Phi(r = 0) = 0$

For $r \neq \sigma$, $V(r) = 0$ and

$$
\Phi''(r) - k^2 \Phi(r) = 0,
$$

where $E < 0$ and $k^2 = \frac{2M |E|}{\hbar^2}$.

The solutions are obvious:

For $r > \sigma$ \quad $\Phi_>(r) = c_\phi e^{-kr}$; \\
For $r < \sigma$ \quad $\Phi_<(r) = c_h \sinh kr$

and satisfy the following two conditions:

(a) $\Phi_>(r = \sigma) = \Phi_<(r = \sigma)$

and, by integrating the radial Schroedinger equation from $\sigma - \varepsilon$ to $\sigma + \varepsilon$, where $\varepsilon \to 0$,

(b) $-\frac{\hbar^2}{2M} \left[\Phi'_>(\sigma) - \Phi'_<(\sigma) \right] = a\Phi(\sigma)$.

The last equation reduces to:

$$
\frac{\Phi'_>(\sigma) - \Phi'_<(\sigma)}{\Phi_(\sigma)} = -\alpha = -\frac{2M}{\hbar^2} a \text{ or}
$$

$$
\coth k\sigma = -1 + \frac{\alpha}{k}
$$

The lowest binding energy state will correspond to small $k\sigma$ and thus, in this case, this condition reduces to:
\[\frac{1}{k \sigma} \approx -1 + \frac{\alpha}{k} \quad \text{or} \quad k = \alpha - \frac{1}{\sigma}. \]

Since \(k > 0 \) this implies the final result:

\[a > \frac{\dot{h}^2}{2M \sigma} \]
Consider an electron in the ground state of a tritium atom (H\(^3\)). The triton now β-decays to singly ionized Helium-3 (He\(^{3+}\)). Assume that both nuclei have infinite mass and that there is no interaction between the β-decay electron and the rest of the system. What is the probability that this new atom will be found in its ground state?

You may need the following integral:

\[
\int_0^\infty u^n e^{-u} du = \Gamma(n+1)
\]

where \(\Gamma(n+1) = n!\) if \(n\) is an integer.

Solution:

The ground-state wave function \((n = 1, \ell = 0, m = 0)\) for a one-electron atom with nuclear charge \(Ze\) is:

\[
\psi_{100} = Ae^{-\frac{Zr}{a_0}} = \frac{1}{\sqrt{\pi}} \left(\frac{Z}{a_0} \right)^{3/2} e^{-\frac{2r}{a_0}}
\]

where the constant, \(A\), can be determined by normalizing the integral of the probability density to 1. For the H\(^3\) and He\(^{3+}\) ground states we have:

\[
\psi_{100}(H^3) = \frac{1}{\sqrt{\pi}} \left(\frac{1}{a_0} \right)^{3/2} e^{-\frac{r}{a_0}}
\]

\[
\psi_{100}(He^{3+}) = \frac{1}{\sqrt{\pi}} \left(\frac{2}{a_0} \right)^{3/2} e^{-\frac{2r}{a_0}}
\]

And we compute the overlap of initial and final state wave functions to give the probability:

\[
\int \psi_{100}(H^3)\psi_{100}(He^{3+})dV = 4 \left(\frac{1}{a_0} \right)^{3/2} \left(\frac{2}{a_0} \right)^{3/2} \int_0^\infty e^{-\frac{3r}{a_0}}r^2 dr
\]

\[
= \frac{8\sqrt{2}}{a_0^3} \int_0^\infty e^{-u}u^3 du
\]

\[
= \frac{16\sqrt{2}}{27}
\]

\[
= 0.838
\]
Transform Hamiltonians into independent Harmonic oscillator Hamiltonians by simple (canonical) transformations.

\[H_1 = \frac{p^2}{2M} + \frac{1}{2} M\omega^2 x^2 + qEx = \frac{p^2}{2M} + \frac{1}{2} M\omega^2 (x + \frac{qE}{M\omega^2})^2 - \frac{1}{2} \frac{q^2E^2}{M\omega^2} \]

This means that the energy levels are simply shifted harmonic oscillator levels:

\[E_n = \left(n + \frac{1}{2}\right)\hbar\omega - \frac{1}{2} \frac{q^2E^2}{M\omega^2}. \]

The ground state wavefunction is then easily obtained as:

\[\Psi(x) = \left(\frac{M\omega}{\pi\hbar}\right)^{1/4} \exp\left[-\frac{M\omega^2\left(x + \frac{qE}{M\omega^2}\right)^2}{2\hbar}\right] \]

\[H_2 = \frac{p_1^2}{2M} + \frac{1}{2} M\omega^2 x_1^2 + \frac{p_2^2}{2M} + \frac{1}{2} M\omega^2 x_2^2 + \lambda M\omega^2 (x_2 - x_1)^2. \]

This can be diagonalized by introducing:

\[x = \frac{1}{\sqrt{2}}(x_1 \pm x_2) \text{ and } p = \frac{1}{\sqrt{2}}(p_1 \pm p_2) \quad \text{where} \quad [x, p] = i\hbar \text{ and } [x, p] = 0 \]

By using the obvious identities

\[p_1^2 + p_2^2 = p_x^2 + p_y^2 \quad \text{and} \quad x_1^2 + x_2^2 = x_x^2 + x_y^2 \]

we can rewrite the Hamiltonian as

\[H = \frac{p_x^2}{2M} + \frac{1}{2} M\omega^2 x_x^2 + \frac{p_y^2}{2M} + \frac{1}{2} M\omega^2 x_y^2 \]

where \(\omega' = \sqrt{(1 + 4\lambda)}\omega \).

The eigenvalues and eigenfunction can then be written by inspection:

\[E(n_+, n_-) = (n_+ + \frac{1}{2})\hbar\omega + (n_- + \frac{1}{2})\hbar\omega' \quad \Psi_0(x_+, x_-) = \left(\frac{M\omega}{\pi\hbar}\right)^{1/4} \left(\frac{M\omega'}{\pi\hbar}\right)^{1/4} e^{-\frac{M\omega^2 x_+^2}{2\hbar}} e^{-\frac{M\omega^2 x_-^2}{2\hbar}} \]
Solutions to PhD Exam

Problem Q.M.

\[\psi(x) = \begin{cases} \frac{Ax}{L/2}, & x < L/2 \\ \frac{B}{L/2}, & x = L \end{cases} \]

\[\psi(x) = -x \frac{A}{L/2} + B \quad \psi(x=L) = 0 \quad B = -\frac{LA}{L/2} = 2A \]

\[= A(2-\frac{2x}{L}) = 2A \left(\frac{L-x}{L} \right) \]

\[\int_0^L \psi^2 dx = 1 = 2 \frac{\sqrt{2}}{2} (A^2 x^2) dx = \frac{2A^2}{L} \int_0^{L/2} x^2 dx \]

\[= \frac{2A^2}{3} \left(\frac{L/2}{3} \right) = \frac{A^2 L}{3} = 1 \quad A = \frac{\sqrt{3}}{L} \]

B.

\[\psi = B \sin \pi x \quad \psi \bigg|_{x=L} = 0 \]

\[k = n\pi = \frac{n\pi}{L} \quad n\lambda = 2L \]

\[E_n = \frac{P^2}{2m} = \frac{k^2}{2m} \]

\[E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2} \quad \psi = B \sin \frac{n\pi x}{L} \quad \int_0^L \psi^2 dx = 1 \Rightarrow \]

\[B^2 \frac{L}{2} = 1 \]

\[B = \sqrt{\frac{2}{L}} \]

C. \(\psi \) forms a complete set

\[\psi(x) = \sum A_n \sin \frac{n\pi x}{L} \quad x \text{ by } \sin \frac{n\pi x}{L} \]

\[A_n \frac{1}{2} = \int_0^L \psi(x) \sin \frac{n\pi x}{L} \, dx \]

Since \(\psi \) is symmetric about \(x = L/2 \)

\[A_n \neq 0 \text{ not present} \]
A sum of \(n = 1, 3, 5, \ldots \) modes only and has no \(n = 2, 4, 6, \ldots \) components.

CONTRIBUTE

\[
\frac{L}{2} q_n = 2 \int_0^{L/2} 2Ax \sin \frac{n \pi x}{L} dx
\]

\[
y = \frac{n \pi x}{L}, \quad x = \frac{L}{n \pi} y
\]

\[
dx = \frac{L}{n \pi} dy
\]

\[
= \frac{4A}{L} \left(\frac{L}{n \pi} \right)^2 \int_0^{n \pi/2} y \sin y dy
\]

\[
\text{CHECK ON INTEGRAL.}
\]

\[
\frac{L}{2} q_n = \frac{4A}{L} \left(\frac{L}{n \pi} \right)^2 (\sin y - y \cos y)
\]

\[
= \frac{4A}{L} \left(\frac{L}{n \pi} \right)^2 \sin \frac{n \pi x}{L}
\]

\[
x = \frac{1}{3}, \frac{5}{3}, \ldots \text{ only}
\]

\[
a_n = \frac{8 \lambda}{n^2 \pi^2}, \quad n = 1, 3, 5, \ldots
\]

\[
a_n = 0, \quad n = 2, 4, 6, \ldots
\]

\[
y(t) = \sum a_n \sin \frac{n \pi x}{L} e^{i \frac{E_n}{M} t}
\]

\[
E_n = \frac{n^2 \pi^2}{2M} = \frac{x^2}{n^2 \pi^2}
\]

Repeats when \(i E_n t/\hbar = 2\pi i \) \(i E_n t/\hbar = 2\pi n^2 i \)

\[
t = T = 2\pi \sqrt{x/\hbar}
\]

\[
t = T/2, \quad i E_n t/\hbar = \pi i, \quad e^{\pi i} = -1, \quad e^{i \pi n^2/\hbar} = (-1)^n
\]

\[
y(t = T/2) = -y(t = 0)
\]
(c) Constitution is now

\[1s^2 2s^2 2p^5 \]

\[
\begin{array}{cccccc}
\text{M}_1 & 2 & 2 & 2 & 1 & 1 & \frac{1}{2} \\
\text{M}_2 & 1 & 0 & -1 & 1 & 0 & \frac{1}{2}
\end{array}
\]

\[
\frac{1}{2} = \frac{1}{2}
\]

\[2p^{9/2} \quad (J = L = S \text{ since } p \text{ shell now can hold } 12 \text{ electrons}) \]

1st ion gets \((\text{He analogy})\): \[1s^2 \quad J = 0 \]

2nd \(\) \((\text{Ne analogy})\): \[1s^2 2s^2 2p^{12} \quad J = 20 \]

\[
\frac{s_1 \cdot s_2}{2} = \frac{J^2 - S_1^2 - S_2^2}{2} = 0
\]

\[
H(J = 1, M_J = 4) = \frac{4\alpha}{2\hbar^2} \left[J(J+1) - \frac{1}{4} - \frac{1}{4} \right] = 3 \alpha \quad (J=1, M_J = 3)
\]

\[
H(J = 0, M_J = 0) = -\alpha \quad (J=1, M_J = 0)
\]

where

\[
\begin{align*}
1J = 1, M_J = 1 & : \{ d_1, d_2 \} \\
1J = 1, M_J = 0 & : \frac{1}{\sqrt{2}} \left[\left(d_1 \beta_2 \right) + \left(d_2 \beta_1 \right) \right] \\
1J = 1, M_J = -1 & : \left(d_1 \beta_2 \right) \\
1J = 0, M_J = 0 & : \frac{1}{\sqrt{2}} \left[\left(\omega_1 \beta_2 \right) - \left(\beta_1 d_2 \right) \right]
\end{align*}
\]
For $\mathbf{L} = \mathbf{l}, \mathbf{a}\mathbf{a}$, $\langle \mathbf{L} | \mathbf{H} | \mathbf{L} \rangle = \frac{3}{2} l + \frac{1}{2} a = 2 a,$

$\omega_{da} = 0$

$C_s = \frac{2 \mathbf{a}}{i \hbar} \int_{0}^{t} dt = \frac{-2 \mathbf{a} t}{i \hbar}$

$|C_s(t)|^2 = \frac{4a^2\mathbf{e}^2}{\hbar^2}$

which disagrees with the result due to $\frac{4a^2p^2}{\hbar^2} \approx 1$.

This is because we have not taken into account the transition back into the state (l_2, p_2), which becomes important after sufficient time has elapsed.

(4) (a) $\Theta \mathbf{S}_a \Theta^{-1} = -\mathbf{S}_a$ for any angular momentum Θ.

Then

$\Theta \mathbf{S}_a^2 \Theta^{-1} = \Theta \mathbf{S}_a \Theta^{-1} \Theta \mathbf{S}_a \Theta^{-1} = \mathbf{S}_a^2$.

\[\Theta \mathbf{S}_a \Theta^{-1} = -\mathbf{S}_a \]

i.e. it is time-reversal invariant.

(b) Since $S = \frac{3}{2}$, Kramer's theorem says only all degenerate states are at least doubly degenerate. We have N-basis states, $|l_j, m_j\rangle$ with $\Theta(l, m) = e^{2i \pi l(j - m)}$.

\[\Theta \mathbf{S}_a \Theta^{-1} = -\mathbf{S}_a \]
\[
\begin{align*}
\langle \beta_1 \beta_2 | \Psi(t) \rangle &= e^{-\frac{i}{\hbar} H t/\hbar} \langle \beta_1 \beta_2 | \Psi(0) \rangle \\
&= \frac{1}{\sqrt{2}} e^{-\frac{i}{\hbar} H t/\hbar} \left[\langle J=1, M=0 \rangle + \langle J=0, M=0 \rangle \right] \\
&= \frac{1}{\sqrt{2}} e^{-\frac{3}{2} \Delta \omega t/\hbar} \langle J=1, M=0 \rangle + \frac{1}{\sqrt{2}} e^{i \Delta \omega t/\hbar} \langle J=0, M=0 \rangle
\end{align*}
\]

\[
\langle \beta_1 d_2 | \Psi(t) \rangle = \langle \beta_1 \beta_2 | \Psi(t) \rangle = 0
\]

\[
\langle d_1 d_2 | \Psi(t) \rangle = \frac{1}{2} e^{-3 \Delta \omega t/\hbar} + \frac{1}{2} e^{i \Delta \omega t/\hbar}
\]

\[
| \langle \beta_1 d_2 | \Psi(t) \rangle |^2 = \frac{1}{2} \left[1 + \alpha \left(\frac{\Delta \omega t}{\hbar} \right) \right] \approx 1 \quad \text{as} \quad \frac{\Delta \omega t}{\hbar} \ll 1
\]

\[
| \langle \beta_1 d_2 | \Psi(t) \rangle |^2 = \frac{1}{2} \left[1 - \alpha \left(\frac{\Delta \omega t}{\hbar} \right) \right] \approx \frac{4 \Delta \omega^2 t^2}{\hbar^2} \quad \text{as} \quad \frac{\Delta \omega t}{\hbar} \ll 1
\]

(b) \quad \text{at } t = V_{3,2} e^{i \omega_3 t}, \quad \alpha_3 = 1 \quad \text{to} \quad \text{leave additive}

\[
\langle d_1 d_2 | H | d_1 \beta_2 \rangle = \langle \beta_1 \beta_2 | H | d_1 d_2 \rangle = 0 \quad \text{in agreement with above.}
\]
A similar argument would show that it won't work for electrons in partially filled sub-shells with adjacent values of \(l \). A configuration which will work is \(sdl \):

\[
\begin{align*}
\uparrow & \quad \uparrow \\
 m_c &= 0 & m_b &= 2 \\
 S &= 1 & L &= 2 & J &= 1.
\end{align*}
\]

One might then look to the transition elements, many of which have partially filled \(s \) and \(d \) shells, for the configurations (more than one subshell) are all of the form

\[
\text{sd}^1, \text{sd}^2, \text{sd}^3, \text{etc.}
\]

(4) (a) Since \([H_\theta] = 0 \)

\(E(\nu) \) is either degenerate with \(1m\gamma \) or \(1 \) (to a phase factor), the same as \(1m\gamma \). For spin zero, the latter is the case. Then

\[
E(\nu) = e^{i\theta} 1m\gamma, \text{ where } \theta \text{ is a constant phase factor.}
\]
(b) \(\Psi_m = \langle \hat{x} | \Psi \rangle \) and under time-reversal,
\[\Psi_m \rightarrow \Psi_m^* \quad (\text{with the spatial part}) \]
\[
\langle \hat{x} | \Theta | \Psi \rangle = \langle \hat{x} | \Psi \rangle^* = e^{i\delta} \langle \hat{x} | \Psi \rangle
\]
\[\text{i.e.} \]
\[\Psi_m^* = e^{i\delta} \Psi_m \]

This implies that \(\Psi_m \) can always be written as a real function multiplied by a (constant) phase factor. i.e.,
\[\text{For} \quad \Psi_m = e^{-i\delta/2} \phi_m \]
\[\Psi_m^* = e^{i\delta/2} \phi_m^* = e^{i\delta} e^{-i\delta/2} \phi_m \]
\[\phi_m^* = \phi_m \quad \text{(real).} \]

(c) Using the completeness of the \(Y_{lm} \)'s, the most general form of \(\Psi \) must be
\[\Psi_m = \sum_{l} \sum_{m} \hat{F}_{lm} (\hat{n}) \ Y_{lm} (\theta, \phi) \]
Now \(Y_{lm} (\theta, \phi) \propto e^{im\phi} \)

and the only real combinations are

\(Y_{l0} (\theta, \phi) \)

and

\(Y_{l\pm m} \propto \cos m\phi \) or \(\sin m\phi \)

\(\langle L^2 \rangle \) in such states is obviously zero.

Since

\[
L_x = \frac{1}{2} \left(L_+ + L_- \right)
\]

\[
L_y = \frac{1}{2i} \left[L_+ - L_- \right]
\]

it is also obvious that

\[
0 = \langle L_x \rangle = \langle L_y \rangle \text{ for such states.}
\]

Any and combination of states for a given \(l \)

yields

\[
\langle L^2 \rangle = l(l+1) \hbar^2.
\]

This phenomenon is called "quenching of orbital angular momentum," and occurs when atoms are perturbed by asymmetric external fields, as they will be in a crystal.