
Qualifying Examination

Quantum Mechanics

January 14, 2006

PROBLEM 1.

Calculate the reflection and transmission coefficients for a particle scattering of a potential V = 0
for x < 0 and V = V0 > 0 for x > 0. Assume the energy of the particle E > V0.

PROBLEM 2.

Let L be an angular momentum operator and let |M〉 denote a normalized eigenstate of Lz with
eigenvalue M , i.e. Lz|M〉 = M |M〉.

a) Show that
L±|M〉 = C±(M)|M ± 1〉,

where L± = Lx ± iLy and C±(M) is a constant.
b) Show that

〈M |Lx|M〉 = 〈M |Ly|M〉 = 0, 〈M |L2
x|M〉 = 〈M |L2

y|M〉, 〈M |LxLy + LyLx|M〉 = 0.

PROBLEM 3A.

Consider a particle of mass m in a three-dimensional potential V (r) = −αδ(r − a), where α and
a are positive constants. Find wave functions (up to a normalization constant) and energies of
s-states (bound states with zero angular momentum). How many s-states are there?

PROBLEM 3B.

Suppose at t = 0 a particle of mass m is in the ground state of an attractive δ-function potential.
Let the ground state energy be E0. For t > 0 the particle is subject to a periodic perturbation
V (x, t) = −xF0 cosω0t. Use Fermi’s golden rule to calculate the rate of transitions out of the
ground state. Assume h̄ω0 � |E0| and neglect the influence of the δ-function on the final states,
i.e. take them to be plane waves.

PROBLEM 4A.

Consider a particle of mass m in a potential well

U(x, y, z) =











0, (x2 + y2)/a2 + z2/b2 < 1,

∞, (x2 + y2)/a2 + z2/b2 ≥ 1,

where |a− b| � b. Note that the potential well is an ellipsoid of rotation of volume V = 4πa2b/3.
Determine the ground state energy to the first order of perturbation theory in ε = (a−b)/b. What
is the shift in the ground state energy as compared to that for the same particle in the ground
state of an infinite spherical well potential of the same volume V ?
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PROBLEM 4B.

Consider a spin Hamiltonian H = AK ·S +BSz, where S is a spin 1/2, K is a spin K, and A and
B are real parameters.

a) Show that the z-component of the total spin J = K + S is conserved. How many states are
there for a given value of Jz = m?

b) Determine the energy levels and their degeneracies for 1) B = 0 2) A = 0. What is the
symmetry responsible for the degeneracies in each case?

c) Set A = 1 and determine energy levels for arbitraryB. You can use C±(M) =
√

(L∓M)(L±M + 1),

where C±(M) is defined in problem B.
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Qualifying Examination

Quantum Mechanics Solutions

January 14, 2006

PROBLEM 1.

The solution of the Shrödinger equation describing transmission and reflection of particles with
E > V0 incident from the left is

ψk(x) =















eikx + A(k)e−ikx, x < 0 (k =
√

2mE/h̄2 > 0)

B(k)eik′x, x > 0 (k′ =
√

2m(E − V0)/h̄
2 > 0)

The wave function and its derivative are continuous at x = 0. These conditions yield

1 + A = B, k(1 − A) = k′B

We obtain

A(k) =
k − k′

k + k′
B(k) =

2k

k + k′

The reflection (R) and transmission (T ) coefficients are

R = |A|2 =

(
√
E −

√
E − V0√

E −
√
E − V0

)2

, T =
k′

k
|B|2 =

4
√

E(E − V0)

(
√
E −

√
E − V0)2

PROBLEM 2.

(a) It follows from commutations relations for angular momentum components that

[Lz, L±] = ±L±,

LzL± = L±(Lz ± 1).

Apply both sides of this equation to the state |M〉,

Lz(L±|M〉) = L±(M ± 1)|M〉 = (M ± 1)(L±|M〉).

We see that the state L±|M〉 is either an eigenstate of Lz with eigenvalue M±1 or zero. Therefore,

L±|M〉 = C±(M)|M ± 1〉.

(b) Since eigenstates with different M are orthogonal,

〈M |L±|M〉 ∝ 〈M |M ± 1〉 = 0, 〈M |L2
±|M〉 = 0. (1)

We obtain
〈M |Lx|M〉 ± i〈M |Ly|M〉 = 0,

〈M |Lx|M〉 = 〈M |Ly|M〉 = 0.
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The second relation in Eq. (1) yields

〈M |L2
x − L2

y|M〉 ± i〈M |LxLy + LyLx|M〉 = 0.

Therefore,
〈M |L2

x|M〉 = 〈M |L2
y|M〉 〈M |LxLy + LyLx|M〉 = 0.

PROBLEM 3A.

A substitution ψE(r) =
unrl

r
Ylm(θ, φ), where Ylm(θ, φ) is a spherical harmonic, reduces the Shrödinger

equation
[

− h̄2

2m
∇2 + V (r)

]

ψE(r) = EψE(r) V (r) = −αδ(r − a)

to a one-dimensional one
[

− h̄2

2m

d2

dr2
+
h̄2l(l + 1)

2mr2
+ V (r)

]

unrl = Eunrl

Here we are looking for s-states, i.e.

[

− h̄2

2m

d2

dr2
+ V (r)

]

unr0 = Eunr0

Bound states have E < 0. Boundary conditions are unr0(0) = unr0(∞) = 0. The solution with
these boundary conditions is

unr0(r) =

{

A sinh κr, r < a,
Be−κr, r > a,

where κ =
√

2m|E|/h̄2. Due to the delta function potential, the logarithmic derivative of the wave

function experiences a jump at r = a of magnitude −2mα/h̄2

d lnunr0(a+ 0)

dr
− d lnunr0(a− 0)

dr
= −2mα

h̄2 .

We obtain an equation determining energies of s-states

1 − e−2κa =
h̄2κ

mα
= λ(2κa), λ =

h̄2

2mαa
.

For λ > 1 there are no solutions, i.e. no s-states. For λ < 1 there is a single s-state.
The wave function is continuous at r = a

A sinh κa = Be−κa.

We obtain

B =
A

2
(e2κa − 1).
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Thus, (Y00(θ, φ) = const)

ψE(r) =























C
sinh κr

r
, r < a,

C(e2κa − 1)
e−κr

2r
, r > a,

where C is a normalization constant.

PROBLEM 3B.

The rate of transitions (Fermi’s golden rule) is

w =
2π

h̄

∫

∣

∣

∣V̂ν0

∣

∣

∣

2
δ(Eν − E0 − h̄ω0)dν. (2)

Here

V̂ν0 =
〈

ψ0(x)
∣

∣

∣

∣

xF0

2

∣

∣

∣

∣

ψν(x)
〉

,

ψ0(x) =
√
κe−κ|x| is the ground state wave function, κ = mα/h̄2, E0 = −h̄2κ2/2m is the ground

state energy, ψν(x) and Eν are wave functions and energies of final states, respectively.
Neglecting the influence of the δ-function on final states, we take them to be plane waves

ψν(x) =
1√
2π
eikx, Eν =

h̄2k2

2m
, ν ≡ k, −∞ < k <∞.

We find

V̂ν0 = −F0

√
κ

2
√

2π

∫ ∞

−∞
x exp[−κ|x| − ikx]dx = i

√
2kκ3/2F0√
π(k2 + κ2)2

,

and, using Eq. (2),

w =
2h̄F 2

0 |E0|3/2
√

h̄ω0 − |E0|
m(h̄ω0)4

PROBLEM 4A.

In new coordinates x′ = x, y′ = y, and z′ = az/b = (1 + ε)z the Shrödinger equation and the
boundary condition read

Ĥψ ≡ − h̄2

2m

(

∂2

∂x′2
+

∂2

∂y′2
+ (1 + ε)2 ∂

2

∂z′2

)

ψ = Eψ ψ(r′ = a) = 0

Now write the Hamiltonian in the form Ĥ = Ĥ0 + V̂ , where

Ĥ0 = − h̄2

2m
∇′2, V̂ = − h̄2

2m
(2ε− ε2)

∂2

∂z′2
. (3)

The unperturbed Hamiltonian Ĥ0 describes a particle in a spherical box. Its ground state is

ψ
(0)
0 =

1√
2πar

sin
πr

a
, r ≤ a; E

(0)
0 =

π2h̄2

2ma2
.
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(here and below primes are dropped for simplicity).
According to Eq. (3), to evaluate the first order correction in ε to the ground state energy,

we need to compute the average 〈∂2/∂z2〉 in the unperturbed ground state. Due to spherical
symmetry of the latter

〈∂2/∂x2〉 = 〈∂2/∂y2〉 = 〈∂2/∂z2〉 =
1

3
〈∇2〉 = − 2m

3h̄2 〈Ĥ0〉 = − 2m

3h̄2E
(0)
0 .

Therefore,

E
(1)
0 =

2ε

3
E

(0)
0 E0 ≈ E

(0)
0 + E

(1)
0 =

(

1 +
2ε

3

)

π2h̄2

2ma2
(4)

The radius R of a sphere of the same volume as the ellipsoid is determined by

4π

3
R3 =

4π

3
a2b ≈ 4π

3
a3(1 − ε)

We find R ≈ a(1 − ε/3). Therefore,

E0 ≈
π2h̄2

2mR2
,

i.e. there is no shift as compared to a sphere of the same volume. To the first order in ε, the
ground state energy depends only on the volume of the ellipsoid.

PROBLEM 4B.

a) The quantity K · S is a scalar product of two vectors. As such it is rotationally invariant, i.e.
it commutes with all components of J

[J,K · S] = 0.

In particular, it commutes with Jz. Since Sz also commutes with Jz = Kz + Sz,

[Jz, H] = 0

Eigenvalues of Jz are

m = −K − 1/2,−K + 1/2, . . . , K − 1/2, K + 1/2

Let us use the tensor product basis |Kz, Sz〉 of simultaneous eigenstates of operators Kz and Sz.
Since Sz has only two eigenvalues ±1/2, there are two states |m− 1/2, 1/2〉 and |m + 1/2,−1/2〉
for each m 6= ±(K + 1/2). There is only one state | ±K,±1/2〉 for m = ±(K + 1/2).

b) 1) B = 0. Use

K · S =
J2 − K2 − S2

2
=
J(J + 1) −K(K + 1) − S(S + 1)

2

Total spin takes values J = K ± 1/2. There are two energy levels

E1

(

J = K +
1

2

)

=
A

2

[(

K +
1

2

)(

K +
3

2

)

−K(K + 1) − 1

2

(

1

2
+ 1

)]

=
AK

2
,
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E2

(

J = K − 1

2

)

= −A(K + 1)

2
.

Each level is (2J + 1)-fold degenerate. The symmetry responsible for the degeneracy is rotational
invariance.

2) A = 0. We have H = BSz. There are two energy levels

E1,2

(

Sz = ±1

2

)

= ±B
2

Each level is (2K+1)-fold degenerate with respect to eigenvalues of Kz. For A = 0 the Hamiltonian
commutes with all components of K, i.e. it is invariant with respect to arbitrary rotations in the
subspace of spin K.

c) Let us use the basis |Kz, Sz〉. Since [Jz, H] = 0, matrix elements of the Hamiltonian between
states with different m vanish. Thus, in this basis the Hamiltonian is block-diagonal. The size
of blocks for m 6= ±(K + 1/2) is 2 × 2, because there are two states for each m. Writing the
Hamiltonian (A = 1) in the form

H = KzSz +
1

2
(K−S+ +K+S−) +BSz,

we compute

H

∣

∣

∣

∣

m+
1

2
,−1

2

〉

= −1

2

[(

m+
1

2

)

+B
] ∣

∣

∣

∣

m+
1

2
,−1

2

〉

+
1

2

√

(

K +m+
1

2

)(

K −m+
1

2

) ∣

∣

∣

∣

m− 1

2
,
1

2

〉

,

H
∣

∣

∣

∣

m− 1

2
,
1

2

〉

=
1

2

[(

m− 1

2

)

+B
] ∣

∣

∣

∣

m− 1

2
,
1

2

〉

+
1

2

√

(

K +m+
1

2

)(

K −m+
1

2

) ∣

∣

∣

∣

m +
1

2
,−1

2

〉

.

Taking inner products with states |m± 1/2,∓1/2〉, we find the corresponding block of the Hamil-
tonian

Hm = −1

4
I +

1

2













−m− B

√

(

K + 1
2

)2 −m2

√

(

K + 1
2

)2 −m2 m +B













,

where I is 2 × 2 identity matrix. Eigenvalues (energies) are

E1,2(m) = −1

4
± 1

2

√

(

K +
1

2

)2

+ 2mB +B2.

Finally, consider m = ±(K + 1/2). States | ±K,±1/2〉 are eigenstates of the Hamiltonian,

H
∣

∣

∣

∣

±K,±1

2

〉

=
K ± B

2

∣

∣

∣

∣

±K,±1

2

〉

,

with eigenvalues

E
(

m = ±
(

K +
1

2

))

=
K ±B

2
.
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