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Qualifying Examination

Thermal Physics Solutions

January 14, 2006

PROBLEM TA.

In the dilute solution any of the solvent molecules can be replaced by a solute, so the entropy
is

S = ln
N !

(N − n)!n!
= N ln

N

e
− (N − n) ln

N − n

e
− n ln

n

e
= −n ln

ρ

e

Using the identity ∂S
∂V

= ∂P
∂T

and the fact that V ∝ N for the osmosis process, we get

V ∂S
∂V

= N ∂S
∂N

= n and thus P = Tn/V

PROBLEM TB.

The naive way of heating the house by transforming the electrical energy, E, into heat, Q, is
worse than to use reversed Carnot engine that consumes work W = E and heat Qout = ST0

from the outside to produce heat Q = ST = E + ST0 in the inside. In this case one gets
Q = T

T−T0

E for the same energy cost E. It is also the most effiecient way because in case
a more efficient way existed, a second Carnot engine working in the normal direction would
produce enough energy to feed the reverse one and to heat the house at no energy cost
violating the second law of thermodynamics.

PROBLEM TC1.

Local stability implies that the pressure difference is compensated by the gravitational force:
dP/dz = −gρ = −Pµg/RT . Global stability implies that the cyclic process does not produce
positive work. The process consists in adiabatic expansion (upward motion), isobaric cooling
(temperature equilibration), adiabatic compression (downward motion) and isobaric heating.
Assume that the temperature and pressure at the bottom is Tb, Pb while at the top they
are Tt, Pt. The temperature of the air after the first stage is T ′

t = Tb(Pt/Pb)
1/cp , the volume

V ′ = V0(Pt/Pb)
1/cp−1 The work done by the air during this process is positive because

V ′ > V0 provided that the pressure at higher altitude is less as it should according to the
local stability condition. At the next stage the air cools down or is heated up depending on
the relation between T ′

t and Tt if T ′

t < Tt the air is heated and expands further to volume
V ′′ = V ′(Tt/T

′

t ) doing more work. At the next stage the air is adiabatically compressed and
finally is cooled down. The work done at this stages is in this case neagtive and larger in
magnitude than positive work; the whole process is equivalent to reversed Carnot engine.
In the opposite case of T ′

t > Tt the air cools down and does negative work at the second
stage of the process, so the whole cycle is equivalent to Carnot engine running in the positive
direction. In this case mechanical work can be produced and thus the atmosphere is unstable.
Thus, we get the condition that atmospere is stable iff Tb(Pt/Pb)

1/cp ≤ Tt.In a differential
form dT/dz ≤ T

cpP
dP/dz = µg

cpR
= 9.7K/km. As expected, the typical atmospere is close to

the instability but stable.

PROBLEM TC2.

Energy conservation implies that Ui + PiVi = Uf + PfVf so the process happens at constant
enthalpy: dH = TdS + V dP = 0. Expressing the entropy change in the variables (T, P ) we
get dS = Cp

dT
T

− ∂V
∂T

dP . Thus,

CpdT − T
∂V

∂T
dP + V dP = 0
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or
dT

dP
=

1

Cp

(
T

∂V

∂T
− V

)

Van-der-Waals gas satisfies the equation

(P + a
N2

V 2
)(V − Nb) = NkT

At low densities it can be simplified:

V =
NkT

P

(
1 + b

P

kT
− a

P

(kT )2

)

so
dT

dP
=

T

Cp

Nk

P

(
−b

P

kT
+ 2a

P

(kT )2

)
=

1

kcp

(
2a

kT
− b

)

PROBLEM TD1.

The position of the end is the sum of the link displacements: −→x =
∑−→u k, so the energy of

the molecule subjected to the force E = −
−→
f −→x is the sum of the energies of individual links

E = −
∑−→

f −→u k. The free energy can be obtained from the partition function

F = −T ln

(∫
dôeβ

−→
f −→u

)N

= −NT ln

(
2π

∫
1

−1

dzeβflz

)
= −NT ln

(
4π

sinh βfl

βfl

)

The average distance between the ends

〈−→x 〉 = −
dF

df
= Nl

(
coth βfl −

1

βfl

) −→
f

f
≈

1

3T
Nl2

−→
f

where last approximate equality holds in the linear regime.

PROBLEM TD2.

Phase equilibrium implies that the chemical potentials of the gas and liquid are equal:
µl = µg .Differentiating this equation along the phase equilibrium line we get (as in the
derivation of Clausius-Clapeyron equation)

dP

dT
=

sg − sl

vg − vl

Because vg � vl the denominator in this formula is dominated by the volume per one
gas molecule and does not exhibit any features at the normal-superfluid transition that
affects only liquid. The same applies to the entropy sg per one gas molecule. According to
Landau theory of phase transitions, the free energy density of the system near transition
is F = α(T − Tc)Ψ

2 + 1

2
βΨ4 where Ψ is the order parameter. The nature of the order

parameter is irrelevant for this problem because for any order parameter the free energy
acquires additional contribution F = − (α(T − Tc))

2 /2β below Tc and thus the entropy per
one molecule acquires a contribution ∆s = α2(T − Tc)vl/β. Thus, below the transition the
derivative of the phase equilibrium line acquires additional term

dP

dT
=

(
dP

dT

)

0

+
α2(Tc − T )vl

βvg

=

(
dP

dT

)

0

+
α2(Tc − T )µP0

βρRTc

Due to fluctuations, the linear (Tc − T ) dependence is replaced by a power law (Tc − T )1−χ.


