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Let Te be the equilibrium temperature. Heat is given out by the pump at the rate Q1 = W/η, where
η = 1− T0/Te. At equilibrium Q1 = α(Te − T0), so that

W =
α

Te
(Te − T0)2,

from which we get

Te = T0 +
W

2α
+

√
T0

W

α
+

(
W

2α

)2

SB
(a) The mean magnetic moment for a dipole is

〈µ〉 =
∫

µ cos θ exp(x cos θ)dΩ∫
exp(x cos θ)dΩ

=
µ

∫ 1
−1 cos θ exp(x cos θ)d cos θ
∫ 1
−1 exp(x cos θ)d cos θ

= µ

[
cothx− 1

x

]
,

where x = µH/kT . Then the induced magnetization in the system is

〈M〉 = N〈µ〉 = Nµ

(
cothx− 1

x

)

(b)

c =
∂〈u〉
∂T

= −H
∂〈M〉
∂T

= Nk

(
1− x2

sinh2 x

)

SC1
(a Version 1) On the basis of the equation of state of an ideal gas, we introduce the constant b when
considering the volume of a real gas to allow for the finite volumes of the molecules and we introduce the
constant a to allow for mutual attraction between molecules of the gas. Now we discuss why the pressure
correction term is inversely proportional to V 2.
Each of the molecules of the gas has a certain interaction region. For the molecules near the center of the
volume, the forces on them are isotropic because of the uniform distribution of molecules around them.
For the molecules near the walls (the distances from which are smaller than the interaction distance of
molecules), they will have a net attractive force directing inwards because the distribution of molecules
there is not uniform. Thus the pressure on the wall must have a correction ∆p. If ∆k denotes the decrease
of a molecule’s momentum perpendicular to the wall due to the net inward attractive force, ∆p = (The
number of mollecules colliding with unit area of the wall in unit time)×2∆k. As ∆k is proportional to the
attractive force, the force is proportional to the number of molecules in unit volume, n, and the number
of molecules colliding with unit area of the wall in unit time is proportional to n too, we have

∆p ∝ n2 ∝ 1/V 2.
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(a Version 2) The Van der Waal’s equation of state is a modification of the ideal gas equation for which
a = b = 0. A non-zero constant a represents two-body interactions between molecules. Effects of two-body
interactions depend on the rate of two-body collisions which is proportional to the number density squared,
n2. To lowest order, the number denstiy is proportional to the inverse volume, n ∝ 1/V . So to lowest
order, corrections due to two-body interactions are proportional to 1/V 2. Now the pressure of a gas is
a measure of the total energy. For an ideal gas this is entirely kinetic. But for a non-ideal gas this also
receives contributions from molecular interactions. Two-body interactions therefore modify the pressure
of the gas as

P = Peff − a

V 2

where Peff is the effective or kinetic pressure. Attractive interactions lower the energy of the gas and
therefore pressure, so that a > 0 in this case . [Note that corrections for n-body interactions would be
proportional to 1/V n].
A non-zero constant b represents the finite volume of molecules, or equivalently a hard core repulsion
between molecules. This reduces the effective volume in which the molecules can move,

Veff = V − b

The ideal equation of state for the effective pressure and volume, PeffVeff = RT then yields the Van der
Waal’s equation of state.
(b) The equation of state can be written as

p =
RT

V − b
− a

V 2

In the isothermal process, the change of the Helmholtz free energy is

∆F = −
∫ V2

V1

pdV = −
∫ V2

V1

(
RT

V − b
− a

V 2

)
dV =

= −RT ln
(

V2 − b

V1 − b

)
+ a

(
1
V1
− 1

V2

)

(c) We can calculate the change of internal energy in terms of T and V :

dU =
(

∂U

∂T

)

V
dT +

(
∂U

∂V

)

T
dV

For the isothermal process, we have

dU =
(

∂U

∂V

)

T
dV

The theory of thermodynamics gives
(

∂U

∂V

)

T
= T

(
∂p

∂T

)

V
− p.

Use of the equation of state then gives
dU =

a

V 2
dV

Integrating, we find

∆U =
∫ V2

V1

a

V 2
dV = a

(
1
V1
− 1

V2

)
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SC2
(a) The chemical potential of the photon gas is zero. Since the number of photons is not conserved at a
given temperature and volume, the average photon number is determined by the expression

(
∂F

∂N̄

)

T,V
= 0,

then
µ =

(
∂F

∂N̄

)

T,V
= 0

(b) The density of states is V ω2dω/π2c3. Then the number of photons is

N̄ =
∫

V

π2c3
ω2 1

eh̄ω/kT − 1
dω

=
V

π2c3

(
kT

h̄

)3 ∫ ∞

0

α2dα

eα − 1
∝ T 3

(c) and (d)
Ē

V
=

∫
ω2

π2c3

h̄ω

eh̄ω/kT − 1
dω

=
(kT )4

π2c3h̄3

∫ ∞

0

ξ3dξ

eξ − 1

Hence

ρ(ω) =
h̄

π2c3

ω3

eh̄ω/kT − 1
,

and Ē ∝ T 4.

SD1 (a) The probability to have j particles in a state with energy ε is proportional to ej(µ−ε)/τ . The
occupancy of the state is

n(ε) = 〈j〉 =
∑2

j=0 jej(µ−ε)/τ

∑2
j=0 ej(µ−ε)/τ

=
e(µ−ε)/τ + 2e(2µ−2ε)/τ

1 + e(µ−ε)/τ + e(2µ−2ε)/τ
(1)

Suppose the gas is cold, τ → 0. For states above the chemical potential ε > µ and (µ − ε)/τ = −∞, for
states below ε < µ and (µ− ε)/τ = +∞, for states at the chemical potential ε = µ and (µ− ε)/τ = 0. We
have

n(ε > µ) = 0 n(ε < µ) = 2 n(ε = µ) = 1

(b) The number of states with momenta between p and p + dp is dpL/(2πh̄). Using p =
√

2mε, we obtain
for the density of states ν(ε) (number of states per unit energy as a function of energy)

ν(ε)dε =
dpL

2πh̄
=

L
√

2m

4πh̄
√

ε
dε

ν(ε) =
L
√

2m

4πh̄
√

ε

At zero temperature each state below the chemical potential µ0 is doubly occupied, states above the
chemical potential are empty. The total number of weirdons is

N =
∫ µ0

0
2ν(ε)dε =

∫ µ0

0
2
L
√

2m

4πh̄
√

ε
dε =

L
√

2mµ0

πh̄
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We obtain

µ0 =
π2h̄2(N/L)2

2m

The total energy is

E =
∫ µ0

0
2εν(ε)dε =

∫ µ0

0
2
L
√

ε
√

2m

4πh̄
dε =

L
√

2m

3πh̄
µ0

3/2

E

L
=

(πh̄)2(N/L)3

6m

(c) One can understand the low temperature behavior of the specific heat quite simply from the temperature
dependence of the distribution function n(ε, τ). For |µ− ε| À τ we obtain from Eq. (1)

n(ε, τ)− n(ε, 0) ≈ sgn(ε− µ0)e−|ε−µ0|/τ ,

where sgn x = 1 for x > 0 and sgn x = −1 for x < 0.
The increase in energy of the weirdons when the temperature is raised from τ = 0 comes about entirely
because some weirdons with energies within τ below µ0 have been excited to an energy range τ above µ0.
The number of weirdons that have been so excited is the width, τ , of the energy interval times the density
of levels ν(µ0). Furthermore, the excitation energy is of order τ , and hence the total thermal energy is
∆U ∝ ν(µ0)τ2 above the ground state. Thus,

C =
d∆U

dτ
∝ τ, α = 1.

Further, using C = τ∂S/∂τ , we obtain S ∝ τ , i.e. β = 1.

SD2
(a) We have

lnZ =
∑
npz

ln(1 + eβµe−βEnpz ) =
∫ ∞

−∞
Ldpz

2πh̄

∞∑

n=0

L2eB

2πh̄c
ln

(
1 + λ exp

{
−β

[
2µBB

(
n +

1
2

)
+

p2
z

2m

]})
,

where Z is the grand partition function, λ = eβµ, β = 1/T , and µ is the chemical potential. Note that the
temperature units are such that the Boltzman constant kB = 1.
In the high temperature limit λ ¿ 1, hence

ln Z =
eBV

(2πh̄)2c
λ

∫ ∞

−∞
dpz

∞∑

n=0

exp

{
−β

[
2µBB

(
n +

1
2

)
+

p2
z

2m

]}
=

λV

λ3
T

µBB

T sinhx
,

where V = L3 is the volume of the box, λT = 2πh̄/
√

2πmT and x = µBB/T .
(b) The magnetization is

M = −∂F

∂B
= T

(
∂ lnZ

∂B

)

µ,T,V
,

where F is the free energy of the system. Hence

M =
λV

λ3
T

µB

[
1

sinhx
− x coshx

sinh2 x

]

By

N̄ =
(

λ
∂

∂λ
ln Z

)

B,T,V
=

λV

λ3
T

x

sinhx

we have M = −N̄µBL(x), where L(x) = cothx− 1/x.
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At high temperatures, T À µBB or x ¿ 1. Therefore,

L(x) =
1
3
x− 1

45
x3 + . . . ,

N̄ ≈ λV

λ3
T

,

M ≈ −N̄
µ2

BB

3T

The magnetic susceptibility at high temperatures is

χ∞ =
M

V B
=
−neµ

2
B

3T
,

where ne = N̄/V is the electron number density.
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