
Rutgers - Physics Graduate Qualifying Exam

Quantum Mechanics: September 1, 2006

QA
J is an angular momentum vector with components Jx, Jy, and Jz. A quantum mechanical state is an
eigenfunction of J2 and Jz with eigenvalues 15/4 h̄2 and 1/2h̄ respectively.

1. Evaluate the expectation values < Jx > and < Jy > in this state.

2. Find the expectation values < J 2
x > and < J2

y > in this state.

Show and justify any intermediate steps in your calculations.

AngMom Solution

1. Using the commutator [Jy, Jz ] = ih̄Jx one finds
ih̄ < Jx >=< JyJz > − < JzJy >= (h̄/2)(< Jy > − < Jy >) = 0,
and similiarly for < Jy >.

2. First one can show that the two expectation values are equal. Perhaps the simplest way to do this
is to note that J2

x and J2
y transform into one another under a rotation R = exp(iπJz/(2h̄)) and this

operator and its inverse become unity when applied to the eigenstate:
< J2

y >=< RJ2
xR

−1 >= exp(iπ/4) < J2
y > exp(−iπ/4) =< J2

y >.
(Another approach is to expand < J 2

x > in intermediate states and then use the commutator to show
i < m′|Jx|m >= (m−m′) < m′|Jy|m >,
together with the fact that only states with |m − m′| = 1 contribute.) Then the relation J2 =
J2

x + J2
y + J2

z immediately gives

< J2
x >=< J2

y >= ((15/4)h̄2 − (h̄/2)2)/2 = (7/4)h̄2.

Students can also adopt a simpler approach: by symmetry or rotational invariance, < J 2
x >=< J2

y >=
(J2 − J2

z )/2.
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QB
Consider the Schrödinger equation with a one-dimensional quartic potential: V (x) = λx4.

1. Find the lowest upper limit for the ground state energy of a particle of mass m using a Gaussian
trial wave function of the form ψt(x) = N exp(−ax2), where N is a normalizing constant and a is a
parameter which can be varied.

2. Give a trial function which will give an upper limit for the energy of the first excited state in this
potential. You do not need to carry out the calculation of the energy limit, but you should justify
your choice of trial function.

You may find the following definite integrals useful:
I0 =

∫ ∞
0 exp(−px2)dx = 1

2

√

π
p

and, for positive integers n,
In =

∫ ∞
0 x2nexp(−px2)dx = 1·3·5···(2n−1)

2npn I0

VarQuartic Solution

1. Using the integrals provided it is easy to show that
N2

√

π/(2a) = 1
and then that
< ψt|V |ψt >= 3λ/(16a2)
and
< ψt|K|ψt >= h̄2a/(2m). The expectation value of the total Hamiltonian in the trial wave function
can then be written as
αa+ β/a2

where
α = h̄2/(2m)
and
β = 3λ/16.
This has its minimum value of 3(α/2)2/3β1/3 when a = (2β/α)1/3 .
The upper limit for the ground state energy is, therefore (3/4)4/3(λh̄4/m2)1/3 = 0.6814 · · · (λh̄4/m2)1/3.
(This is indeed greater than the exact value, found numerically, of 0.667886 · · · (λh̄4/m2)1/3.)

2. For a one-dimensional even potential the eigenstates are alternately even and odd, so an odd trial
wave function of the form, say, Nx exp(−bx2) would be orthogonal to the exact ground state wave
function and therefore the expectation value would have to be greater than the energy of (odd-parity)
first excited state.
A proof would expand the trial wave function in terms of the exact wave functions, with coefficients
ci, so that the expectation value of the Hamiltonian would be
∑

i |ci|2Ei,
which is clearly greater than or equal to E1 if c0 vanishes.
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QC1
The wave function of the bound state of a particle of mass m in the one-dimensional attractive delta-
function potential V (x) = −λδ(x) can be written as ψ(x) = Nexp(−a|x|), where N is the normalization
constant.

1. Find a and the energy eigenvalue E in terms of λ and m.

2. Find the uncertainties in momentum and position ∆p and ∆x in terms of λ and m. Verify that the
uncertainty relation is satisfied.

DeltaPot Solution

1. The wavefunction has a discontinuous slope at x = 0 and therefore
d2ψ/dx2 = a2ψ− 2aδ(x)ψ. Inserting this in the Schrödinger equation −(h̄2/2m)d2ψ/dx2 − V (x)ψ =
Eψ,
gives a = λm/h̄2

and
E = −h̄2a2/2m = −(m/2)(λ/h̄)2.

2. The normalization condition requires N 2 = a. Straightforward integration gives < x2 >= 1/(2a2).
To find < p2 > one can use the expression for d2ψ/dx2 in (1) to show
< p2 >= a2h̄2.
Using the expression for a found in (1) then gives
∆x = h̄2/(

√
2λm)

and
∆p = λm/h̄,
so that
∆x∆p = h̄/

√
2 > h̄/2,

consistent with the uncertainty relation
∆x∆p ≥ h̄/2.
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QC2
The eigenstates of the three-dimensional isotropic harmonic oscillator with potential V (r) = 1

2kr
2 can be

labelled either by the cartesian indices (nx, ny, nz) or by the angular momentum indices (n, `,m), with
n = nx + ny + nz.

1. What is the degeneracy of the nth energy level?

2. For n = 0, 1, and 2 list all of the degenerate states in both representations.

3. The wavefunctions in the angular momentum representation can be written ψn,`,m = (un,`(r)/r)Y`,m(θ, φ),
where un,`(r) is the radial wave function. Among the states in angular momentum representation
you listed in (2) two have the same ` but different energies.
Sketch the radial wave functions un,`(r) for these two states, making clear how they differ.

4. Which of the n = 1 states in the cartesian representation listed in (2) is identical to a state in the
angular momentum representation?
Explain why.

3dOsc Solution

1. The number of states Dn for a given n equals the number of ways one can choose 3 non-negative
integers adding to n. This can be found, for example, using
Dn =

∑n
nx=0

∑n−nx

ny=0 1 = (1/2)(n + 1)(n+ 2).

2. For n = 0 the cartesian state is (0,0,0) and the angular momentum state is (0,0,0).
For n = 1 the 3 cartesian states are (1,0,0), (0,1,0), and (0,0,1) while the angular momentum states
are (1,1,1),(1,1,0), and (1,1,-1).
For n = 2 the 6 cartesian states are (2,0,0), (0,2,0), (0,0,2), (0,1,1),(1,0,1), and (1,1,0) while the
angular momentum states are (2,0,0), (2,2,2), (2,2,1), (2,2,0), (2,2,-1), (2,2,-2).

3. The angular momentum states (0,0,0) and (2,0,0) both have zero angular momentum. Their ra-
dial wave functions satisfy the same radial equation, but with different energies, so they must be
orthogonal. The first must have no nodes, the 2nd one node between r = 0 and r = ∞.

4. The cartesian state (0,0,1) and the angular momentum state (1,1,0) are both proportional to z =
r cos(θ) times a Gaussian and therefore must be identical up to a phase.
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QD1
The integral form of the Schrödinger equation for the scattering of a particle of mass m from a potential

V (r) is ψ(r) = exp(iki · r) − (m/(2πh̄2))
∫ exp(ik|r−r′|)

|r−r′| V (r′)ψ(r′)d3r′.

1. Use the large r limit of this expression to get an expression for the scattering amplitude f in terms
of an integral involving the wave function ψ.

2. Use this expression to find the Rutherford cross section in the Born approximation, i.e find f to first
order in V for V = q1q2/(4πε0r) and use it to calculate the differential cross section. In the Born
approximation ψ(r′) is replaced by the initial plane wave, f(kf ,ki) = −(m/(2πh̄2))

∫

e−iq·r′V (r′)d3r′,
where q = kf − ki is the momentum transfer.

RuthScatt Solution

1. For r � r′ one has the expansion
|r − r′| = r − r · r′/r + · · ·.
Using this in the exponential in the integrand, and just the r in the denominator, one finds
ψ(r) = exp(iki · r) + f(kf ,ki)e

ikr/r,
where
f(kf ,ki) = −(m/(2πh̄2))

∫

e−ikf ·r
′

V (r′)ψ(r′)d3r′,
is the scattering amplitude with
bfkf = kr/r
the final momentum pf divided by h̄.

2. To avoid complications due to the somewhat poorly defined integral we consider first the case of a
Yukawa potential where the integral is
∫

e−iq·r e−ar

r d3r = 4π/(q2 + a2).
Taking the limit a→ 0 then give for Rutherford scattering
fB = −(m/(2πh̄2)) × (q1q2/(4πε0)) × 4π/q2.
Since q = 2k sin(θ/2) , the square of this gives the standard Rutherford cross section dσ/dΩ =
(mq1q2/(4πε0))

2/(2p sin(θ/2))4. (A possibly more familiar form uses cgs units and the fact that
E = p2/(2m).)
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QD2
The energy eigenvalues of the one-dimensional harmonic oscillator increase linearly with the quantum
number n, while those for the one-dimensional infinite square well increase quadratically with n.

Consider a particle of mass m in the one-dimensional “V” potential, V (x) = λ|x|.

1. Use the Bohr-Sommerfeld condition or the WKB approximation to find the approximate dependence
of the energy levels of this system on the quantum number n for large n. Give the estimates for the
first four energy levels in terms of ε ≡ ( h̄2λ2

2m )1/3.

2. Draw a graph showing the potential and the first four energy levels as horizontal lines. On each of
these lines sketch the corresponding wave function. (You will probably want to make this graph as
large as possible so that everything fits without overlap.)

3. Discuss the related problem (the quantum mechanics of the “bouncing ball”) where V (x) = ∞ for
x < 0, while V (x) = λx for x > 0. How are the energy levels and wave functions here related to
those for the V potential?

Vpotential Solution

1. The condition for the nth energy level is
∮

p(x)dx = (n− 1/2)h,
where
p(x) =

√

2m(En − V (x))
is the classical momentum at position x and n = 1, 2, 3, · · ·.
(The Bohr-Sommerfeld condition usually does not include the -1/2 on the right-hand side which
comes from the connection formulae in the WKB approximation.)
For the V potential this condition becomes
4
√

2mλ
∫ xt

0

√
xt − xdx = (n− 1/2)h,

where xt = En/λ is the classical turning point. Evaluating the integral and re-arranging gives
En = (n− 1/2)2/3(3π/4)2/3ε.
Thus for large n the energy increase as n2/3. The estimates for En/ε for the first four levels are
1.1155, 2.3203, 3.2616, and 4.0818, which are fairly close to the exact numbers 1.01879297, 2.3381074,
3.24819758, and 4.08794944 obtained from the zeroes of the Airy function and its derivative.

2. See the figure below. Note that the nth wave function has n-1 nodes between ±∞ and that the
curvature changes from negative to positive at the turning points where the energy levels cross the
potential.

3. In this case the wave function must satisfy the same differential equation for positive x but must
vanish at x = 0. The odd-parity wave functions (n = 2, 4, 6, · · ·) satisfy this condition and thus are
the eigenfunctions in this case, with the lowest exact eigenvalues of 2.3381074ε and 4.08794944ε.
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