
August, 2006: Classical Mechanics - Solutions

MA

1. This is equivalent to two equal mass monkeys on opposite ends of the rope. Monday A climbs a
distance d, the rope shortens a distance d, and all monkeys go up a distance d/2.

2. With both monkeys B and C climbing a distance d, they each go up a distance d relative to the
pulley on the right; the pulley on the right descends a distance d/2, and all monkeys rise a distance
d/2.

3. Relative to the pulley on the right, Monkey C climbs a distance d, the rope shortens a distance d,
and both monkeys go up a distance d/2. Now since both monkeys go up a distance d/2, the pulley
on the right descends a distance d/4, and all monkeys go up a distance d/4.

MB

1. Taking the positive direction to be to the right, the force acting along the rope are gravity on the
block on the right, mg, a component of gravity acting on the block on the left, −Mg sin θ, and the
frictional force acting on the block on the left, ±µMg cos θ. The blocks do not move to the right as
long as mg < Mg sin θ + µMg cos θ or

sin θ + µ cos θ > m/M.

The blocks do not move to the left as long as Mg sin θ < mg + µMg cos θ, or

sin θ − µ cos θ < m/M.

2. The block to the right now has forces acting on it of gravity of mg downward, the normal force of the
surface ma which provides the acceleration, and the frictional force which is up to µma. The block
on the left has a normal (to the surface) force of Mg cos θ as before, plus a component −Ma sin θ
from the acceleration. The frictional force is up to µ(Mg cos θ − Ma sin θ). Besides the frictional
force, the force along the rope (to the left) is Mg sin θ +Ma cos θ. Thus, the condition for the blocks
not to slide to the right is

mg < µma + Mg sin θ + Ma cos θ + µ(Mg cos θ − Ma sin θ)

The condition for the blocks not to slide to the left is

Mg sin θ + Ma cos θ < mg + µma + µ(Mg cos θ − Ma sin θ).
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MC1

1. For a mass on a spring, we know that F = ma = −kx has solutions of the form x = A cos ωt, so that
ma = −mω2x, and ω =

√

k/m.

2. Assume the length of the spring is r0, and it is stretched a distance r to provide the centripetal
acceleration so the mass moves along a circular trajectory, or radius r = r0 + x. Then kx = mv2/r,
or x = mv2/kr. The angular momentum is Lz = mvr, so x = mv2/kr = L2

z/kmr3.

3. The Lagrangian is K = T −U , with T = 1

2
m
(

ṙ2 + r2θ̇2
)

, and U = 1

2
k(r − r0)

2. In the θ coordinate,

the equations of motion are derived from d
dt

∂L

∂θ̇
− ∂L

∂θ
= 0. This becomes mr2θ̈ = 0, which integrated

gives mr2θ̇ = constant = Lz. In the r coordinate, we have mr̈ − mrθ̇2 + k(r − r0) = 0. ¿From the θ

equations of motion, we replace θ̇2 = L2
z

m2r4 to obtain

mr̈ −
L2

z

mr3
+ k(r − r0) = 0

.

Using r = r0 + x, and r−3 = (r0 + x)−3 = r−3
0 (1 − x/r0)

−3 = r−3
0 (1 − 3x/r0 . . .), we obtain

mẍ + kx −
L2

z

mr3
0

(1 − 3x/r0 . . .)

ẍ +

(

k

m
+ 3

L2
z

m2r4
0

)

x −
L2

z

m2r3
0

. . . = 0.

You can see that this will have solutions of the form x = A cos ωt + B, with ω picked so that

ω2 =

(

k

m
+ 3

L2
z

m2r4
0

)

,

and with B picked so that ω2B − L2
z

m2r3

0

= 0.
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MC2

1. The frequency of a pendulum swing is well known. The Lagrangian is L = T−U = 1

2
ml2θ̇2+mgl cos θ.

The equation of motion is found from d
dt

∂L

∂θ̇
− ∂L

∂θ
= 0, which gives ml2θ̈ + mgl sin θ = 0. Assuming θ

is small, sin θ ≈ θ . . ., and θ̈ + (g/l)θ = 0, which is solved by θ = A cos ωt, with ω =
√

g/l.

2. The rod supplies a vertical force mg that counteracts gravity, and a horizontal force mg tan θ that
provides the centripetal acceleration of the mass. Since Lz is constant (φ̇ depends on θ), we write
the centripetal force as Fc = mrφ̇2 = L2

z/mr3 = L2
z/ml3 sin3 θ. Then mg tan θ = L2

z/ml3 sin3 θ and
sin4 θ
cos θ

= L2
z

m2gl3
.

As Lz → 0, θ → 0, while as Lz → ∞, θ → π/2.

3. The Lagrangian is

L = T − U =
1

2
ml2θ̇2 +

1

2
ml2 sin2 θφ̇2 + mgl cos θ.

The φ equation of motion is ml2 sin2 θφ̈ = 0, which integrates to ml2 sin2 θφ̇ = constant ≡ Lz. The
θ equation of motion is ml2θ̈ − ml2 sin θ cos θφ̇2 + mgl sin θ = 0. We replace φ̇ → Lz/ml2 sin2 θ to
obtain ml2θ̈ − cos θL2

z/ml2 sin3 θ + mgl sin θ = 0, or

θ̈ − (cos θL2
z/m

2l4 sin3 θ) + (g/l) sin θ = 0.

It is no longer possible to assume that θ is small, but we may assume that if θ = θ0 + δ, with θ0 the
equilibrium angle from part 2), then δ is small. So sin θ = sin(θ0 + δ) = sin θ0 cos δ + cos θ0 sin δ ≈
sin θ0 + δ cos θ0 + . . . and cos θ = cos(θ0 + δ) = cos θ0 cos δ − sin θ0 sin δ ≈ cos θ0 − δ sin θ0 + . . . . The
equation of motion becomes

δ̈ − (cos θ0 − δ sin θ0)L
2
z/m

2l4(sin θ0 + δ cos θ0)
3 + (g/l)(sin θ0 + δ cos θ0) = 0.

The angular variables in the middle term are simplified using (cos θ0 − δ sin θ0)/(sin θ0 + δ cos θ0)
3 =

cos θ0(1−δ tan θ0) sin−3 θ(1+δ cot θ0)
−3 ≈ cos θ0 sin−3 θ(1−δ tan θ0)(1−3δ cot θ0 . . .) ≈ cos θ0 sin−3 θ(1−

δ(tan θ0 + 3 cot θ0) + . . .). We finally obtain

δ̈ +

(

g cos θ0

l
+

L2
z

m2l4
cos θ0

sin3 θ0

(tan θ0 + 3 cot θ0)

)

δ +
g sin θ0

l
+

L2
z

m2l4
cos θ0

sin3 θ0

= 0.

This can be seen from inspection to have small oscillations, with solutions of the form δ = A cos ωt+
B. Here ω2 can be identified with the coefficient of the δ term in the equation above, while B is

determined from ω2B + g sin θ0

l
+ L2

z

m2l4
cos θ0

sin3 θ0

= 0. You can see that in the limit Lz → 0, cos θ0 → 1,

sin θ0 → 0, and the usual planar pendulum solution is recovered – since Lz scales like sin2 θ, there is
no divergence: δ̈ + g

l
δ = 0.
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MD1

1. Since we have three blocks in one dimensional motion there are two normal modes. There is an
anti-symmetric mode in which the two smaller blocks oscillate out of phase relative to each other,
so that the larger block does not move. There is a symmetric mode in which the two smaller blocks
oscillate in phase with each other, with the larger block oscillating out of phase so that there is no
center of mass motion.

2. We write the Lagrangian for the system as

L = T − U =
1

2
Mẋ2 +

1

2
m(ẋ + ẋ1)

2 +
1

2
m(ẋ + ẋ2)

2 −
1

2
kx2

1 −
1

2
kx2

2.

There are three equations of motion given by

d

dt

∂L

∂q̇j
−

∂L

∂qj
= 0.

These are:
x : Mẍ + 2mẍ + mẍ1 + mẍ2 = 0,

x1 : mẍ + mẍ1 + kx1 = 0, and

x2 : mẍ + mẍ2 + kx2 = 0.

We solve for the anti-symmetric mode by subtracting the x2 e.o.m. from the x1 e.o.m.:

x1 − x2 : mẍ1 − mẍ2 + kx1 − kx2 = 0,

which, using u = x1 − x2, gives mü + ku = 0. This it the equation of a simple harmonic oscillator,
with solution u = A

−
cos(ω

−
t + φ

−
), where A

−
and φ

−
are chosen to satisfy initial conditions, and

ω2
−

= k/m.

For the symmetric mode, add the x1 and x2 equations to obtain:

x1 + x2 : 2mẍ + mẍ1 + mẍ2 + kx1 + kx2 = 0.

Rewrite the x equation as:

x : ẍ =
−1

M + 2m
(mẍ1 + mẍ2),

and insert in the x1 + x2 equation to obtain:
[ −2m

M + 2m
+ 1

]

m(ẍ1 + ẍ2) + k(x1 + x2) = 0.

Using v = x1 + x2, this simplifies to
[

Mm

M + 2m

]

v̈ + kv = 0.

This it the equation of a simple harmonic oscillator, with solution v = A+ cos(ω+t + φ+), where A+

and φ+ are chosen to satisfy initial conditions, and ω2
+ = (k/m)(1+2m/M): you can see in the limit

that m/M → 0, we have two oscillators in phase at frequency ω2 = k/m.

3. The solutions for x1 and x2 are straightforward from the definitions of u and v. We have x1 =
(u + v)/2 = (A

−
/2) cos(ω

−
t + φ

−
) + (A+/2) cos(ω+t + φ+) and x2 = (u − v)/2 = (A

−
/2) cos(ω

−
t +

φ
−
) − (A+/2) cos(ω+t + φ+). For x, there is no motion related to the antisymmetric (-) mode, but

there is possible constant c.m. motion, plus possible offsets. Thus x = Ax cos(ω+t+φ+)+v0t+xoff ,
where the constant Ax has to be chosen so that in pure symmetric motion the center of mass does
not move: MAx + 2mA+ = 0, so Ax = −2mA+/M .
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MD2

1. First consider the forces on the small masses. The gravitational force, mg has a tangential component
mg sin θ and a radial component mg cos θ. The total radial force must be mv2/R, since the small mass
is moving in a circular path. The velocity v is given by energy conservation. With 1

2
mv2 = mgh,

v =
√

2gh =
√

2gR(1 − cos θ). Thus, the force exerted by the big ring on each small ring is the
centripetal force minus the radial component of gravity:

Frr = mv2/R − mg cos θ = 2mg(1 − cos θ) − mg cos θ = 2mg − 3mg cos θ.

The horizontal forces on the big ring will cancel, and the total vertical force on the big ring becomes

Fbv = 2(2mg − 3mg cos θ) cos θ − Mg,

and the ring moves up if this force is greater than 0. Note the extra factor of 2, from the two small
rings. This solution still depends on θ, and we need to eliminate it. We do this by evaluating the
derivative to find the maximum of the function:

dFbv

d cos θ
= 2(2mg − 6mg cos θ),

which is 0 at cos θ = 1/3. The second derivative is clearly negative, so this is the desired maximum.
Thus,

Fmax
bv = 2(2mg − mg)

1

3
− Mg =

2

3
mg − Mg,

and the limiting condition is
m

M
>

3

2
.

2. For M = 0, we have
Fbv = 2(2mg − 3mg cos θ) cos θ,

which becomes positive when cos θ = 2/3.
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