
DAY ONE

In this exam you will have to answer four questions in Classical Mechanics
and four in Electricity and Magnetism. Read the instructions carefully since
in some cases, but not all, you will have a choice of questions. Each question
should be answered in a separate bluebook with the question label (example:
EB2) printed clearly on the front along with your code number.

Part M: Classical Mechanics

Everyone should answer question MA1 below.

MA1

[8 points] A small mass starts out at rest a great distance from the sun and
falls freely in to it. How long will it take for the mass to travel from a distance
from the center of the sun equal to the radius r⊕ of the earth’s orbit to the
surface of the sun? Assume the mass does not pass near the earth or any
other planet, and let R� be the radius of the sun. Use information about the
earth’s orbit to express your answer as a numerical fraction of the year.

MA1 Solution

From conservation of energy the speed of the mass when it is at a distance r
from the center of the sun is

v =
√

2GM�/r

so that the time required to fall from r⊕ to R� is

∆t =
∫ r⊕

R�

dr/v =
∫ r⊕

R�

dr/
√

2GM�/r = (2/3
√

2GM�)(r
3/2

⊕ − R
3/2

� ).

Newton’s Law or the Virial theorem applied to the earth’s orbit gives

v⊕ = 2πr⊕/T⊕ =
√

GM�/r⊕.

This can be used to replace the r
3/2

⊕ term. Dropping the small R
3/2

� term
then gives

∆t = T⊕/(3
√

2π),
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which is equivalent to about 27 days.
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Answer one of the 2 questions MB1 or MB2.

MB1

(a) [6 points] Prove that for a particle of mass m in an arbitrary central force
field the angular momentum L is conserved.

(b) [6 points] Express L in terms of m, the distance from the origin r and
the angular velocity θ̇. Suppose the particle moves in the spiral orbit

r = cθ3.

How does θ vary with time?

MB1 Solution

(a) Since L = r × p, Newton’s 2nd law gives

dL/dt = v × p + r× F.

Since p is in the same direction as v the first term vanishes, and therefore L

is a constant if F is a central force in the same (or opposite) direction as r

so that the second term also vanishes.

(b) Using the orbit equation

L = mr2θ̇ = mc2θ6dθ/dt.

This can be integrated to give

Lt = mc2θ7/7,

or
θ = Kt1/7,

where K = (7L/(mc2))1/7.
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MB2

A stationary space station can be approximated as a hollow spherical shell
of mass 6 tonnes (6 000 kg), with inner and outer radii of 5m and 6m re-
spectively. To change its orientation, a uniform flywheel (radius 10 cm, mass
10 kg) at the center of the ship is spun up quickly from rest to 1000 rpm.

(a) [6 points] How long will it take the station to rotate through 10◦?

(b) [6 points] How much energy is needed to to spin up the flywheel?

MB2 Solution

(a) The formula for the solid sphere can be used to show that the moment of
inertia of the ship is Is = 2

5
Ms(b

5 − a5)/(b3 − a3), where a = 6m and b = 5m,
while the moment of inertial of the flywheel is Iw = Mwc2/2, where c =
0.10m. Angular momentum conservation requires Isωs = Iwωw. Inserting
numbers, we obtain ωs = 4.08 × 10−4 rpm, and the ship will therefore take
68 minutes to make 1/36 of a full turn.

(b) The KE of the ship is negligible in comparison with that given the fly-
wheel: Tw = 1

2
Iwω2

w, because its angular speed is so low. Thus the energy
needed is just 274 J.
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Answer one of the 2 questions MC1 or MC2.

MC1

A particle is constrained to move without friction on a circular cone with
half-angle α; the axis of the cone is vertical and the apex is down.

(a) [4 points] Write the Lagrangian, L, in terms of spherical polar coordinates
r and φ.

(b) [6 points] Find the two equations of motion. Show that the angular
momentum, Lz, is conserved and use it to eliminate φ̇ from the r equation.
What is the value of r0 at which the particle can remain on a horizontal
circular path?

(c) [6 points] Suppose the particle moves with small departures from this
circular orbit: r(t) = r0 + ε(t). Show, for small ε, that the particle exe-
cutes stable harmonic oscillations about r0, and find the frequency of the
oscillation.

MC1 Solution

(a) The polar angle is fixed at θ = α, so

L = T − U =
1

2
m(ṙ2 + r2 sin2 αφ̇2) − mgr cos α.

(b) Since ∂L/∂φ = 0, we have that ∂L/∂φ̇ = mr2 sin2 αφ̇ = Lzis constant.
The r equation is

mr̈ = mr sin2 αφ̇2 − mg cos α or r̈ =
L2

z

m2r3 sin2 α
− g cos α.

For a horizontal circular orbit r̈ = 0, so r = r0 = [L2
z/(m2g sin2 α cos α)]1/3.

(c) Substituting r = r0 + ε into the r equation of motion yields

ε̈ =
L2

z

m2r3
0 sin2 α

(

1 +
ε

r0

)−3

− g cos α
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or for small ε/r0

ε̈ ≈ L2
z

m2r3
0 sin2 α

(

1 − 3ε

r0

)

− g cos α =
−3L2

z

m2r4
0 sin2 α

ε.

This harmonic oscillator equation has a real frequency, ω =
√

3Lz/(mr2
0 sin α),

so the oscillations are stable.
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MC2

[16 points] A bead of mass m is threaded on a frictionless circular wire hoop
of radius R, which also has mass m. The hoop is suspended at the point A
and is free to swing in its own vertical plane, as shown in the Figure. Using
the angles φ1 and φ2 as generalized coordinates, solve for the normal frequen-
cies of small oscillations. Find and describe the motion in the corresponding
normal modes.
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MC2 Solution

The moment of inertia of a uniform hoop about a point on the circumference
is I = 2mR2, so its KE is T1 = mR2φ̇2

1. When the oscillations are small, the
speed of the bead is v2 = R(φ̇1 + φ̇2), so its KE is T2 = mR2(φ̇1 + φ̇2)

2/2.

The potential energy is U = mgR(1 − cos φ1) + mgR[(1 − cos φ1) + (1 −
cos φ2)] ≈ 1

2
mgR(2φ2

1 + φ2
2) for small oscilations. The Lagrangian is L =

T − U = 1

2
mR2(3φ̇2

1 + 2φ̇1φ̇2 + φ̇2
2) − 1

2
mgR(2φ2

1 + φ2
2).

The two Lagrange equations

3φ̈1 + φ̈2 = −2g

R
φ1

and
φ̈1 + φ̈2 = − g

R
φ2,

which can be written in matrix notation MMMφ̈φφ = −KKKφφφ.

The normal frequencies are the determined by det( KKK − ω2 MMM) = (2ω2 −
ω2

0)(ω
2 − 2ω2

0) = 0, where ω0 =
√

g/R. Thus the normal frequencies are

ω2
1 = 1

2
ω2

0 and ω2
2 = 2ω2

0. There are thus two normal modes:

Mode 1: Substituting ω = ω1 into (KKK − ω2MMM)aaa = 0, we find a1 = a2. Here
the two angles oscillate in phase with equal amplitude, and the bead does
not slide relative to the hoop.

Mode 2: Substituting ω = ω2 into (KKK − ω2MMM)aaa = 0, we find a2 = −2a1. In
this mode the two angles oscillate exactly out of phase with the amplitude
of φ2 being twice that of φ1, the bead moves the same distance but in the
opposite direction as the center of the hoop, and the center of mass of the
system does not move.

8



Answer one of the 2 questions MD1 or MD2.

MD1

[20 points] An object moving freely undr the action of an unusual central
force F (r) follows a precisely circular path that passes through the point
r = 0. Determine the functional form of F . For definiteness take R to be
the radius of the circular path, and assume the motion is in the z = 0 plane.

MD1 Solution

The equations of motion in the radial and azimuthal directions are

m(r̈ − rφ̇2) = F,

and
m(rφ̈ + 2ṙφ̇) = 0,

where m is the mass of the spaceship. The 2nd equation is equivalent to the
conservation of angular momentum d(mr2φ̇)/dt = 0, so we can set

φ̇ = h/r2,

where h is a constant equal to the angular momentum divided by m. If the
spaceship moves in a circular orbit of radius R through the origin then

r = r(φ) = 2R cos φ.

The time derivative gives

ṙ = −2R sin φφ̇ = −2Rh sin φ/r2.

Taking the time derivative of this expression and using again the conservation
of angular momentum and the equation for the orbit, one finds

r̈ = −h2(8R2 − r2)/r5.

Using this together with φ̇ = h/r2 in the radial equation of motion gives

F = −8mh2R2/r5,
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which is the desired expression for the force. (Of course hR must be chosen
to match the strength of the force to produce this orbit.)

This result can also be derived using the conservation of energy E and angular
momentum ` = mh to derive the orbit equation

dr/dφ = ±(mr2/`)
√

(2/m)(E − V (r) − `2/(2mr2)),

where V (r) is the potential energy. For the given circular orbit

dr/dφ = −2R sin φ = ±
√

4R2 − r2.

The orbit equation can then be solved to show that

V (r) = −2`2R2/(mr4) + terms independent of r,

and therfore
F = −dV/dr = −8`2R2/(mr5),

the same as above if r is replaced by ρ.
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MD2

The rotation period of the Earth has been measured to lengthen at the rate
of 1.6 milliseconds per century, which is due to a frictional torque caused by
tides raised (mostly) by the Moon.

(a) [4 points] Explain in a few sentences the physical origin of the frictional
torque. How is the Moon’s orbit affected by the tides it exerts on the Earth?

(b) [8 points] Approximate the tidal bulges on Earth as two point masses on
the Earth’s surface, each having a fraction f of the Earth mass, and lying on
an Earth diameter inclined at an angle θ to the line of centers between the
Earth and the Moon. Working to only the lowest significant order, derive an
approximate expression for the tidal torque on the Earth due to the attraction
of the Moon. State clearly the approximations you make.

(c) [4 points] Equate this torque to that implied by the measured slow-down
rate to estimate a value for the combination f sin θ.

(d) [4 points] Make a reasonable guess for the value of θ and use the fact
that, if the Earth had no land masses, the tidal variation in the ocean depth
would be about 0.5m peak to trough, to consider whether ocean tides alone
are enough to supply the frictional drag.

The approximate masses of the Earth and Moon are 5.974 × 1024 kg and
7.35 × 1022 kg respectively, the Earth’s radius is 6 378 km and the distance
between the centers of the Earth and Moon is 3.84 × 105 km.

MD2 Solution

(a) The tidal field of the Moon stretches the Earth along the line of centers,
raising two almost equal tidal bulges on the side nearest the Moon and the
side farthest from the Moon. Since the Earth’s spin period is shorter than
the Moon’s orbit period, friction between the tidal bulges and the Earth
drags the bulges to lie in a direction that leads the line of centers. The
gravitational attraction of the Moon on the two bulges applies a torque that
removes angular momentum from the Earth. Since angular momentum is
conserved, the Moon gains and its mean distance from the Earth is slowly
increasing.
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(b) The gravitational attraction of the Moon on the two bulges is fGMm/(D±
R cos θ)2, where M is the Earth’s mass, m is the Moon’s mass, D is the dis-
tance between their centers, R is the radius of the Earth, and the bulge di-
ameter makes an angle θ to the Earth-Moon direction. To lowest order, these
forces differ from the mean force acting on the Earth by ≈ ∓2fGMmR/D3,
assuming cos θ ≈ 1. The torque on the Earth arises from the components
of these difference forces directed along the Earth’s surface; i.e., the torque
is ≈ 2R sin θ · 2GfMmR/D3 to lowest order. This expression neglects the
slight difference in angle between the directions to the Moon from the Earth’s
center and the positions of each bulge.

(c) The observed torque is IΩ̇, where I is the moment of inertia of the Earth.
Assuming the Earth to be a uniform density sphere (not really true), its MoI
is 2MR2/5. Thus we find

f sin θ ≈ D3Ω̇

10Gm
.

If the Earth’s spin period is τ = 24 hrs and δτ = 1.6 ms, the change in
Ω is δΩ = −2πδτ/τ 2 to an excellent approximation. Since δt = 100 yr,
Ω̇ = δΩ/δt ≈ 4.26 × 10−20 s−2. Thus

f sin θ ≈ 4.9 × 10−8.

(d) Guessing θ ∼ 3◦, we find f ∼ 9.4 × 10−7. We need an estimate of the
mass of water in one ocean tidal bulge; for simplicity, assume that one bulge
covers roughly one octant of the Earth’s surface to a depth of δR = 0.125 m,
which implies a mass 4πR2δRρ/8, with ρ being the density of water. This
works out as 8 × 1015 kg, or ∼ 1.25× 10−9 Earth masses, implying that the
ocean tides fail to supply the friction. (In fact most of the torque arises from
distortions to the Earth itself.)
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Part E: Electricity and Magnetism

Everyone should answer question EA1 below.

EA1

A metal bar slides without friction on two parallel conducting rails a distance
` apart as shown, with a resistor R connecting the two rails. A constant and
uniform magnetic field B points into the page everywhere.

R v l

(a) [2 points] If the bar slides to the right at speed v, what current flows
through the resistor? In what direction?

(b) [2 points] What is the magnetic force on the bar, and in what direction?

(c) [2 points] What is the power being dissipated in the resistor?

(d) [2 points]Discuss the conservation of energy in this system.

EA1 Solution
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(a) If the area of the loop is a, then da/dt = `v. Then the electromotive
force is

|E| =

∣

∣

∣

∣

∣

∂Φ

∂t

∣

∣

∣

∣

∣

= |B| da

dt
= |B| `v. (1)

The resulting current is I = E/R = B`v/R.

Signs: If n̂ is out of the page, then ~B = −Bn̂ and positive E is counter-
clockwise. Therefore, the current is counter-clockwise.

(b) The Lorentz force is

~F = I~̀× ~B = −I`Bx̂ =

(

B`v

R

)

`B =
`2B2v

R
. (2)

The force is to the left.

(c) The power dissipated in the resistor is

P = IE = (B`v)

(

B`v

R

)

=
`2B2v2

R
. (3)

(d) The mechanical power applied to the bar to keep it moving at constant
velocity is

P = ~F · ~v =
`2B2v2

R
. (4)

Thus, mechanical work is dissipated as heat in the resistor.
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Answer one of the 2 questions EB1 or EB2.

EB1

A long, straight, uniform solid circular cylinder of conductivity σ has a radius
R. Its axis coincides with the z axis of a coordinate system and it extends
from z = −∞ to z = ∞. Suppose that a uniform current I in the positive
z direction passes through the cylinder. Define clearly what system of units
you are using.

(a) [6 points] Calculate the magnetic field ~H, in terms of the cylindrical co-
ordinates r, φ, and z (r measures the distance from the the z axis, and φ is
the azimuthal angle measured from the x axis).

(b) [6 points] Find the Poynting vector ~S at the surface of the cylinder. Re-
late it to the Ohmic heating per unit length in the cylinder.

EB1 Solution The solution for this problem uses the mksA or SI version
of Maxwell’s equations.

(a) Applying Ampere’s Law,
∫ ~H · d~l = Ienc, taking the contour to be a circle

of radius r, whose center is on the z axis and is perpendicular to it, where
Ienc is the current (conduction plus displacement) passing through the circle

of radius r. Here Ienc = I, for r ≥ R and Ienc = Ir2/R2 otherwise. ~H will
only have components in the +φ̂ direction given by Hφ = Ienc/2πr. Thus
H = Ir/(2πR2) for r ≤ R and H = I/(2πr) for r ≥ R.

(b) The uniform electric field E in the cylinder is determined by the local
version of Ohm’s Law J = I/(πR2) = σE, in the +z direction. The Poynt-

ing vector ~S = ~E × ~H is in the inward normal direction, with magnitude
S = EH = I2/(2π2R3σ) , so that the power per length flowing into the
surface of the cyliner is 2πRS = I2/(πR2σ). Since the cylinder’s resistance
per length is 1/(πR2σ) this is equal to the Ohmic heating per unit length.
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EB2

A dielectric sphere of radius R has electric polarization (dipole moment per
volume) P = Ar2r̂, where A is a constant and r = rr̂ . There is no free charge.

(a) [4 points] Find the bound charge per volume ρb(r) in the sphere and the
bound charge per area σb on its surface.

(b) [4 points] Verify that the net bound charge in and on the sphere is zero.

(c) [4 points] Find the electric field inside (r < R) and outside (r > R) of
the sphere.

EB2 Solution

Since there is no free charge anywhere D = ε0E+P = 0 everywhere. There-
fore

ρb = ε0∇ · E = −∇ ·P.

Evaluating the divergence for the given P gives

ρb = −4rA

in the interior of the sphere. Outside of the sphere P and E both vanish, so
E is discontinuous at the surface. Gauss Law then requires that the surface
charge is

σb = 4AR2.

The net surface charge is just 4πR2 times this, while the net charge in the
interior of the sphere is

4π
∫ R

0

ρbr
2dr = −4πAR4,

exactly the opposite of the net surface charge.
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Answer one of the 2 questions EC1 or EC2.

EC1

A parallel plate capacitor has circular plates of radius R separated by a dis-
tance d. For times t < 0 the capacitor is uncharged. At t = 0 it is connected
to a current source which delivers a linearly increasing current I = αt to the
capacitor, where α is a constant. To fix the directions, assume the plates are
horizontal and the positive charge flows into the lower plate and out of the
upper plate.

(a) [8 points] Find the electric field E between the plates as a function of time.

(b) [8 points] Find the magnetic field B between the plates as a function of
time.

Specify the directions of the fields as well as their magnitudes. You may ig-
nore fringe effects and work in the quasi-static approximation, ignoring any
contribution to E due to changes in B.

EC1 Solution

(a) The charge density on the plates at time t is αt2/(2πR2) so that the elec-
tric field is in the upward vertical direction with magnitude E = αt2/(2πε0R

2).

(b) Perhaps the simplest way to find the magnetic field is to note that
the displacement current will be equal to the real current I spread out
uniformly over the volume between the plates, so that the current den-
sity is just I/(2πR2). The problem is then equivalent to finding the mag-
netic field inside a fat wire of radius R. Using Ampere’s Law one finds
B = µ0rI/(2πR2) = µ0rαt/(2πR2). The magnetic field lines form horizontal
concentric circles centered at the center of the plate and flow counterclock-
wise as seen from above.
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EC2 An electromagnetic standing wave has its electric field

E(z, t) = E0 î sin(kz) cos(ωt),

where î, ĵ, and k̂ are unit vectors in the x, y, and z directions.

(a) [4 points] Show that this expression for E can be written as the superpo-
sition of two plane waves travelling in opposite directions.

(b) [6 points] What is the associated B field for this standing wave?

(c) [6 points] Find the Poynting vector S for the standing wave and use it to
discuss the flow of electromagnetic energy.

You may find useful the identity sin A + sin B = 2 sin((A + B)/2) cos((A −
B)/2).

EC2 Solution

NE5Soln (a) Using the identity

E(z, t) = (E0/2)̂i sin(kz − ωt) + (E0/2)̂i sin(kz − ωt),

just the superposition of two plane wave, one travelling in the z direction,
the other in the -z direction, and both polarized in the x direction.

(b) Each of the plane electromagnetic waves must have a magnetic field of
magnitude E0/(2c) and in the ±y direction with the sign chosen to give the
Poynting vector in the correct direction.

B(z, t) = (E0/(2c)̂j sin(kz − ωt) − (E0/(2c)̂j sin(kz + ωt).

Using the identity again this can be written

B(z, t) = −(E0/c)̂j cos(kz) sin(ωt).

It is easy to check that the E and B fields satisfy the Maxwell equations
∇× E = −∂B/∂t and ∇× B = µ0ε0∂E/∂t, and in fact one can also find B
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from E by requiring that these equations be satisfied.

(c) Using 2 sin θ cos θ = sin 2θ one can show that

S = E× B/µ0 = −k̂ sin(2kx) sin(2ωt)/(4cµ0).

The time average of S is therefore zero, with the energy moving back and
forth without a net flow.
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Answer one of the 2 questions ED1 or ED2.

ED1

A spherical shell of radius R has a surface charge density, whose magnitude
depends only on the polar angle θ from the z axis

σ(θ) = σ0 cos θ.

Be sure to specify your choice of units.

(a) [8 points] Is the electric field E continuous or discontinuous at r = R? If
discontinuous discuss quantitatively the nature of the discontinuity. Repeat
for the electrostatic potential Φ.

(b) [6 points] Find the potential Φ both inside (r < R) and outside (r > R)
the the shell.

(c) [6 points] Find the electric field E both inside (r < R) and outside (r > R)
the the shell.

ED1Soln

(a) From Gauss’ Law for a small short cylindical volume enclosing a small
portion of the shell one finds that the radial component of the electric field
must be discontinuous with

Er(R+, θ) − Er(R−, θ) = σ(θ)/ε0 = σ0 cos θ/ε0.

Since E = −∇Φ is finite everywhere, Φ must be continuous everywhere, even
at r = R.

(b) The potential must satify Laplace’s equation everywhere except on the
shell. For any such region including the origin and azimuthally symmetric
solution must have the form

Φ =
∑

`

a`r
`P`(cos θ),
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while for a region including infinity it must have the form

Φ =
∑

`

a`P`(cos θ)/r`+1.

Because the charge distribution is proportional t0 cos θ = P1(cos θ), only the
` = 1 term contributes, and requiring continuity at r = R means that

Φ = Φ0(R
2/r2) cos θ

for r > R and
Φ = Φ0(r/R) cos θ

for r < R. The constant Φ0 can be determined from the discontinuity in the
radial electric field:

Er(R+, θ) − Er(R−, θ) = 3Φ0 cos θ/R = σ0 cos θ/ε0

, requiring Φ0 = σ0R/(3ε0)., so that the potential is now completely deter-
mined.

Another way to find the potential is to use

Φ(~r ) = k
∫

d3r′
ρ(~r ′)

|~r ′ − ~r | ,

and then the expansion

1

|~r ′ − ~r | =
∑

`

r`
<P`(cos θ)/r`+1

> ,

, where θ is the angle between the two vectors. Since only the ` = 1 term
contributes, it is easy to show find the same expression for Φ as above.

(c) We now have only to use Er = −∂Φ/∂r and Eθ = −(1/r)∂Φ/∂θ.
to find the electric field everywhere. Outside the sphere we have Er =
2σ0R

3 sin θ/(3ε0r
3 and Eθ = σ0R

3 cos θ/(3ε0r
3, while inside the sphere Er =

−σ0 cos θ/(3ε0) and Eθ = σ0 sin θ/(3ε0). Note that the field inside the sphere
is uniform, with magnitude σ0/(eε0) and in the -z direction.
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ED2

This problem is meant to deduce the momentum and angular momentum
properties of radiation and does not necessarily represent any real physical
system of interest. Consider a charge Q in a viscous medium where the vis-
cous force is proportional to the velocity: ~Fvisc = −β~v. Suppose a circularly

polarized electromagnetic wave passes through the medium. The equation of
motion of the charge is

m
d~v

dt
= ~Fvisc + ~FLorentz. (5)

Assume that the terms on the right dominate the inertial term on the left,
so that approximately

0 = ~Fvisc + ~FLorentz. (6)

Let the frequency of the wave be ω and the strength of the electric field be
E.

(a) [5 points] Show that to lowest order (neglecting the magnetic force) the
charge moves on a circle in a plane normal to the direction of propagation of
the wave with speed QE/β and with radius QE/(βω).

(b) [5 points] Show that the power transmitted to the fluid by the wave is
Q2E2/β.

(c) [5 points] By considering the small magnetic force acting on the particle,
show that the momentum per unit time (force) given to the fluid by the wave
is in the direction of propagation and has the magnitude Q2E2/(βc) .

(d) [5 points] Show that the angular momentum per unit time (torque) given
to the fluid by the wave is in the direction of propagation and has magnitude

±Q2E2/(βω), where (±) is for

(

left
right

)

circular polarization.

ED2 Solution

1. Substituting ~FLorentz = Q~E and ~Fvisc = β~v into the force equation gives
v = QE/β. The direction of the velocity rotates uniformly in a plane
normal the propagation direction with period 2π/ω. Thus, the radius
is found from

2πr =
∮

vdt (7)
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to be r = QE/(βω).

2. The power dissipated is P = −~v · ~Fvisc = βv2 = Q2E2/β. Since the
orbit of the charge is constant in time, this is the power transmitted to
the fluid.

3. The magnetic force is in the direction of propagation and has magnitude
Fmag = QBv/c = QEv/c = Q2E2/(βc). Here we have used

∣

∣

∣

~E
∣

∣

∣ =
∣

∣

∣

~B
∣

∣

∣

for a free wave.

4. Using the center of the charge’s motion as an origin, the magnitude
of the torque is τ =

∣

∣

∣

~FLorentz × ~r
∣

∣

∣ = Q2E2/(βω). For a left-hand
circularly polarized wave, the E-vector and, thus, the charge rotates
counter-clockwise as viewed facing the wave. This imparts a torque
along the direction of propagation. The opposite holds for right-hand
polarization. Thus, τ = ±Q2E2/(βω).

The above results can be used to deduce the momentum and angular mo-
mentum of circularly polarized photons with energy Eγ = h̄ω.
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