# Orientifolds, Twisted Cohomology, and Self-Duality

A talk for I.M. Singer on his 85th birthday

MIT, May 23, 2009

Gregory Moore, Rutgers University

Work *in progress* with Jacques Distler & Dan Freed

## **Outline**

- 1. Motivation & Two Main Themes
- 2. What is an orientifold?
- 3. Worldsheet action: bosonic & super
- 4. The B-field twists the RR-field
- 5. The RR-field is self-dual: Twisted spin structure
- 6. How to sum over worldsheet spin structures
- 7. O-plane charge
- 8. A prediction
- 9. Précis

#### **Motivation**

- This talk is a progress report on work done over a period of several years with J. Distler and D. Freed
- I want to explain how an important subject in string theory-the theory of orientifolds makes numerous contact with the interests of Is Singer.
- Historically, orientifolds played an important role in the discovery of D-branes. They are also important because the evidence for the alleged ``landscape of string vacua'' (d=4, N=1, with moduli fixed) relies heavily on orientifold constructions.
- So we should put them on a solid mathematical foundation!

(even for type I the worldsheet theory has not been written)

## Theme 1

Our first theme is that finding such a foundation turns out to be a nontrivial application of many aspects of modern geometry and topology:

Index theory

Geometry of anomaly cancellation

Twisted K-theory

Differential generalized cohomology

Quadratic functors, and the theory of self-dual fields

Is Singer's work is closely related to all the above

## Theme 2

Our second theme is the remarkable interplay between the worldsheet and spacetime formulations of the theory.

Recall that a basic ingredient in string theory is the space of maps:

$$\varphi:\Sigma o X$$

Σ: 2d Riemannian surface

X: Spacetime endowed with geometrical structures: Riemannian,...

2d sigma model action:

$$\exp\left[-\int_{\Sigma} \frac{1}{2} \parallel d\varphi \parallel^2 + \cdots\right]$$

Based on this D. Friedan showed – while Is Singer's student – that:

2D Conformal Field Theories on  $\Sigma$ 



Einstein metrics on X

It's a good example of a deep relation between worldsheet and spacetime structures.

Orientifolds provide an interesting example where topological structures in the world-sheet (short-distance) theory are tightly connected with structures in the space-time (long-distance) theory.

I will emphasize just one aspect of this:

We will see that a ``<u>twisted spin structure</u>' on X is an essential ingredient both in worldsheet anomaly cancellation and in the formulation of the self-dual RR field on X.

## What is an orientifold?

Let's warm up with the idea of a string theory orbifold

$$arphi:\Sigma o Y$$

Smooth Y has finite isometry group  $\Gamma$ 

Gauge the  $\Gamma$ -symmetry:

For *orientifolds*,  $\sum$  is oriented,

In addition: 
$$1 \to \Gamma_0 \to \Gamma \overset{\omega}{\to} \mathbb{Z}_2 \to 1$$

$$\Gamma_0$$
:  $\omega(\gamma) = +1$   $\Gamma_1$ :  $\omega(\gamma) = -1$ 

On  $\tilde{\Sigma}$ :  $\Gamma_0$ : Orientation preserving  $\Gamma_1$ : Orientation reversing

More generally: Spacetime X is an ``orbifold'' (Satake, Thurston...) with double cover X<sub>w</sub>

$$\hat{\Sigma} \stackrel{\hat{arphi}}{ o} X_w \ w_1(\Sigma) \in H^1(\Sigma, \mathbb{Z}_2) \quad \hat{\pi} \downarrow \qquad \downarrow \quad w \in H^1(X, \mathbb{Z}_2) \ \hat{\Sigma} \stackrel{arphi}{ o} X$$

There is an isomorphism:

$$\varphi^*(w) \cong w_1(\Sigma)$$

 $\hat{\Sigma}$ : Orientation double cover of  $\Sigma$ 

For those – like me – who are afraid of stacks,

it is fine to think about the global quotient:

$$X_w = Y /\!\!/ \Gamma_0$$
  $X = Y /\!\!/ \Gamma$ 

Just bear in mind that cohomology in this case really means Borel equivariant cohomology

 $H^j(Y/\!\!/\Gamma) := H^j_\Gamma(Y)$ 

and we will again need to be careful about K

## Worldsheet Measure

In string theory we integrate over ``worldsheets"

For the bosonic string, space of ``worldsheets" is

$$S = \{(\Sigma, \varphi)\} = \operatorname{Moduli}(\Sigma) \times \operatorname{MAP}(\Sigma \to X)$$

$$\exp\left[-\int_{\Sigma/S} \frac{1}{2} \parallel d\varphi \parallel^2\right] \cdot \mathcal{A}_B$$

$$\mathcal{A}_B = \exp[2\pi i \int_{\Sigma/S} \varphi^*(B)]$$

B is locally a 2-form gauge potential...

# Differential Cohomology Theory

In order to describe B we need to enter the world of differential generalized cohomology theories...

If  $\mathcal{E}$  is a generalized cohomology theory, then a machine of Hopkins & Singer produces  $\check{\mathcal{E}}$ 

$$0 o \mathcal{E}^{j-1}(M,\mathbb{R}/\mathbb{Z}) o \check{\mathcal{E}}^j(M) o \Omega_\mathbb{Z}(M;\mathcal{E}(pt)\otimes\mathbb{R})^j o 0$$

etc.

# Orientation & Integration

The orientation twisting of  $\mathcal{E}(M)$  is denoted  $\tau^{\mathcal{E}}(TM)$ :

It allows us to define an "integration" in  $\mathcal{E}$ -theory:

$$\int_{M}^{\mathcal{E}} : \mathcal{E}^{\tau^{\mathcal{E}}(TM)+j}(M) \to \mathcal{E}^{j}(pt)$$

For the oriented bosonic string B is a local geometric object, e.g. in one model it is a gerbe connection, denoted  $\check{\beta} \in \mathrm{ob} \check{H}^3(X)$ 

Its gauge equivalence class is an element of differential cohomology:  $[\check{\beta}] \in \check{H}^3(X)$ 

For bosonic orientifolds:  $\check{\beta} \in \operatorname{ob}\check{H}^{w+3}(X)$ 

$$\mathcal{A}_B = \exp[2\pi i \int_{\Sigma/S}^{\dot{H}} \varphi^*(\dot{\beta})] \in \dot{H}^1(S)$$

Integration makes sense because  $\varphi^*(w) \cong w_1(\Sigma)$ 

Surprise!! For superstrings: not correct!

## Orientifold Superstring Worldsheets

Spin structure  $\alpha$  on  $\hat{\Sigma}$ 

Fermi fields 
$$\ \psi \in \Gamma(S_{lpha}^+ \otimes \hat{\pi}^* arphi^*(TX))$$
 ...

Path integral: Integrate over  $\,arphi,\psi,\hat{\Sigma}\,$ 

For dim X = 10, the integral over Fermi fields gives a <u>well-defined measure</u> on

$$S = \mathrm{SpinModuli}(\hat{\Sigma}) \times \mathrm{Map}(\Sigma \to X)$$
 times two problematic factors ...

$$\mathcal{A}_B \cdot \operatorname{Pfaff}(D_{\hat{\Sigma}}(\hat{\pi}^* \varphi^* (TX - 2)))$$

This must be <u>canonically</u> a function on S. But in truth Pfaff is the section of a line bundle:

$$L_{\psi} \rightarrow S$$

23 years ago, Is Singer asked me:`How do you sum over spin structures in the superstring path integral?"

It's a good question!!

Related: How does the *spacetime* spin structure enter the worldsheet theory?

## **Pfaffians**

Later on we'll need to be more precise

A spin structure  $\alpha$  on  $\hat{\Sigma}$  determines, locally, a pair of spin structures on  $\Sigma$  of opposite underlying orientation



Atiyah-Patodi-Singer flat index theorem gives...

$$L_{\psi} = \int_{\Sigma/S}^{\check{K}O} \check{\delta} \cdot \varphi^*(TX - 2)$$

$$\in \operatorname{ob}\check{K}O^{-2}(S) \to \operatorname{ob}\check{I}^2(S)$$

- $\dot{I}^2(S)$  Graded line-bundles with connection a flat element of differential KO.
- $\check{\delta}$ : heuristically, it measures the difference between left and right spin structures.

Since Pfaff is problematic, the B-field amplitude,  $A_B$ , must also be problematic.

What is the superstring B-field anyway!?

## How to find the B-field

- To find out where B lives let us turn to the spacetime picture.
- The RR field must be formulated in terms of differential K-theory of spacetime.
- The B-field twists that K-theory
- For orientifolds, the proper version of Ktheory is KR(X<sub>w</sub>) (Witten)

 $X_w$  is a "stack"  $\Rightarrow$  careful with  $KR(X_w)$ For  $X = Y/\!\!/\Gamma$  use Fredholm model (Atiyah, Segal, Singer)

 $\mathcal{H}$ :  $\mathbb{Z}_2$ -graded Hilbert space with stable  $\Gamma$ -action

 $\Gamma_0$ : Is linear  $\Gamma_1$ : Is anti-linear

 $\mathcal{F}$ : Skew-adjoint odd Fredholms

$$KR(X_w) = [T: Y \to \mathcal{F}]^{\Gamma}$$

Assume all goes well for  $\check{K}R(X_w)$ 

# **Twistings**

- We will consider a special class of twistings with geometrical significance.
- We will consider the degree to be a twisting, and we will twist by a ``graded gerbe."
- The twistings are objects in a groupoid. They are classified topologically by a generalized cohomology theory.
- But to keep things simple, we will systematically mod out by Bott periodicity.

# Twisting K (mod Bott)

When working with twistings of K (modulo Bott periodicity) it is useful to introduce a ring theory:  $R = ko\langle 0 \cdots 4 \rangle$ 

$$\pi_* R = \mathbb{Z}[\eta, \mu]/(\deg \geq 5)$$

Twistings of K(X) classified by  $R^{-1}(X)$ 

As a set: 
$$H^0(X, \mathbb{Z}_2) \times H^1(X, \mathbb{Z}_2) \times H^3(X, \mathbb{Z})$$

# Twistings of KR

For twistings of 
$$KR(X_w)$$
:  $R^{w-1}(X)$ 

$$H^0(X,\mathbb{Z}_2) imes H^1(X,\mathbb{Z}_2) imes H^{w+3}(X,\mathbb{Z}_2)$$

Warning! Group structure is nontrivial, e.g.:

$$R^{w-1}(pt/\!\!/\mathbb{Z}_2)\cong\mathbb{Z}_8$$

Reflecting Bott-periodicity of KR.

(Choose a generator  $\theta$  for later use.)

## The Orientifold B-field

So, the B-field is a geometric object whose gauge equivalence class (modulo Bott) is

$$[\check{\beta}] \in \check{R}^{w-1}(X)$$

Topologically:  $[\beta] = (t, a, h) \in H^0 \times H^1 \times H^{w+3}$ 

t=0,1: IIB vs. IIA.

a: Related to (-1)<sup>F</sup> & Scherk-Schwarz

h: is standard

## The RR field is self-dual

We conclude from the above that the RR *current* is

$$\check{j}_{RR}\in \check{K}R^{\check{eta}}(X_w)$$

But self-duality imposes restrictions on the B-field

We draw on the Hopkins-Singer paper which, following Witten, shows that a central ingredient in a self-dual abelian gauge theory is a *quadratic refinement* of the natural pairing of electric and magnetic currents...

# Quadratic functor hierarchy

In fact, the HS theory produces compatible quadratic functors in several dimensions with different physical interpretations:

dim=12 
$$q:\check{K}R(M) o \mathbb{Z}$$
 dim=11  $q:\check{K}R(N) o \mathbb{R}/\mathbb{Z}$  dim=10  $q:\check{K}R(X) o \check{I}^2(pt)$  (In families over T: Map to  $\check{I}^{0,1,2}(T)$ 

## Parenthetical Remark: Holography

If spacetime X is the boundary of an 11-fold N:  $\partial N = X$ 

Then we may view j on X as the boundary value of a gauge field on N.

Self-dual gauge theory on X is holographically dual to Chern-Simons gauge theory on N with action q(j).

# Defining our quadratic function

Basic idea is that we want a formula of the shape

$$q(j) = \int_{M}^{KO} \bar{j}j \in \mathbb{Z}$$

How to make sense of it?

$$j 
ightarrow ar{j} j \in KR^{ar{eta}+eta}(M_w)$$
 is ``real"

$$ar{eta}+eta$$
 induces a twisting  $\Re(eta)$  of  $KO_{\mathbb{Z}_2}$ 

$$j o ar{j}j$$
 $KR^eta(M_w) o KO^{\Re(eta)}_{\mathbb{Z}_2}(M_w)$ 

But, to integrate, we need:

$$KO_{\mathbb{Z}_2}^{\Re(eta)}(M_w) o KO_{\mathbb{Z}_2}^{ au^{KO_{\mathbb{Z}_2}}(TM_w-12)}(M_w)$$

$$KO_{\mathbb{Z}_{2}}^{\tau^{KO_{\mathbb{Z}_{2}}}(TM_{w}-12)}(M_{w}) \xrightarrow{\int^{KO_{\mathbb{Z}_{2}}}} KO_{\mathbb{Z}_{2}}^{-12}(pt)$$

$$KO_{\mathbb{Z}_{2}}^{-12}(pt) \cong \mathbb{Z} \oplus \varepsilon \mathbb{Z} \to \varepsilon \mathbb{Z}$$

## Twisted Spin Structure

The <u>twisted spin structure</u> is an isomorphism of  $KO_{72}$ -twistings

$$\kappa:\Re(\beta) 
ightarrow au^{KO_{\mathbb{Z}_2}}(TM_w-12)$$

Note: A spin structure on M allows us to integrate in KO. It is an isomorphism

$$0 \rightarrow \tau^{KO}(TM-12)$$

One corollary of the existence of a twisted spin structure is a constraint relating the topological class of the B-field (mod Bott) to the topology of X

$$[eta]=(t,a,h)\in H^0 imes H^1 imes H^{w+3}$$
  $w_1(X)=tw$   $w_2(X)=tw^2+aw$ 

(The quadratic function also allows us to define the RR charge of ``orientifold planes." I will return to this at the end.)

# Examples

#### Zero B-field

If  $[\beta]=0$  then we must have IIB theory on X which is orientable and spin.

## Op-planes

$$X = \mathbb{R}^{p+1} \times \mathbb{R}^r /\!\!/ \mathbb{Z}_2 \quad p+r = 9$$

Compute: 
$$w_1(X) = rw$$
  $w_2(X) = \frac{r(r-1)}{2}w^2$ 

$$t = r \mod 2 \qquad a = \begin{cases} 0 & r = 0, 3 \mod 4 \\ w & r = 1, 2 \mod 4 \end{cases}$$

# How to sum over worldsheet spin structures

Now let us return to our difficulty on the ws:

$$\mathcal{A}_B \cdot \operatorname{Pfaff}(D_{\hat{\Sigma}}(\hat{\pi}^* \varphi^* (TX - 2)))$$

must be canonically identified with a function.

$$\mathcal{A}_B \stackrel{?}{=} \exp[2\pi i \int_{\Sigma/S}^{\mathring{R}} \varphi^*(\mathring{\beta})]$$

NO! Integrand is not a proper density for integration in R-theory!

## The B-line

Orientations in R-theory are induced by orientations in KO, but  $\Sigma$  does not have a spin structure!

Use the class  $\delta$  constructed from the spin structure  $\alpha$  on  $\Sigma$ :

$$L_B := \int_{\Sigma/S}^{\hat{R}} \check{\delta} \cdot \varphi^*(\check{\theta}\check{\beta})$$

$$\in \operatorname{ob}\check{R}^{-2}(S) \to \operatorname{ob}\check{I}^2(S)$$

Comes with a canonical section which we define to be  $\mathcal{A}_B$ 

We are in the process of proving the following

Theorem: A twisted spin structure  $\kappa$  induces a canonical trivialization of  $L_B \otimes L_\psi$ 

#### idea of the proof...

Recall that the Pfaffian is a section of

$$L_{\psi} = \int_{\Sigma/S}^{\check{K}O} \check{\delta} \cdot \varphi^*(TX - 2) \in \text{ob}\check{I}^2(S)$$

and R is a quotient of KO...

#### Let r classify twistings of KO mod Bott:

$$\pi_*(r) = \mathbb{Z}_8[\eta]/(\eta^3, 2\eta)$$

## Homework solution (23 years late)

!! Since a twisted spin structure gives a canonical trivialization of  $L_B \otimes L_\psi$ 

 $\mathcal{A}_B \cdot \text{Pfaff}$ : Canonically a function

Therefore, the same datum that allows us to define the RR field in spacetime, also is the key ingredient that leads to anomaly cancellation on the worldsheet.

## Some key tests

 w=0: Ordinary type II string. Changing t=0 to t=1 correctly reproduces the expected change in the GSO projection due to the mod-two index of Dirac.

$$[\beta] = (t = 1, 0, 0)$$
  $\mathcal{A}_B = (-1)^{\text{mod}_2(\alpha_L)}$ 

 A change of <u>spacetime</u> spin structure changes the amplitude in the expected way.

## RR charge of O-planes

- Components of the fixed-point loci in X<sub>w</sub> are known as ``orientifold planes.''
- They carry RR charge
- Mathematically, the charge is the center of the quadratic function: q(j) = q(2μ-j)
- Once we invert 2 we can compute  $\mu$  using localization of a KO<sub>Z2</sub>-integral. Then the charge localizes to the O-planes and is:

$$\mu = \frac{1}{2} \iota_* \left( \frac{\kappa^{-1} \Xi(F)}{\psi_{1/2}(\kappa^{-1} \operatorname{Euler}(\nu))} \right)$$

 $\iota: F \hookrightarrow X_w$ :

Inclusion of a component F of the fixed point set with normal bundle v

 $\psi_{1/2}$ : Multiplicative inverse of Adams  $\psi_2$ 

 $\Xi(F)$ : KO-theoretic Wu class (related to ``Bott's cannibalistic class'')

$$\int_F^{KO} \psi_2(x) = \int_F^{KO} \Xi(F) x$$

# The physicists' formula

Taking Chern characters and appropriately normalizing the charge we get the physicist's formula for the charge in de Rham cohomology:

$$-\sqrt{\hat{A}(TX)}\operatorname{ch}(\mu) = \pm 2^{p-4}\iota_*\sqrt{\frac{L'(TF)}{L'(\nu)}}$$

$$L'(V) = \prod_{i} \frac{x_i/4}{\tanh(x_i/4)}$$

# Predicting Solitons (w=0)

| р | Magnetic                    | Electric                    |
|---|-----------------------------|-----------------------------|
| 0 | 0                           | $R^{-1}(pt) = \mathbb{Z}_2$ |
| 1 | 0                           | $R^0(pt) = \mathbb{Z}$      |
| 2 | 0                           | 0                           |
| 3 | 0                           | 0                           |
| 4 | 0                           | 0                           |
| 5 | $R^{-4}(pt) = \mathbb{Z}$   | 0                           |
| 6 | 0                           | 0                           |
| 7 | $R^{-2}(pt) = \mathbb{Z}_2$ | 0                           |
| 8 | $R^{-1}(pt) = \mathbb{Z}_2$ | 0                           |
| 9 | $R^0(pt) = \mathbb{Z}$      | 0                           |



5-brane -

# Orientifold Précis : NSNS Spacetime

- 1. X: dim=10 Riemannian orbifold with dilaton
- 2. Orientifold double cover:  $w \in H^1(X, \mathbb{Z}_2)$
- 3. B-field: Geometric twisting of  $\check{K}R(X_w)$ .

  mod Bott:  $[\check{\beta}] \in \check{R}^{w-1}(X)$
- 4. Twisted spin structure:

$$\kappa: \Re(\beta) \to \tau^{KO}(TX-2)$$

## Orientifold Précis: Consequences

- 1. Well-defined worldsheet measure.
- 2. K-theoretic definition of RR charge of O-planes
- 3. Localization formula (inverting  $(1 \varepsilon)$ )

$$\mu = \frac{1}{2} \iota_* \left( \frac{\kappa^{-1} \Xi(F)}{\psi_{1/2}(\kappa^{-1} \operatorname{Euler}(\nu))} \right)$$

- 4. Well-defined spacetime fermions, and well-defined coupling to RR field
- 5. Possibly, new solitons

## Conclusion

The main future direction is in applications

Destructive String Theory?

- Tadpole constraints (Gauss law)
- Spacetime anomaly cancellation

# Thank you Is!

And Happy Birthday!!