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1. Preamble: Topology of Four-Manifolds

Let us summarize some of the standard results on 4-manifolds. See the texbooks [3, 6, 23]

for details.

1.1 Fundamental group

First, if G is any finitely presented group then there is a compact 4-fold X with π1(X) ∼= G.

(Four is the first dimension in which this happens.) Since the word problem for groups is

undecidable this means we cannot hope to classify all compact 4-manifolds. But we can

still hope to understand simply connected 4-folds.

1.2 Intersection Form

There is another interesting topological invariant, the intersection number. Let

H̄2(X) := H2(X,Z)/Torsion. (1.1)

We will think of it as the image of H2(X,Z) in H2(X;R). This is a lattice of rank b2.

Then if X is compact and oriented we have

QX : H̄2(X)× H̄2(X) → Z (1.2)
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QX(ω1, ω2) :=

∫
X
ω1 ∧ ω2 (1.3)

For X compact and oriented this is a perfect pairing by Poincaré duality, so QX is a

unimodular integral symmetric form. If α is a cohomology class let S(α) be the Poincaré

dual cycle: ∫
X
αβ =

∫
S(α)

β (1.4)

Then QX(α, β) = S(α) · S(β) is the oriented intersection number.

1.3 Whitehead theorem

In 1949 J.H.C. Whitehead introduced the notion of CW decomposition of manifolds to

classify homotopy type. In [17] Milnor observed that an interesting consequence is that two

simply connected oriented four-manifolds X1, X2 are homotopy equivalent iff QX1
∼= QX2 .

1.4 Serre’s theorem

Thus we come to the classification of integral unimodular forms. Serre gave a nice classifi-

cation in the indefinite case.

Indefinite Definite

even mE8 ⊕ nH,m ∈ Z, n > 0 1, 2, 24, > 107, . . .

odd m⟨+1⟩ ⊕ n⟨−1⟩ too many

The even definite forms only exist in dimension 0 modulo 8. We have listed the number

of inequivalent ones for the first few cases. The unique lattice in dimension 8 is the E8 root

lattice.

H denotes the even integral form on Z⊕ Z given by

Q =

(
0 1

1 0

)
(1.5)

1.5 Freedman’s theorem: Homeomorphism type

In the 1980’s Michael Freedman achieved a breakthrough:

For all unimodular integral forms Q there is a simply connected compact orientable

topological manifold X with Q ∼= QX . Moreover,

1. If Q is even then there is a unique such X up to homeomorphism.

2. If Q is odd then there are exactly two homeomorphism types and at most one of

them can be smooth.

As an example of how breathtaking this is note that for Q = 0 this proves the (four-

dimensional) Poincaré conjecture. For Q = 1 we have X = CP 2 but there must be

another manifold, “fake CP 2” which is homeomorphic to CP 2 but does not admit a smooth

structure!
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1.6 Donaldson’s Theorems: Diffeomorphism type

Shortly after Freedman’s work (c. 1983) Donaldson announced some equally striking the-

orems.

First, if X admits a smooth structure and QX is definite, then it must be diagonal:

m⟨+1⟩ or m⟨−1⟩.
Remarkable corollaries include the fact that the manifold corresponding to 2E8 does

not admit a smooth structure. (All previous known tests - notably Rokhlin’s theorem -

admitted the possibility that it might.)

Second, Donaldson introduced his famous polynomial invariants. These are a sequence

of polynomial function on H0(X)⊕H2(X) which are invariants of the smooth structure of

X.

Donaldson’s construction used nonabelian gauge theory (for G = SU(2)) and in par-

ticular defines the polynomials using the intersection theory on the moduli space of anti-

self-dual connections on principal G bundles over X. Now, the equation

F+ = F + ∗F = 0 (1.6)

makes use of a Riemannian metric. But the dependence on the metric drops out except

for manifolds with b+2 = 1. The metric dependence in the case b+2 = 1 is completely

understood. We will come back to these important facts.

Donaldson’s invariants were used to prove some striking facts about the smooth struc-

tures of 4-manifolds.

After all this progress – Freedman and Donaldson both received the 1986 Fields medal

– it was natural to wonder if physics was playing an important role. After all, Donaldson

was using nonabelian gauge theory!

This is where Witten enters. In 1988 he gave a quantum field theoretic description of

Donaldson polynomials [25]. We will describe it in detail (in part following a particularly

beautiful approach to Witten’s paper introduced by M. Atiyah and L. Jeffrey [1]).

Witten’s interpretation was beautiful - it was the genesis of the concept of topological

twisting and more broadly of topological field theory - but it was not clear what could be

gained mathematically from an interpretation of the Donaldson polynomials in terms of

a path integral. The problem is that the path integral of a four-dimensional interacting

quantum field theory is regarded by the mathematical community as a mythological being.

However, since the theory is topological, the path integral can be recast in terms of

an effective theory of (arbitrarily) low energy fluctuations above the vacuum. This means

that with a sufficiently good understanding of the quantum vacua of the theory one can

hope to recast the Donaldson-Witten path integral in a new form which might yield new

insights.

This is precisely what happened. In the spring of 1994 Seiberg and Witten understood

the vacuum structure of N=2 SU(2) SYM on R4 [22, 21]. This was sufficient information

for Witten to give a stunning reformulation of the Donaldson polynomials [27].

The goal of this lecture is to explain Witten’s formal field theory interpretation of

Donaldson’s polynomials and then to show how Seiberg and Witten’s physical insights
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into the dynamics of N = 2 SYM lead to a compelling reformulation of the Donaldson

polynomials.

Most of the material for this lecture can be found in the very nice textbook [9].

2. Plan for the Rest of the Talk

1. Formal structure of cohomological TFT: Mathai-Quillen form of the path integral

and localization.

2. How Donaldson Theory fits into the MQ framework: Twisted N=2 SYM.

3. SW solution and structure of the vacuum: Mapping observables from UV to IR.

4. General form of the Higgs branch contribution.

5. Evaluation of the Coulomb branch: The u-plane integral.

6. Deriving the relation of Donaldson to SW invariants.

7. Simple type

8. Applications of the physical viewpoint: (Expample: Superconformal simple type and

the generalized Noether inequality.)

9. Possible future directions.

3. Part I: TFT Integrals and MQ form of the twisted N=2 theory.

3.1 A nice integral

Today we are going to talk about some fancy integrals, but let us start with a very simple

one. Let ϕ be a real number and consider a function s(ϕ) whose graph is transverse to the

ϕ axis.

FIGURE

Consider the Gaussian integral:

Z =

∫ +∞

−∞

dϕ√
2π
s′(ϕ)e−

1
2
(s(ϕ))2 (3.1)

It is easy to do the integral by change of variable, and you find:

Z =
∑

ϕi:s(ϕi)=0

s′(ϕi)

|s′(ϕi)|
(3.2)

It is easy to generalize to n-dimensions. Now s : Rn → Rn and:

Z =

∫
Rn

n∏
i=1

dϕi√
2π

det
( ∂si
∂ϕj

)
e−

1
2
(s(ϕ),s(ϕ)) =

∑
s(ϕ)=0

sign(det
∂si

∂ϕj
) (3.3)

where we use the Euclidean metric on Rn to define (s(ϕ), s(ϕ)).

Let us make a few remarks about these integrals

– 5 –



1. The answer is a sum of integers. It is a signed sum over solutions of the n real

equations in n unknowns:

s(ϕ) = 0 (3.4)

Our integral Z is counting solutions to equations with signs.

2. In fact, this integer has topological significance. It is the degree of the (proper) map

s : Rn → Rn. Another topological interpretation is that it is the oriented intersection

number of the graph of s with the graph of s = 0.

3. Finally, note that we could put in a parameter ~ and equally well say:

Z =

∫
Rn

n∏
i=1

dϕi√
2π~

det
( ∂si
∂ϕj

)
e−

1
2~ (s(ϕ),s(ϕ)) =

∑
s(ϕ)=0

sign(det
∂si

∂ϕj
) = deg(s) (3.5)

The answer is independent of ~. On the other hand, we could take ~ → 0 and clearly

the measure localizes to the zero set

Z(s) := {ϕ : s(ϕ) = 0} (3.6)

Moreover, the saddle-point approximation gives the exact answer.

How do we explain all this? Supersymmetry!

3.2 Supersymmetric Representation of the nice integral

3.2.1 Superspace

We are going to rewrite this integral in a form that makes contact with topologically twisted

path integrals.

First, if M is any manifold, there is an associated superspace M̂ given by

M̂ = ΠT ∗M (3.7)

If ϕi are local coordinates then ψi are corresponding odd fiber coordinates.

We have the key isomorphism

C∞(M̂) ∼= Ω∗(M) (3.8)

where

1. ψi ↔ dϕi

2. There is an integral grading so that “ghost number” corresponds to degree of the

differential form:

gh#(ω̂) = deg(ω) (3.9)

3. There is a degree one derivation which squares to zero:

Qω̂ ↔ dω (3.10)

– 6 –



4. There is a Berezinian on the superspace so that∫
M̂
µ̂ω̂ =

∫
M
ω (3.11)

With proper orientations

µ̂ =
n∏
i=1

dϕidψi (3.12)

Note particularly that:

Qϕi = ψi Qψi = 0 (3.13)

3.2.2 Rewriting the integral

Now we introduce anticommuting variables χa, where, for the moment, a = 1, . . . , n and

rewrite the integral as

Z = ξin
∫
R̂n

n∏
i=1

dϕidψi√
2π~

∫
Π(Rn)∗

n∏
a=1

dχae
− 1

2~ s
a(ϕ)sa(ϕ)+iχa

dsa

dϕj
ψj

(3.14)

We make one further maneuver of introducing a simple Gaussian integral over some com-

muting coordinates Ha to make some things manifest:

Z = ξ

∫
R̂n

µ̂

∫
(̂Rn)∗

n∏
a=1

dHadχa
(2πi)

e
− ~

2
HaHa−iHasa+iχa

dsa

dϕj
ψj

(3.15)

where ξ = ±1 depends on how we orient the dψdχ.

Now we have it where we want it:

1. If we extend Q so that

Qχa = Ha QHa = 0 (3.16)

then we can write the “action” S (so the path integral contains eS) as:

S = Q(Ψ) (3.17)

Ψ = −~
2
χaHa − iχas

a (3.18)

2. Now note that since Q ↔ d if we change the action by Q(∆Ψ) so that the integral

over the boundary (in this case, the integral at infinity) vanishes, then the integral is

unchanged. That is

Small Q-exact perturbations of the action do not change the result of the integral.

3. In cohomological field theory, (χa,Ha) is called the anti-ghost multiplet. Note that

χa has ghost number −1, so Ha has ghost number 0.

4. Note that evaluation of the Gaussian integral on Ha gives Ha = −isa/~ so that

ψ = χ = 0 and sa = 0 are the Q-fixed points in fieldspace. It turns out to be very

useful to identify the Q-fixed points with Z(s). Intuitively, since
∫
dθ = 0 for a

Grassmann integral it is natural for a supersymmetric integral to localize to Q-fixed

points.
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3.2.3 Generalization to “nonzero index”

We can generalize a little by letting s : Rn → V where V ∼= Rm has dimension m not

necessarily equal to n. Now we let the anti-ghost multiplet (χa,Ha) be indexed by a =

1, . . . ,m.

Define:

Êuls :=

∫
V̂

∏ dχadHa

(2πi)
eQ(Ψ) (3.19)

This is BRST closed and hence represents a closed differential form Euls via the correspon-

dence (3.8). Importantly, it has ghost number m.

Now, if Ô(ϕ, ψ) is another BRST-closed observable, then we can consider the more

general integral ∫
R̂n

µ̂ Ô Êuls (3.20)

Note that

1. This vanishes unless the ghost number of Ô is n−m.

2. The integral does not depend on the precise BRST representative of Ô.

Moreover, Ô corresponds to a closed form O on Rn and we can generalize what we

said above by saying that ∫
R̂n

µ̂ÔÊuls =

∫
Rn

O ∧ Euls =

∫
Z(s)

O (3.21)

localizes on the zero set Z(s).

3.3 Thom Isomorphism Theorem

We are going to generalize our integral further. Let π : E → M be an oriented vector

bundle over an n-dimensional manifold, where E has rankm. Then the Thom isomorphism

theorem says there is an isomorphism

H i(M) ∼= H i+m
v−cpt(E) (3.22)

ω → π∗(ω)Φ(E) (3.23)

Moreover if s : M → E is a section then s∗Φ(E) is the Euler class of E. If M is compact

the Euler class is Poincaré dual to the zero set of s:∫
M
ωs∗(Φ(E)) =

∫
Z(s)

ω (3.24)

This motivates us to generalize Êuls above to the case where we replace Rn × V by

an oriented vector bundle E → M . To do this we must give E a connection ∇. We will

denote the local one-form by Θab
j . To covariantize the action we must add a third term to

Ψ:

Ψ = −~
2
χaHa − iχas

a +
~
2
χaΘ

ab
i ψ

iχb (3.25)
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Working out QΨ the third term covariantizes the derivative of s, and integrating out the

auxiliary fields Ha we find

S = − 1

2~
sasa + iχa(∇js)

aψj +
~
4
χaχbF

ab
ij ψ

iψj (3.26)

3.4 The localization formula

Now, the general localization formula is the following:

Define

Êuls(E,∇) :=

∫ m∏
a=1

dχae
S (3.27)

where S is given by (3.26).

The connection ∇ on E defines a linear operator:

∇s : TpM → Ep

Therefore, we can form the bundle Cok∇s given by the cokernel of this operator:

0 → Im∇s→ E → Cok∇s→ 0. (3.28)

This bundle will be oriented and we claim that∫
Ê
µ̂eSÔ =

∫
M̂
µ̂Êuls(E,∇)Ô =

∫
Z(s)

O ∧ Eul(Cok∇s) (3.29)

where Ê is the total superspace corresponding to the bundle E.

1. The proof is straightforward.

2. It is possible to view Êuls(E,∇) as the pullback by s of a representative of a Thom

class Φ̂(E). This particular representative of the Thom class is due to Mathai and

Quillen. Note that it has rapid decrease along the fibers rather than compact support.

For a full explanation see [2].

3.4.1 Equivariance

For applications to gauge theories we need one more formal development. Suppose that M

is a G-space for some Lie group G and that E → M is a G-equivariant vector bundle with

G-equivariant connection and covariant section s, so that G acts on the zero-set Z(s).

Then, one needs to introduce another supersymmetric multiplet, and another term in

Ψ and the localization formula becomes instead:∫
Ê′
µ̂eSÔ =

∫
M
ι∗(O) ∧ Eul(Cok(O)/G) (3.30)

for gauge invariant BRST closed Ô. Here O = ∇s ⊕ · · · where the extra term has to do

with handling equivariance, and

M := Z(s)/G (3.31)

is the moduli space of solutions to the equation s(ϕ) = 0.

We will skip the detailed discussion of the equivariant generalization. For details see

[2] for an extended and leisurely discussion and [18] for a lightning summary.
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3.5 The Fields, Equations, Symmetries Paradigm

Now, the point of all the above formal development is this:

All topologically twisted quantum field theories fit in the above paradigm.

Quite generally, to specify a topological field theory in what we will call the “Mathai-

Quillen” form one needs to specify

1. Fields: These are represented by the ϕi. These might be maps of a surface into a

target space, or connections on a principal bundle.

2. Equations: We are interested in some equations on the fields s(ϕi). They are generally

interesting partial differential equations. These might be the equations determining

whether a map is a pseudoholomorphic map, or whether a connection is a Yang-Mills

instanton.

3. Symmetries: Typically the equations have gauge symmetry.

The main statement, as above, is that the path integral localizes to the moduli space

M := {ϕ : s(ϕ) = 0}/G (3.32)

and, if we include operator insertions, the path integral computes integrals of cohomology

classes over this moduli space.

The linear operator ∇s we encountered above will be a Fredholm operator, typically

associated with an elliptic complex related to the equation. When its index is nonzero then

we have an analog of the situation n−m ̸= 0 and we will need to insert operators with the

appropriate ghost number in order to get a nonzero path integral.

The basic paradigm here is due to Witten [Cite:ICTP Lectures]. The reference [2]

works out in detail the MQ formalism for many of the popular cohomological topological

field theories.

4. Twisted N=2 SYM in Mathai-Quillen Form

4.1 Fields, Equations, Symmetries

The basic data:

1. A closed, oriented, Riemannian 4-manifold (X, gµν).

2. A principal bundle P → X for a compact Lie group G with Lie algebra g.

Our fields ϕi will be A ∈ A := Conn(P ).

Our bundle of equations will be

E = A× Ω2,+(X, adP ) (4.1)

and our section will be

s(A) := F+ := F + ∗F (4.2)
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This is equivariant for the group of symmetries:

G = Aut(P ) ∼ Map(X,G) (4.3)

We can now run the MQ machine. The path integral localizes to the moduli space of

instantons M(P, g).

4.2 Relation to twisted N = 2 SYM

4.2.1 The standard N = 2 VM

Now we consider N=2 SYM in 4 dimensions. In Euclidean signature it has “Lorentz”

symmetry su(2)− ⊕ su(2)+, “R-symmetry” su(2)R ⊕ u(1)R, and gauge symmetry g.

The standard N=2 VM is recorded in the following table:

su(2)− ⊕ su(2)+ ⊕ su(2)R u(1)R g

Aµ (2, 2, 1) 0 g

ψ̄Aα̇ (1, 2, 2) −1 g

ψAα (2, 1, 2) 1 g

ϕ (1, 1, 1) 2 g⊗ C
ϕ̄ (1, 1, 1) −2 g⊗ C
D (1, 1, 3) 0 g

Q̄Aα̇ (1, 2, 2) 1 1

QAα (2, 1, 2) −1 1

1. I have used mathematicians’ notation for representations of su(2), denoting them by

their dimension.

2. The u(1)R quantum number will correspond to “ghost number,” which in turn will

correspond to differential form degree on the moduli space of instantons.

4.2.2 Topological twisting

Now one of the key innovations of Witten’s 1988 paper was the concept of topological

twisting.

One way to say it is that we change the coupling to gravity by redefining the Lorentz

group so that

su(2)′+ = Diag ⊂ su(2)+ ⊕ su(2)R (4.4)

This has the practical consequence that we read off the geometrical interpretation of the

fields by taking the tensor product of the appropriate representations in the above table.

A more conceptual way to say this is that we gauge the SU(2)R-symmetry and choose a

connection on that bundle to be identically equal to the self-dual part of the spin connection.

When that is done there are remarkable cancelations in the path integral accounting for

topological invariance.

The key motivation for this topological twisting is that we want a supersymmetry

operator which can function as a BRST operator. That means:
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1. It must square to zero.

2. It must be a scalar, and so it can be defined on arbitrary Riemannian 4-folds.

This motivates the twisting defined above, and we take

Q = δα̇AQ̄
A
α̇ . (4.5)

Now, given the topological twisting we can recognize the fields in the MQ description:

1. Aµ remains a connection. But from the field ψAα we get an odd 1-form ψµ, and

QAµ = ψµ. These correspond to the MQ field multiplets (ϕi, ψi).

2. From ψ̄Aα̇ we get an odd self-dual form χµν . This is the same χa we had above. From

Dµν we get an even self-dual form of ghost number 0. This is - essentially - the field

Ha we had above.

3. There are also extra fields. From the field ψ̄Aα̇ we also get an odd zeroform η of ghost

number −1. Moreover, we have ϕ̄ and ϕ. These have to do with taking into account

the equivariance under the group of gauge transformations.

Now having transcribed the fields in this way we find that with s(A) = F+

SN=2SYM = Q(Ψ) ! (4.6)

1. Note in particular that changes in the metric gµν lead to Q-exact perturbations of

the action. Thus, the energy-momentum tensor Tµν = {Q,Λµν}. This is the basis

for believing the theory should be topological.

2. As we have seen, the locus Z(s) can be identified with the Q-fixed points when we

study the locus Q(odd fields) = 0 and then put the odd variables to zero. Now,

Qχµν = i(F+
µν −D+

µν) (4.7)

Solving for the auxiliary field gives D+
µν = 0 and hence the Q-fixed points are the

anti-self-dual connections.

4.3 Observables

It will turn out that we are in the situation where ∇s has a nonzero index. In this sense the

u(1)R symmetry is anomalous quantum-mechanically. Its anomaly is the virtual dimension

of moduli space

vdimM(P, g) = 4hk − dimG(b+2 − b1 + 1) (4.8)

where h is the dual Coxeter number of g. In particular, for SU(2),

vdimM(P, g) = 8k − 3(b+2 − b1 + 1) (4.9)

To get an interesting path integral we will need to insert BRST-invariant observables.

A crucial point is that

Qϕ = 0. (4.10)
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Now, ϕ is adjoint-valued, so not gauge invariant, but any invariant polynomial of ϕ provides

a BRST-invariant and gauge invariant observable. We will call these 0-observables, because

they are local operators defined at points.

For example, for SU(N) we have independent observables:

O(0)
s (℘) := Trϕs(℘) s = 2, . . . , N (4.11)

We will mostly be concentrating on the rank one group SU(2) in what follows so we just

have

O(0)(℘) ∼ Trϕ2(℘) (4.12)

Remarks

1. Note that O(0)(℘) has ghost number 4.

2. At this point we adopt the following policy. To keep equations readable we will

suppress real coefficients in some equations. They are typically (fractional) powers

of 2 and π. When we do this we use the symbol ∼. When I write “=” I really mean

“equals.” The full expressions with correct coefficients can be found in [19].

Now there is a hierarchy of nonlocal observables. These can be canonically constructed

by noting that under topological twisting Qαα̇ → Kµ with

{Q,Kµ} = ∂µ (4.13)

Therefore if we define O(1) := KO(0) we get a 1-form and for a 1-chain γ

Q

∫
γ
O(1) = O(0)|∂γ (4.14)

This implies:

1. A change of location of the point ℘ in O(0) is Q-exact, so we henceforth drop this

from the notation and just write O for the 0-observable.

2. If γ is a closed cycle then O(γ) :=
∫
γ O

(1) is BRST closed.

Similarly, O(j) := KjO(0) define j-forms and if Σj is a closed j-cycle then

O(Σj) :=

∫
Σj

O(j) (4.15)

is a BRST invariant observable which only depends on the homology class of Σj . We call

these the “j-observables.”

Of particular importance in the rank one topologically twisted SYM are the two-

observables, which work out to be

O(S) ∼
∫
S
Tr(ϕF + ψ ∧ ψ) (4.16)
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4.4 The Donaldson Polynomials

Donaldson constructed a linear map

Hj(X) → Hd−j(M) (4.17)

from the homology of X to the cohomology of M.

Technically, we consider the principal G bundle P × A/G → (P × A)/(G × G). This

must have a classifying map

f : (P ×A)/(G× G) → BG (4.18)

If we choose any ϖ ∈ Hd(BG) then

ωD(Σj) :=

∫
Σj

f∗(ϖ) ∈ Hd−j(A/G) (4.19)

is a cohomology class which can be restricted to M ⊂ A/G, and it only depends on the

homology class of Σj .

For SU(2) we choose ϖ to be a generator of H4(BSU(2);Z) ∼= Z and thereby define

forms:

℘→ ωD(℘) ∈ H4(M)

S → ωD(S) ∈ H2(M)

Now Donaldson defines his polynomials on H0(X)⊕H2(X) by giving the value on the

monomial ℘ℓSr as

PD(℘
ℓSr) :=

∫
M
ωD(℘)

ℓωD(S)
r (4.20)

That is, the coefficients are given by intersection numbers on moduli space.

An important point is that PD(℘
ℓSr)

1. Are independent of the metric, except for X such that b+2 (X) = 1.

2. Therefore define invariants of the smooth structure of X.

Now, the main claim in Witten’s 1988 paper is that the 0- and 2- observables precisely

correspond to Donaldson’s forms ωD(℘) and ωD(S), and hence the generating function of

Donaldson polynomials is the twisted SYM path integral with operator insertion:

ZξDW (p, S) :=
⟨
epO+qO(S)

⟩
Twisted N=2 SYM

=
1

2

∑
ℓ,r≥0

(12p)
ℓqr

ℓ!r!
PD(℘

ℓSr) (4.21)

1. Here we have taken the gauge group to be SU(2), but since the fields are in the

adjoint representation we can take a “twisted SU(2) bundle,” that is, an SO(3)

bundle which does not lift to an SU(2) bundle. A principal SO(3) bundle over X

has two characteristic classes, ξ = w2(P ) ∈ H2(X;Z2), which we will refer to as

the ’t Hooft flux, and the instanton number k ∈ H4(X;Z) ∼= Z. In the generating

function we sum over the instanton number, as appropriate for a path integral. We

will refer to ZξDW (p, S) as the Donaldson-Witten partition function. (In a physical

SO(3) gauge theory, on a compact manifold X, it would also be natural to sum over

ξ ∈ H2(X;Z2).)
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2. Of course, whenX is not simply connected we can extend this to include 1-observables.

3. The overall factor of 1
2 is due to the fact that physicists divide by the order of the

center of SU(2), which does not act effectively on the fields. The factor of one half

in (12p)
ℓ is a matter of the normalization of O, and we have chosen one to make the

physical expressions simpler. Henceforth we absorb q into S.

4. One can give a precise argument relating O and O(S) to ωD(℘) and ωD(S) following

a discussion of Baulieu and Singer. It uses a model for the G-equivariant cohomology

of A and a universal connection. See [2], §8.8 for details.

4.5 Including Hypermultiplets

Now, in N=2 SYM theory it is possible to include another kind of field multiplet, known

as a hypermultiplet.

This is defined by choosing a quaternionic representationW of G. Choosing a complex

structure we may write

W = R⊕R∗ (4.22)

where R is a complex representation of G.

In a HM the SU(2)R symmetry acts as the unit quaternions, commuting with the

G action. There is a pair of scalar fields (q, q̃) transforming in the R ⊕ R∗ of G so that

M = (q, q̃∗) is a doublet of SU(2)R. Therefore, when topologically twisted, the scalar fields

become a pair of spinors:

M ∈ Γ(S+ ⊗R) M̄ ∈ Γ(S+ ⊗R∗) (4.23)

where R → X is now a vector bundle associated to P → X by the representation R.

This raises an important issue: It might well happen that X is not spin, w2(X) ̸= 0.

In order for the twisted theory to make sense we must take w2(R) = w2(X) which might

require us to choose a certain ’t Hooft flux ξ for P .

In the case where P is a U(1) bundle - i.e. in abelian gauge theory we must choose a

Spin-c structure.

The way the physicists say this is that we choose a line bundle L2 which only has a

square-root locally, but L does not exist globally. We require that the first Chern class

satisfy

w2(X) = c1(L
2)mod2 (4.24)

and then take M ∈ Γ(S+ ⊗L). Neither S+ nor L exist globally because of −1-signs in the

cocycle relation for the transition functions, but the product does exist as an honest vector

bundle.

In any case, when including charged hypermultiplets in an abelian gauge theory we need

to introduce a spin-c structure on X. This will be important later. We will identify a spin-c

structure with a class in rational cohomology:

λ ∈ Γw :=
1

2
w̄2(X) + H̄2(X) (4.25)
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where w̄2(X) is an integral lift of w2(X).

A few closing remarks on this section:

1. The D-term in the presence of the hypermultiplet turns out to be the quaternionic

moment map µ(M̄M)+ for the action of G on W . Recall now that δχ = i(F+−D+).

Together with the variation of fermions in the HM, the Q-fixed point equations work

out to be

F+ = µ(M̄M)+

γ ·DM = 0
(4.26)

These are known as the generalized monopole equations. For the U(1) case, they are

the famous Seiberg-Witten equations associated to a spin-c structure.

2. At least at a formal level the Donaldson polynomials can be generalized to intersection

theory on the moduli spaces of the generalized monopole equations, and can be further

generalized to arbitrary compact Lie groups. (The mathematical difficulties with this

generalization can be severe: The moduli spaces can be more singular, and can be

noncompact. Even for SU(N) with no hypermultiplets one does not have an analog

of the “generic metrics theorem” of Freed-Uhlenbeck. Nevertheless, in [8] Kronheimer

gave a definition of the SU(N) invariants for all N .)

3. At least at the formal level we fully expect Witten’s basic identity (4.21) to hold. Of

course, there will be many more BRST invariant observables in this general case and

Witten’s identity generalizes in an obvious way.

4.6 So, what good is it?

Witten’s 1988 paper introduced the idea of a topological field theory and in particular the

idea of a topological twisting. This led to a beautiful quantum-field-theory interpretation

of Donaldson’s polynomials.

With hindsight the interpretation naturally suggests the Seiberg-Witten equations as

a natural outcome of the QFT approach, simply because it is natural to couple the VM to

HM’s. More generally, it suggests generalizations of Donaldson’s polynomials to the case

of the generalized monopole equations. But that is not how history played out.

In the years following 1988 people asked: “But does the interpretation actually lead to

an effective way of evaluating the Donaldson polynomials?” This was not at all clear and

several naysayers took a negative attitude, until the fall of 1994....

5. Mapping the UV theory to the IR theory

5.1 Motivation for studying vacuum structure

For topological invariant correlation functions the partition function ZξDW (p, S) - which is

defined by the UV path integral - should be computable in terms of a low energy effective

action:

ZξDW (p, S) =
⟨
epO(℘)+O(S)

⟩
UV

=
⟨
epOIR(℘)+OIR(S)+···

⟩
IR

(5.1)
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The reason is that we can scale up the metric: We replace:

gµν → tgµν (5.2)

and we take the limit t→ +∞.

On the one hand, changing t is a Q-exact change in the path integral: It cannot change

the integral.

On the other hand, from the physical point of view, we are stretching lengths to

infinity, and correspondingly scaling energies to zero. That is, we are studying dynamics

infinitesimally above the vacuum. Therefore, it must be possible to evaluate the partition

function in the low energy effective theory. (By definition of a LEET!!)

Our goal is going to be to make (5.1) as explicit as possible.

Note:

1. We will find that N=2 SYM has many quantum vacua. Because X is compact we

must integrate over all the vacua on the RHS. They mix under tunneling and it is

impossible to separate them.

2. We will also need to map the operators. Under the RG O(℘) → OIR(℘) and O(S) →
OIR(S). The + · · · on the RHS indicates that there will be a subtlety in this mapping

related to “contact terms.”

Therefore, we need to understand the vacuum structure of the theory, first on R4.

5.2 Spontaneous symmetry breaking

Let us focus on the G = SU(2) N = 2 SYM with no matter hypermultiplets.

When we work on R4 we specify a vacuum by the behavior of the fields at infinity.

There will be no tunneling between vacua because of the infinite volume of R3.

In the classical theory the vacuum energy is V = Tr([ϕ∗, ϕ])2. It is minimized by normal

matrices and the classical vacua are parametrized by the gauge invariant parameter

v = Trϕ2 (5.3)

v can take any value in the complex plane, and conversely, a choice of v uniquely determines

a classical vacuum of the theory on R4. At every point on the v-plane the gauge group is

spontaneously broken:

SU(2) → U(1) (5.4)

except at v = 0. So, except at v = 0 the low energy theory is just U(1) N=2 Maxwell

theory.

FIGURE: COMPLEX v-PLANE. POINT AT ORIGIN HAS ENHANCED GAUGE

SYMMETRY.

In their breakthrough work in the spring of 1994 Seiberg and Witten showed that in

the quantum theory we can still define:

u := ⟨O⟩ ∼ ⟨Trϕ2⟩ (5.5)
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and that the set of vacua is still the entire complex u-plane, with u uniquely labeling a

quantum vacuum but now, for every point on the u plane the gauge group is spontaneously

broken SU(2) → U(1).

FIGURE: COMPLEX u-PLANE. TWO SINGULAR POINTS.

However, they also discovered a very important fact that at u = ±Λ2, where Λ is the

dynamically generated scale in the theory, the IR description of the theory must change.

We will explain how it changes below. This in general will add new quantum vacua.

5.3 Seiberg and Witten’s Effective action on the Coulomb branch

In this section we stay away from the special points u = ±Λ2.

Seiberg and Witten also gave a description of the low energy effective action as a

function of u.

In general, an N = 2 U(1)-gauge theory has an action which is determined by a single

holomorphic function. The vm has complex scalar fields a, ā, and a U(1) gauge field Aµ.

The Lagrangian is:

LIR,vm ∼ i(τ̄F+F+ + τF−F−)

+ Imτda ∗ dā+ ImτD ∗D
+ τψ ∗ dη + τ̄ ηd ∗ ψ + τψdχ− τ̄χ(dψ)

+ i
dτ̄

dā
ηχ(D + F+) + · · ·

(5.6)

1. Here we have given it in the topologically twisted form we need and the + · · · contain
other complicated interaction terms we will not need (but they would be relevant on

non-simply connected manifolds).

2. As far as the constraint ofN = 2 supersymmetry is concerned τ(a) can be an arbitrary

holomorphic function of a. To give τ(a) is to specify the Lagrangian. Therefore, to

specify the low energy theory we we need to:

a.) Compute τ(a)

b.) Explain how τ(a) is related to u.

Seiberg-Witten’s solution to this problem is the following: (We will not try to justify

the solution - for that see Prof. Nekrasov’s lecture. We merely state the result.)

1. Consider the family of elliptic curves:

Eu : y2 = (x− u)(x− Λ2)(x+ Λ2) (5.7)

♣Here this is a

slight lie, since

Moore and Witten

used the isogenous

curve with modular

group Γ0(4) rather

than the modular

curve for Γ(2). But

then the

singularities of the

family are not

manifest. ♣

2. For reasons which will be clear in a second we equip these curves with a meromorphic

one-form

λSW :=
dx

y
(x− u) (5.8)
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3. Next we choose a Lagrangian homology basis A,B of H1(Eu) and define

a =

∮
A
λSW . (5.9)

4. Then τ is the period of Eu with respect to this homology basis - this tells us the

function τ(a), and we have -at least implicitly - explained how the (vev of) a is

related to the vacuum u. The relation is given by (5.9). Note that, as is standard in

discussions of LEETs, we are using the same notation, a, for a field, such as a(xµ)

on R4 and its vacuum expectation value on R4.

5. Of course, we have made an arbitrary choice of homology basis, but the effective

theory does not depend on this choice because a change of Lagrangian homology basis

corresponds to an electromagnetic duality transformation on the abelian theory. In

certain regions of the u-plane there is a preferred choice: This is the choice that gives

large Imτ , which corresponds to the weak coupling description.

This solution of the vacuum structure leads to a very notable phenomenon: The local

system H1(Eu;Z) has monodromy around the discriminant locus u = ±Λ2 where the

fibration E → C becomes singular.

FIGURE: SHOW TORI OVER u-PLANE DEGENERATING AT 2 POINTS.

The natural homology basis at large |u| (which corresponds to the classical description

of the spontaneously broken theory) has the property that the dual period

ad :=

∮
B
λSW (5.10)

goes to zero for u→ Λ2. Similarly, a+ ad → 0 at −Λ2.

In general the vacua u = Λ2 and u = −Λ2 are related by a symmetry so for brevity we

will only describe what happens at u = Λ2.

5.4 BPS states

There are actually two things we expect to be able to solve for exactly in N = 2 field

theories. The first is the low energy effective action. This was completely solved for

the SU(2) theory (including couplings to matter hypermultiplets) by Seiberg and Witten

[22, 21], and has been generalized to a large number of theories by many other physicists.

It is still not known how to write the SW family of curves and the SW differential for an

arbitrary N=2 field theory.

The second thing we expect to solve for is the “BPS spectrum.” These are the lightest

particles in a fixed charge sector (of the low energy abelian gauge theory). Again, SW

found the BPS spectrum for the pure SU(2) theory and there has been much progress

in the meantime in understanding that spectrum for many other theories, but again the

general solution has not been achieved. This fascinating topic requires a course all by

itself...

The important thing for our story today is that in the pure SU(2) theory we know the

BPS spectrum exactly. The particles are all heavy - and need not be included in the LEET
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- with the crucial exception that at u = ±Λ2 precisely one BPS multiplet of particles

becomes massless. That means that the low energy effective field theory used above is

invalid at u = ±Λ2. Indeed the Lagrangian becomes singular at this point.

5.5 The low energy theory near u = Λ2

Although the description (5.6) breaks down at u = Λ2 it is clear how to correct the low

energy description near each point. The light BPS particle turns out to correspond to a

hypermultiplet field. At u = Λ2, if one makes an electromagnetic duality transformation

to the frame in which the vectormultiplet is (ad, ād, Aµ,d, . . . ) then the monopole field M

has charge 1, i.e. the representation R is the fundamental representation of U(1).

One simply adds (5.6) (in the appropriate duality frame) to the standard Lagrangian

for hypermultiplets LHM (which can be looked up in textbooks on supersymmetry. See

e.g. [9].)

Now, the theory

LIR,V M (ad, . . . ) + LHM , (5.11)

when topologically twisted, is again in standard MQ form, but this time the Q-fixed point

equations become the Seiberg-Witten equations

F (Ad)
+ = (M̄M)+

γ ·DM = 0
(5.12)

So, there is a new branch of quantum vacua, which we will call the Higgs branch.

We must stress that the gauge field used in (5.12) is dual to the one used on the

Coulomb branch.

Therefore, the IR evaluation of ZξDW (p, S) involves a sum of two terms:

ZξDW (p, S) = ZIR,Coulomb + ZIR,Higgs (5.13)

Of course, the term ZIR,Higgs is itself a sum of two path integrals, one for the contri-

bution at u = Λ2 and one for the contribution at u = −Λ2.

5.6 Mapping operators from UV to IR

Now we must understand how to express the operators O and O(S) in the low energy

effective theory.

The secret is to understand how the 0-operator maps under the RG and then to realize

that the K operator of (4.13) is RG invariant: The supersymmetry operators do not evolve

with scale.

5.6.1 Mapping operators on the Coulomb branch

The operator O is the same as u, by definition. This is true both at low and high energy.

The expression for u in terms of fields will be very different in the UV and IR theories.
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In any case, in the IR theory we obtain O(1) by acting with K on u using the fields

and supersymmetry transformation laws in the low energy effective abelian theory. Then

using standard supersymmetry transformations one finds:

Ka ∼ ψ

Kψ ∼ (F− +D)
(5.14)

and so forth. (Recall that D is a self-dual 2-form.)

Thus in the low energy theory O(1) = Ku ∼ ∂u
∂aψ, and acting with K again we get

OIR,c = u

OIR,c(S) ∼
∫
S

∂u

∂a
(F− +D) +

∂2u

∂a2
ψ2

(5.15)

5.6.2 Mapping operators on the Higgs branch

Similarly, on the Higgs branch there is only one 0-operator with the right ghost charge,

and it is ad. The operator O = u is a known function of ad, expressed in terms of modular

functions. Therefore, by exactly the same strategy as we used on the Coulomb branch, we

find the low energy operators

OIR,h = u

OIR,h(S) ∼
∫
S

du

dad
F (Ad) +

d2u

da2d
ψ2

(5.16)

where Ad is the U(1) gauge field in the duality frame in which the monopole is purely

electrically charged.

5.6.3 Contact terms

In evaluating correlation functions of the operators O(S) in the low energy effective theory

there is an important subtlety. When S has self-intersections there will be singularities

even in the topological field theory which must be accounted for. In the IR theory one

must insert a local operator at the points of self-intersection of S.

FIGURE: TWO INTERSECTING SURFACES

If one works with off-shell susy this must be a Q-closed operator associated with a

point, and hence is just a holomorphic function of u. Thus we have:

⟨epO+O(S)⟩UV = ⟨epOIR,c+OIR,c(S)+S
2Tc(u)⟩Coulomb + ⟨epOIR,h+OIR,h(S)+S

2Th(u)⟩Higgs (5.17)

The functions Tc(u) and Th(u) can be determined by self-consistency arguments, as

was done in [19]. A systematic theory of these contact terms was developed by Losev-

Nekrasov-Shatashvili [10]. See also [11] for a simple derivation of the result:

Tc(u) ∼
∂2F
∂τ20

τ0 ∼ log Λ. (5.18)
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For pure SU(2) theory this is a certain weight zero almost modular form under the

duality group Γ0(4):

Tc(u) = − 1

24
(

(
du

da

)2

E2 − 8u) (5.19)

We also denote T̂c where we replace E2 by the standard modular (but nonholomorphic)

object Ê2.

5.7 Gravitational Couplings

Seiberg and Witten determined their effective action on R4. When coupling to a gravita-

tional field there are exactly three new terms which must be taken into account.

5.7.1 Gravitational Couplings on the Coulomb Branch

Let us first discuss the couplings in the effective action on the Coulomb branch.

Because of topological invariance we can only have coupling to the metric via:

∆grvS =

∫
X
e(u)TrR ∧R∗ + p(u)TrR ∧R+

i

4

∫
X
F ∧ w2(X) (5.20)

where F is the fieldstrength of the low energy U(1) abelian gauge theory.

The first two terms exponentiate to functions in the integral over the u-plane:

E(u)χP (u)σ (5.21)

Now, one can derive from consistency of the integrand on the u-plane (behavior under

electromagnetic duality together with asymptotic behavior at weak coupling) that

E(u) = α

(
du

da

)1/2

(5.22)

P (u) = β∆1/8 (5.23)

1. Here ∆ is the discriminant of the curve.

2. We have written E and P in a form which generalizes when we couple the SU(2) vm

to hypermultiplets (that will be important when we come to geography, later.) In

the pure SU(2) theory ∆ = u2 − Λ2.

3. Here α, β are numerical constants. Ultimately they will be the only unknowns in the

full computation, and will be “fit to the experimental data.” The can be provided by

a. Explicit computations of the Donaldson polynomials in two special cases.

b. The wall-crossing-formula.

c. The blowup formula.

We will use the fit to the wall-crossing-formula.
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The third term is a phase which Witten deduced from a careful treatment of the

fermionic measure [28]. To state this phase properly recall that in the UV we have an

SU(2) bundle with ’t Hooft flux ξ ∈ H2(X,Z/2Z). We choose an integral lift 2λ0 = w̄2(E)

of ξ. Then the line bundles which arise in the low energy abelian gauge theory have “first

Chern class” in the torsor

λ ∈ Γξ := λ0 + H̄2(X) (5.24)

One way to think of this is that the spontaneous symmetry breaking reduces the SU(2)

structure group so that the associated rank 2 bundle E is decomposed as a sum of line

bundles L ⊕ L−1. However, when there is nonzero ’t Hooft flux E does not exist, but its

symmetric square does

Sym2(L⊕ L−1) = L2 ⊕O ⊕ L−2 (5.25)

and we are writing 2λ = c1(L
2).

In any case, in evaluating ZCoulomb we need to sum over such line bundles, and the

proper version of the phase from the third term in ∆grvS is:

e2πiλ
2
0(−1)(λ−λ0)·w2(X) (5.26)

5.7.2 Gravitational Couplings on the Higgs Branch

There is a similar story for the gravitational couplings on the Higgs branch. There will be

unknown functions:

∆grvSHiggs =

∫
X
eh(u)TrR ∧R∗ + ph(u)TrR ∧R+ c(u)F 2 +

i

4
Fw2(E) (5.27)

Where F is now the fieldstrength of the dual photon. Indeed, this term is deduced from

electromagnetic duality. These exponential to

e2πi(λ
2
0+λ·λ0)C(u)λ

2
Ph(u)

σEh(u)
χ (5.28)

where now λ is a spin-c structure and 2λ0 is the integral lift of w2(E) we used before.

A key point is that the first three functions eh, ph and c are undetermined and cannot

easily be found from first principles.

However, the functions C,P,E are universal - in the sense that they are independent of

the 4-fold X - and this, together with the wall-crossing phenomenon of the u-plane integral

will allow us to determine them.

6. General Form of the Higgs Branch Contribution

Let us sketch now how to evaluate ZIR,Higgs in terms of the unknown functions Th, C, P,E.

As we said, ZIR,Higgs is a sum of two terms, related by a symmetry, at u = Λ2 and

u = −Λ2.

We focus on u = Λ2. This term can be written as:

ZIR,Higgs,Λ2 =
∑
λ∈Γw

⟨
e
pu+ i

4π

∫
S

du
dad

F (Ad)+S
2Th(u)

⟩
u=Λ2,λ

(6.1)
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where we sum over the first Chern class λ of spin-c structures as in (4.25).

Now we evaluate the path integral in a fixed ”flux sector” λ. The low energy effec-

tive action coupled to the light ”monopole hypermultiplets” is in standard MQ form for

localizing on the SW equations. Therefore the path integral in a fixed flux sector is:∫
M(λ)

e2πi(λ
2
0+λ·λ0)e

pu+i du
dad

S·λ+S2Th(u)C(u)λ
2
P (u)σE(u)χ. (6.2)

Here M(λ) is the moduli space of solutions to the Seiberg-Witten equations based on

spin-c structure λ. It is known to be smooth, compact, orientable and of dimension

vdimM(λ) =
(2λ)2 − (2χ+ 3σ)

4
:= 2n(λ) n(λ) ∈ Z (6.3)

In SW theory it is embedded in an infinite-dimensional manifold A/G × Γ(S+ ⊗ L) of

homotopy type CP∞ and so inherits a class of degree two. All these assertions are proved

in the textbooks [6, 23, 20].

In the topological field theory that class is - up to normalization, and again invoking

the correspondence (3.8) - the field ad of ghost number 2. The way we should interpret the

integral (6.2) is that we expand

u = Λ2 − 2iΛad +O(a2d) (6.4)

This exact expansion is completely known in terms of elliptic functions. Then we define

the Seiberg-Witten invariant to be:

SW(λ) :=

∫
M(λ)

a
n(λ)
d (6.5)

This is an integer, and thus we can express the contribution of a spin-c structure λ to

ZIR,Higgs,Λ2 as

SW(λ)Resad=0
dad

a
1+n(λ)
d

(
epu+···Cλ

2
P σEχ

)
(6.6)

This is as far as we can go without an explicit knowledge of Th, C, P,E.

7. The Coulomb branch contribution aka The u-plane integral

Now we will evaluate ZIR,Coul.

We have described above all the ingredients that go into doing the u-plane integral.

An important scaling argument [19] shows that when X has b+2 > 0 then the result

is determined by the tree-level path integral : We can forget about one-loop determinants

and nontrivial Feynman graphs.

Thus, we are immediately left with a finite-dimensional integral∫
(dadā)(dηdχdψ)(dAdD)eS+∆grvSepu+OIR,c(S)+S

2Tc(u) (7.1)
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7.1 The integral over fermions

Let us first consider the fermionic integral:

1. The space H0(X;R) of η zeromodes is one-dimensional.

2. The space H1(X;R) of ψ zeromodes is b1-dimensional.

3. The space H2,+(X;R) of χ zeromodes is b+2 -dimensional.

There are three remarks to make about the fermionic integral:

1. Note that a choice of orientation is needed to define the Grassmann integral dηdψdχ.

Moreover, in pinning down the overall sign of the partition function ZDW one must

choose an integral lift of w2(E), here denoted 2λ0. A change of this choice λ′0 = λ0+2β

changes the overall sign by (−1)β·w2(X) = (−1)β
2
. All of this is beautifully mirrored

in Donaldson theory where a choice of orientation of H0 ⊕H1 ⊕H2,+ determines an

orientation of the moduli space of instantons M, and moreover a change of lift of

w2(E) produces just the right change of sign [3]. It is reassuring to see these “fine

structure details” mirrored in the physical approach.

2. For simplicity we will assume X is simply connected. This means we can drop the

ψ-integral, and moreover we can drop the ψ-dependence in the action (5.6) and in

the observables. This simplifies the equations a lot. The equations with b1 ̸= 0 have

been worked out in [19] and [12].

3. Now, since there is a one-dimensional space of η zeromodes, and since η does not

appear in any of the observables a glance at the action (5.6) shows that for the u-

plane integral to be nonzero we must have b+2 (X) = 1. This might seem discouraging,

but we will press on. Note that integrating out η and χ then brings down a factor of

dτ̄

dā
(D + F )+ (7.2)

(Since b+2 = 1 we can regard (D + F )+ as a scalar. )

7.2 The photon path integral

The integral over the gauge field is straightforward. As we have discussed, we sum over

flux sectors labeled by λ ∈ Γξ. The result is that we replace

F → 4πλ (7.3)

and get

e2πiλ
2
0

√
Imτ

∑
λ∈Γξ

e−iπτ̄λ
2
+−iπτλ2−−i du

da
(S,λ−)(−1)(λ−λ0)·w2(X) [4πλ+ +D] (7.4)

7.3 Final Expression for the u-plane integral

Finally, we just do the 1-dimensional (because b+2 = 1) Gaussian integral over the auxiliary

field D. The final expression is: ZIR,Coul = Zξu(p, S) with

Zξu(p, S) = αχβσ
∫
dadā

dτ̄

dā

(
du

da

)χ/2
∆σ/8epu+S

2T̂c(u)Θ (7.5)
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Θ =
e
−

S2
−

8πy (
du
da )

2

√
y

e2πiλ
2
0

∑
e−iπτ̄λ

2
+−iπτλ2−−i du

da
(S,λ−)(−1)(λ−λ0)·w2(X)

[
λ+ +

i

4πy

du

da
S+

]
(7.6)

where we define y = Imτ .

Let us make a number of comments about this result for the u-plane integral

1. The expression has been written in a form valid for the inclusion of hypermultiplets

(in the rank one case). That will be useful later.

2. We can rewrite the integral as∫
dadā(· · · ) =

∫
C
dudū |da

du
|2 (· · · ) (7.7)

However, notice that the integrand makes (extensive!) use of a duality frame. It

is not at all obvious that the expression is in fact a well-defined measure on the u-

plane, but this can be checked using the modular properties of the various terms.

In particular, Θ is essentially a theta-function and has nice duality transformation

properties.

3. In pure SU(2) theory it is better to write∫
dadā(· · · ) =

∫
F
dτdτ̄ |da

dτ
|2 (· · · ) (7.8)

isomorphic to the fundamental domain for Γ0(4) on the upper-half-plane:

FIGURE OF FUNDAMENTAL DOMAIN FOR Γ0(4)

Then all the factors in the integrand can be written as modular functions of τ ,

although the relevant expansion in q is different near τ = i∞, τ = 0 and τ = 2.

4. Near the discriminant locus, and u = ∞, various terms in the integrand become

singular. One must define the integral with care in these regions.

5. While the integral is subtle and complicated, we must stress that the topology of X

only enters through the classical cohomology ring, and therefore ZIR,Coul is only a

function of the homotopy type of X.

6. Notice that although we are discussing topological field theory the integrand certainly

has nontrivial metric dependence since it explicitly uses the projection of λ to its self-

dual λ+ and anti-self-dual λ− parts. Since we are dealing with topological field theory

we might hope that the result of the integral is metric independent. We next turn to

a detailed study of this question.
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7.4 Metric Dependence: Wall-crossing

The formalism of topological field theory guarantees that the variation of the path integral

with respect to the metric will be a total derivative in field space:

δ

δgµν
Z = ⟨Tµν⟩ = ⟨{Q,Λµν}⟩ (7.9)

however, in some situations that total derivative will not be zero. One example is the

holomorphic anomaly of BCOV. The u-plane integral is another striking example of this.

Since b+2 = 1, the cohomology space H2(X;R) is a vector space with a Lorentzian

metric. Once we choose an orientation of H2,+ there is a unique self-dual class ω so that

ω · ω = 1, so ω lies on the ”mass-shell.”

FIGURE: HYPERBOLOID

The metric dependence enters the u-plane integrand entirely through the projections

such as

λ = λ+ω + λ− (7.10)

Therefore we can just consider a family ω(t) along the hyperboloid and take derivatives.

One can work out the explicit total derivative and reduce the variation of Z wrt to the

metric to a boundary integral:

d

dt
Zξu(p, S) = −iαχβσ

∑
u∗=±Λ2,∞

lim
ϵ→0

∮
S1(ϵ)

du

(
da

du

)1− 1
2
χ

∆σ/8e2pu+S
2T (u)Υ (7.11)

where Υ is another theta function similar to Θ. Close analysis shows that this is a δ-function

(except for Nf = 4).

The support of the δ-function is at certain walls of the form

W (λ) := {ω : ω · λ = 0} (7.12)

The essence of the matter is that near u∗ the gauge coupling Imτ → ∞, exponentially

suppressing all terms in the theta function but one, associated with a vector λ so that

λ+ → 0 . The τ integral looks like

c(n)

∫ ∞ dy

y1/2
e−2πλ2+yλ+ ∼ c(n)sign(λ+) (7.13)

where c(n) are coefficients of a modular form, and only the term with n = λ2/2 survives

the integral over Reτ .

Physically, what happens at the u = ∞ walls is that the connection can become

reducible and there is an abelian instanton, i.e. a connection on the line bundle L with

F+ = 0. This leads to an extra bosonic zeromode in the path integral leading to a δ-

function divergence.

The walls are located at

From u = ∞ : λ ∈ Γξ =
1

2
w̄2(E) + H̄2(X) (7.14)
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From u = ±Λ2 : λ ∈ Γw =
1

2
w̄2(X) + H̄2(X) (7.15)

The discontinuity across the walls ∆u∗,λZ
ξ
u(p, S) can be expressed as a residue of a holo-

morphic object: This is the Fourier coefficient of a modular form.

The walls divide up the forward light-cone into chambers. A correlator ⟨OℓO(S)r⟩ for
fixed ℓ, r will only change across a finite number of chambers.

FIGURE: CHAMBERS

The metric dependence of any correlator is then piecewise constant. The wall-crossing

formula across the walls will involve Fourier coefficients of modular forms.

The WCF for the walls coming from u = ∞, ∆∞,λZ
ξ
u(p, S) reproduce precisely the

formula of L. Göttsche for the change of the Donaldson polynomials for b+2 = 1 if we set:

αχβσ =
2(2+3σ)/4

π
(7.16)

Now χ+σ = 4, but σ = 1−b−2 can vary, so this completely fixes α, β. (We have also scaled

Λ = 1 in these equations.)

However, we also have a WCF across the walls coming from singularities at u = ±Λ2.

Since we have already completely accounted for the change of the Donaldson polynomi-

als from ∆∞,λZ
ξ
u(p, S), these new discontinuities must not be discontinuities of the full

partition function ZξDW (p, S).

8. Derivation of the relation between SW and Donaldson invariants.

Let us recap the situation:

We have (always!)

ZξDW (p, S) = Zξu(p, S) + ZIR,Higgs (8.1)

When X has b+2 = 1 we know that Zξu(p, S) has discontinuities as a function of ω ∈
H2(X;R) across walls W (λ) coming from the singularities u = ∞ and u = ±Λ2.

Moreover, ZξDW (p, S) also has discontinuities, and these are perfectly accounted for by

the discontinuities of Zξu(p, S) coming from u = ∞.

Therefore, across all walls W (λ) we must have

0 = ∆u=Λ2,λZIR,Coul +∆u=Λ2,λZIR,Higgs (8.2)

Indeed, mathematically, the SW invariant SW(λ) is known not to be an invariant when

X has b+2 = 1 and changes across walls W (λ) determined by spin-c structures. The WCF

is particularly easy:

SW(λ)|ω·λ=0+ − SW(λ)|ω·λ=0− = (−1)1+n(λ) (8.3)

(when crossing in a suitable direction).

Mathematically, at such walls there is a solution of the SW equations with M = 0,

this is a reducible solution fixed under global U(1) gauge transformations and the moduli
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space becomes singular. Physically, at these walls since M = 0 the Higgs and Coulomb

branches can “mix.”

Now, we can compute ∆u=Λ2,λZIR,Coul since we have an explicit expression (7.11) for

it and, given the general form (6.6) of the Higgs contribution and the SW WCF (8.3) we

can compute the unknown couplings C(u), P (u), E(u). For example, we find

C(u) =

(
ad
qd

)1/2

= 4eiπ/4 +O(ad)

P (u) = eiπ/3225/4 +O(ad)

E(u) = eiπ/823/4 +O(ad)

(8.4)

where qd = e2πiτd . These are completely explicitly known series determined by modular

functions.

To summarize: we now have a completely explicit expression for ZξDW (p, S), expressed

in terms of the SW invariants and the classical cohomology ring. It is valid for all simply

connected 4-folds with b+2 > 0, and can be easily generalized to include the non-simply-

connected case.

9. Simple Type and Witten’s Conjecture

A key property about the Seiberg-Witten invariants on a 4-fold X is that M(λ) is only

nonempty for a finite set of λ. These are called the basic classes.

Now, let us define X to be of Seiberg-Witten simple type if M(λ) ̸= ∅ only for λ such

that n(λ) = 0. In this case M(λ) is a finite union of oriented points. When evaluating

SW(λ) we are literally counting solutions to equations, just as we began our lecture.

It is a strange fact that all known simply connected X with b+2 > 1 are of Seiberg-

Witten simple type, but there is no proof that all such X must be of simple type.

In any case, let us now suppose that X is of SW simple type, and moreover that

b+2 > 1. In that case ZIR,Coul = 0 and the integral is given entirely by the contributions at

u = ±Λ2. Moreover, these are easily evaluated since n(λ) = 0. Putting it all together we

obtain the key statement of [27], referred to as the “Witten conjecture” in the mathematics

literature:

ZξDW (p, S) = 21+
1
4
(7χ+11σ)

(
e

1
2
S2+p

∑
λ∈Γw

SW(λ)e2πi(λ·λ0+λ
2
0)e2S·λ

+ iχhe−
1
2
S2−p

∑
λ∈Γw

SW(λ)e2πi(λ·λ0+λ
2
0)e−i2S·λ

) (9.1)

where χh := (χ+ σ)/4.

Here we have set Λ = 1. The first sum comes from the monopole point, u = Λ2 and

the second sum comes from u = −Λ2, the dyon point.

Now, in their analysis of Donaldson polynomials Kronheimer and Mrowka introduced

the idea of simple type - which we will call KM simple type. It says that the partition
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function ZDW satisfies the simple differential equation:(
∂2

∂p2
− 1

)
ZξDW (p, S) = 0 (9.2)

We note that from our general physical expression it is an immediate consequence that for

b+2 > 1, if X is of SW simple type then it is of KM simple type.

KM also introduced a notion of generalized simple type. This says that for some r(
∂2

∂p2
− 1

)r
ZξDW (p, S) = 0 (9.3)

Note that we have a physical proof that all simply connected 4-folds of b+2 > 1 are of

generalized KM simple type. This is a simple consequence of the fact that there are only

a finite number of basic classes. Therefore, we can take

r = 1 +maxλn(λ) (9.4)

Remark There is a beautiful interpretation of the localization of ZDW in terms of

localization to N = 1 vacua. The essential idea is that sometimes (e.g. on a Kahler

manifold) one can add a mass term for the fermions breaking N = 2 to N = 1, but

preserving a topological symmetry. See [26]

10. Applications of the u-plane integral.

The SW equations had immediate mathematical applications. Having spent years building

up an arsenal of techniques for dealing with the much more difficult nonabelian equations

all of Donaldson’s theorems were reproven with the SW equations in a matter of months.

Moreover the SW equations led to the resolution of long-standing conjectures (such as the

Thom conjecture), and allowed mathematicians to go beyond what had been achieved with

Donaldson’s theory.

For a lucid account see the review by S. Donaldson [4]. The account is absolutely

masterful, except for one paragraph where he tries to explain the reasoning behind Witten’s

conjecture. Here Donaldson just goes to pieces.

By and large, having gotten the hint that one could work with the Seiberg-Witten

equations instead of the nonabelian anti-self-dual equations the mathematicians have not

really used the physical insights I have just explained. One exception could have been the

work by Taubes. In some beautiful work he shows that the SW invariants on a symplectic

manifold can be identified with Gromov-Witten invariants counting pseudoholomorphic

curves. This could have been predicted by physicists from the physics of superconductivity,

since the SW equations are very similar to the equations for the Landau-Ginzburg low

energy effective theory of superconductivity. The pseudoholomorphic curves in question

can be thought of physically has worldsheets of Abrikosov-Gorkov flux lines. See the

beautiful article by Witten [29] for an account of this. Unfortunately, for the physicists,

this was a physics postdiction.

Nevertheless, the physical approach we have outlined does have a number of less well-

known applications which we would like to advertise:
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1. It gives a simple physical derivation of the Fintushel-Stern /Gottsche-Zagier blowup

formula as a kind of “operator product expansion” of the 2-observable for the ex-

ceptional surface of a blowup. Topologically a blowup is X̂ = X#CP 2 and one can

show easily from the u-plane that

exp[tO(E)] =
∞∑
k=1

tkBk(O) (10.1)

where Bk(O) are polynomials. This is a 4d version of the familiar maneuver in 2d

CFT of replacing a handle by an infinite sum over local operators. Details are in [19].

2. It gives explicit formulae for ZDW by actually doing the integral in some good cases.

Most notably, the answer for CP 2 highlights an intriguing relation to class numbers

of quadratic imaginary fields and Mock modular forms. Indeed the u-plane integral

is closely related to certain kinds of “Θ-lifts” which have appeared in number the-

ory as well as in string perturbation theory. In the latter context they have been

used to give conceptual proofs of Borcherds’ results on automorphic products. [Cite:

HarveyMoore].

3. It leads to nontrivial relations to 3-manifold topology, the Casson-Walker-Lescop

invariant, and Reidemeister-Milnor torsion. Some of these relations raised puzzles

which have never been fully resolved. See [14].

4. The technique sketched above has a relatively straightforward generalization to higher

rank invariants. There is an analog of the above formulae for the SU(N) Donaldson

invariants [13]. Dissapointingly, it is again completely expressed in terms of the

classical cohomology ring and the Seiberg-Witten invariants. Kronhiemer has verified

that prediction for some special X’s [8].

5. The relation of the topology of 4-folds to the existence of superconformal fixed points

led to some nontrivial new results in topology [15, 16].

Time precludes a discussion of all these applications, but we would like to say a little

bit about the application to geography and “superconformal simple type.”

10.1 The geography problem

To a compact 4-fold we can associate (χ, σ, t) ∈ Z× Z× Z2 where t is the type, telling us

whether the intersection form is even or odd.

The geography problem asks which values can occur, and for a given (χ, σ, t) how

many examples (i.e. nondiffeomorphic manifolds) are there? For an excellent summary see

[24, 5].

Regarding the uniqueness, it is clear we need to put some restrictions to avoid trivial-

ities. For example,

nCP 2#mCP 2 (10.2)
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has χ = 2 + m + n and σ = n −m, and since χ + σ = 2(1 + b+2 − b1) is even there are

essentially no restrictions on χ, σ, except for those from m ≥ 0, n ≥ 0.

Thus we can look at:

1. Complex manifolds.

2. Symplectic manifolds.

3. Irreducible manifolds (This means X = X1#X2 implies X1 or X2 is S4).

It is best to plot the bounds in terms of

c := 2χ+ 3σ χh :=
χ+ σ

4
=

1 + b+2 − b1
2

(10.3)

χh can be integer or half-integer. If it is integer X admits an almost complex structure.

Then c = c1(X)2. If X is complex χh is the holomorphic Euler characteristic.

FIGURE1: SOME KNOWN BOUNDS. Plot minimal surfaces of general type: 2χh −
6 ≤ c ≤ 9χh.

10.2 Superconformal singularities

Now it turns out that the physics of superconformal points actually has some bearing on

the geography problem.

The way this comes about is the following. As we have stressed, Witten’s formula has

a natural generalization to SU(2) SYM coupled to Nf hypermultiplets with R the funda-

mental representation. The UV quantum field theory is only well-defined for Nf ≤ 4, so

we restrict to this case. Each hypermultiplet comes with a complex “mass parameter” mi.

(Mathematically, the mi are parameters in equivariant cohomology, a result of Labastida

and Marino [cite]).

Once again, the quantum moduli space of vacua is the complex plane, parametrized

by u ∈ C, but now the curves Σu in the Seiberg-Witten family over the u-plane degenerate

at 2 + Nf points uj , j = 1, . . . , 2 + Nf . At each of these points a different kind of BPS

state becomes massless:

FIGURE OF U-PLANE WITH SEVERAL SINGULARITIES

For X with b+2 > 1 of SW simple type the partition function becomes:

ZDW (p, S;mi) = α̃χβ̃σ
∑

j=1,...,2+Nf

κχh
j

(
du

da

)χh+σ

j

∑
λ

SW(λ)e
puj+S

2Tj−i( du
da )jS·λ (10.4)

Here

1. α̃ and β̃ are slightly different numerical constants from before. We have put ΛNf
= 1.

2. κj is defined by u = uj + κjqj + · · · , where qj = e2πiτj is the relevant modular

parameter near the singularity uj .

Now, ZDW (p, S;mi) is a manifestly finite and well-defined expression for generic val-

ues of the mass parameters mi. However, as we vary the mass parameters the points in
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the discriminant locus uj will move, and they can even collide. When that collision in-

volves massless particles which are both magnetically and electrically charged 1 there are

further singularities. Mathematically, this is familiar in Kodaira’s classification of elliptic

fibrations.

Now let us focus on Nf = 1. For Nf = 1 there is a point m∗ where two singularities

collide at a single point u∗. If we parametrize m = m∗ + z and u = u∗ + z + δu then the

Seiberg-Witten curve is, to leading order:

y2 = x3 + zx+ δu (10.5)

up to numerical coefficients. There are then extra zeroes in κj and
(
du
da

)
j
. Since χ + σ

might well be negative there are potential divergences in ZDW (p, S;m) as m→ m∗.

However, from the physical perspective there cannot be any such divergences when X

is a compact manifold.

The reason is that in the IR the only singularities can come from noncompact regions

in spacetime or in moduli space. But X is compact, and for Nf = 1 there are no such

noncompact regions. (For Nf > 1 superconformal singularities sometimes can involve

noncompact regions.)

Requiring that ZDW (p, S;m) as m→ m∗ turns out to imply nontrivial facts about the

SW invariants.

10.3 Superconformal simple type and the generalized Noether inequality

A close analysis of the potential singularities of ZDW (p, S;m) shows that the absence of a

divergence for m→ m∗ is guaranteed by the following mathematical criterion:

Define

SWX(z) :=
∑
λ

e2πiλc·λSW(λ)ezλ (10.6)

where we fix an integral lift 2λc of w2(X) and we regard powers λn to be in the dual space

of Symn(H̄2(X)). Then

If SWX(z) is analytic at z = 0 with an of order ≥ χh − c − 3 then ZDW (p, S;m) is

finite for m→ m∗.

We define X to be of superconformal simple type if SWX(z) has a (nonnegative order)

zero at z = 0 of order ≥ χh− c− 3. Reference [15] did not quite manage to prove that this

is a necessary condition that ZDW (p, S;m) be finite, but it was verified that all available

constructions of 4-manifolds satisfy this criterion. Recently [7] have proven that projective

varieties are SST.

Pursuing this a little further leads to an interesting lower bound on the number of

basic classes. Let B the the number of basic classes (where we count two nonzero classes

λ and −λ as the same. Then

B ≥
[
χh − c

2

]
(10.7)

1technically, non-mutually-local
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which implies

c ≥ χh − 2B − 1 (10.8)

A classic result of algebraic geometry is that minimal surfaces of general type satisfy

c ≥ 2χh − 6 (10.9)

This is known as the Noether bound, so we refer to (10.8) as the “generalized Noether

bound.”

This leads to some new lines in the geography problem:

FIGURE: c, χh PLANE WITH SOME LINES WHERE THE SW SUM RULES AP-

PLY.

11. Possible Future directions.

1. There are interesting cases, such as S3 × S1, where one-loop terms will contribute.

However, as shown in [19], the series stops at one-loop. Recently, beautiful results on

the partition function of N = 2 theories on S3 × S1 have been obtained by Rastelli

et. al. It would be interesting to reproduce those using the u-plane integral.

2. Families of 4-manifolds and H∗(BDiff). Recent progress [CITE:SEIBERG et. al.]

on coupling rigid SUSY theories to background supergravity should help.

3. Give expression for the ”u-plane integral” for theories of class S. What is the UV

equation whose intersection theory we are computing? Can we use the vast new

array of superconformal theories to learn new things, perhaps along the lines of the

superconformal simple type story?

4. When χh =
1−b1+b+2

2 is half-integral all the SW invariants vanish. Can physics really

be blind to half the world of four-manifolds?
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