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1. Some Background History And The Plan Of The Lectures

Let us summarize some of the standard results on 4-manifolds. See the texbooks [8, 16,

17, 48] for details.

In these lectures X will always denote a compact, connected, orientable four-manifold

without boundary.

1.1 Fundamental Group

First, if π is any finitely presented group then there is a compact 4-fold X with π1(X) ∼= π.
1 Since the word problem for groups is undecidable this means we cannot hope to classify

all compact 4-manifolds. But we can still hope to understand simply connected 4-folds.

1To prove this theorem of Markov one takes a connected sum of S1×S3, one summand for each generator

in the finite presentation of π. Choose a basepoint in the connected sum and a representative of each of

the generators of the fundamental group. Now in the presentation of π each relation corresponds to a word

in these generators, and hence corresponds to an embedded circle in the connected sum. Draw a tubular

neighborhood around each of the embedded circles so that the neighborhood is D × S1. Displace these so

that they do not intersect. Next do surgery to replace by neighborhoods of the form D̃ × S1 where now

the longitude becomes contractible in the disk D̃. Finally, using the Seifert-van Kampen theorem one can

prove that the resulting manifold has π1(X) ∼= π. Four is the first dimension in which this happens: See

Appendix D below.
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1.2 Intersection Form

There is another interesting topological invariant, the intersection number. The intersection

number of an oriented compact four-manifold gives an invariant:

H2(X;Z)×H2(X;Z)→ Z (1.1)

It is an invariant of the homotopy type of X. Poincaré duality says that on free group

H2(X;Z)/Tors(H2(X;Z)) of rank b2(X) it is a perfect pairing, and therefore corresponds

to a symmetric integral unimodular bilinear form QX .

If α is a cohomology class Poincaré dual to S(α) then we the oriented intersection

number can be written in several different ways:

S(α) · S(β) =

∫
X
αβ =

∫
S(α)

β (1.2)

The way the group H2(X;Z)/Tors(H2(X;Z)) will enter in our considerations is as a

lattice in the vector space of DeRham cohomology classes

H̄2(X) ⊂ H2
DR(X) (1.3)

defined as the set of classes with integral periods. Of course this only makes sense when

X has a differentiable structure. In that case

H̄2(X) ∼= H2(X;Z)/Tors(H2(X;Z)) (1.4)

and

QX(ω1, ω2) :=

∫
X
ω1 ∧ ω2 (1.5)

The intersection form QX has signature (+1b
+
2 ,−1b

−
2 ). That is, if we consider it as a

quadratic form on the real vector space H2(X;Z)⊗R then, after a suitable choice of basis

it can be brought to this diagonal form. More invariantly, b+2 is the rank of the maximal

sublattices in H2(X;Z) on which the restriction of QX is positive definite.

When X is oriented and has a Riemannian metric (or just a conformal structure) we

can define a Hodge dual ∗ : Ω2(X) → Ω2(X). It satisfies ∗2 = +1 and so we can speak of

self-dual forms:

∗ω = ω (1.6)

and anti-self-dual forms:

∗ω = −ω (1.7)

The Hodge theorem allows us to identify H2(X;R) with the space of harmonic two-forms

H2(X) and ∗ preserves this space. Then we can interpret b+2 as the dimension of the vector

space of harmonic self-dual two-forms, and b−2 as the dimension of the vector space of

harmonic anti-self-dual two-forms.

Remark: Later on we will be working with various torsors of H̄2(X) inside H2(X;R).

For example, given an integral lift w̄2(X) of w2(X) we will form

Γw :=
1

2
w̄2(X) + H̄2(X) ⊂ H2(X;R) (1.8)

Similar torsors associated to integral lifts of other mod-two classes will also play a role.
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1.3 Whitehead Theorem

In 1949 J.H.C. Whitehead introduced the notion of CW decomposition of manifolds to

classify homotopy type. In [35] Milnor observed that an interesting consequence is that two

simply connected oriented four-manifolds X1, X2 are homotopy equivalent iff QX1
∼= QX2 .

To prove this one notes that the cell-decomposition of a simply connected four-fold is∨
i

S2
i ∨D4 (1.9)

and is determined by the homotopy class of a map f : S3 →
∨
i S

2
i , which can be related

to the intersection matrix. 2

1.4 Serre’s Theorem

Thus we come to the classification of integral unimodular forms. Serre gave a nice classifi-

cation in the indefinite case.

Indefinite Definite

even mE8 ⊕ nH,m ∈ Z, n > 0 1, 2, 24, > 107, . . .

odd m〈+1〉 ⊕ n〈−1〉 too many

The even definite forms only exist in dimension 0 modulo 8. We have listed the number

of inequivalent ones for the first few cases. The unique lattice in dimension 8 is the E8 root

lattice.

H denotes the even integral form on Z⊕ Z given by

Q =

(
0 1

1 0

)
(1.10)

1.5 Freedman’s Theorem: Homeomorphism Type

Michael Freedman achieved a stunning breakthrough in a 1982 paper:

For all unimodular integral forms Q there is a simply connected compact orientable

topological manifold X with Q ∼= QX . Moreover,

1. If Q is even then there is a unique such X up to homeomorphism.

2. If Q is odd then there are exactly two homeomorphism types and at most one of

them can be smooth.

As an example of how breathtaking this is note that for Q = 0 this proves the (four-

dimensional, topological) Poincaré conjecture. For Q = 1 we have X = CP 2 but there

must be another manifold, “fake CP 2” which is homeomorphic to CP 2 but does not admit

a smooth structure!

2In more detail, the homotopy class of such a map can be characterized as follows. For each S2
i we

choose a point pi that is not the basepoint of the wedge product. We can choose pi to be a regular value

of f so that the preimage under f is a knot in S3. There is then a linking matrix for these knots (with

diagonal matrices being the self-linking number). This linking matrix is closely related to the intersection

matrix on H2(X,Z). I thank J. Morgan and G. Segal for explanations of this fact.
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1.6 Donaldson’s Theorems: Diffeomorphism type

Almost simultaneously with Freedman’s work (the papers were published in 1983) Simon

Donaldson announced some equally striking theorems.

First, if X admits a smooth structure and QX is definite, then it must be diagonal:

m〈1〉 with nonzero m ∈ Z.

Remarkable corollaries include the fact that the manifold corresponding to 2E8 does

not admit a smooth structure. (All previous known tests - notably Rokhlin’s theorem -

admitted the possibility that it might.) Similarly, if Q is odd and definite and nonstandard

(i.e. not a diagonal matrix of all +1 or all −1) then neither of the two homeomorphism

types admits a smooth structure.

Second, Donaldson introduced his famous polynomial invariants. These are a sequence

of polynomial function on H0(X)⊕H2(X) which are invariants of the smooth structure of

X. An example of striking statement that follows from his invariants is that one cannot

write an algebraic surface as a nontrivial connected sum X1#X2 with b+2 (Xi) > 0. In

particular, it cannot be written as a connected sum of two algebraic surfaces. 3

Donaldson’s construction used nonabelian gauge theory for rank one gauge groups

G = SU(2) and G = SO(3). He defined the polynomials using the intersection theory on

the moduli space of anti-self-dual connections on principal G bundles over X. Now, the

equation

F+ = F + ∗F = 0 (1.11)

makes use of a Riemannian metric. But the dependence on the metric drops out except for

manifolds with b+2 = 1. In this case the polynomials are piecewise constant in the space of

metrics but jump across walls. A wall-crossing formula for how they jump across walls is

completely understood. We will come back to these important facts.

Donaldson’s invariants were used to prove some striking facts about the smooth struc-

tures of 4-manifolds. The world of topological four-manifolds can be quite wild. There are,

for example, continuously infinitely many different differentiable structures on R4.

After all this progress – Freedman and Donaldson both received the 1986 Fields medal –

it was natural to wonder if physics was playing an important role. After all, Donaldson was

using nonabelian gauge theory and instantons. Nonabelian gauge theory and instantons

play a major role in modern particle theory.

This is where Witten enters. In 1988 he gave a quantum field theoretic description of ♣Comment on

motivation from M.

Atiyah [2] ? ♣Donaldson polynomials [53]. We will describe it in detail (in part following a particularly

beautiful approach to Witten’s paper introduced by M. Atiyah and L. Jeffrey [3]). In a

word: The partition function ZDW on a four-fold X with certain observables added to

the action is a generating function for all the Donaldson polynomials on X. Technically

Witten’s QFT is known as the “N=2 supersymmetric extension of G Yang-Mills theory”

where G is simple and rank one.

Witten’s interpretation was beautiful - it was the genesis of the concept of topological

twisting and more broadly of topological field theory - but it was not clear what could be

3Recall that b+2 (X) is the rank of the maximal positive definite subspace of H2(X;R).
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gained mathematically from an interpretation of the Donaldson polynomials in terms of

a path integral. The problem is that the path integral of a four-dimensional interacting

quantum field theory is regarded by the mathematical community as a mythological being.

And even for physicists willing to believe in its existence, doing effective computations

looked like they were out of reach.

However, since the theory is topological, the path integral ZDW does not depend on

the metric on X. But if “we scale up the metric on X” meaning we replace:

gµν → tgµν (1.12)

and study the limit t→ +∞ then all length scales go to infinity. In physics, length scales

and energy scales are related by the uncertainty principle:

L ∼ ~
E

(1.13)

so scaling lengths to infinity is the same as studying the “far infrared” - the behavior of the

theory under processes that differ only infinitesimally from the vacuum. This is precisely

the situation in which one can give an entirely different description of the theory using

what is known as a Low Energy Effective Theory or LEET.

A good example of the use of LEET is QCD: At short distance (relative to a length scale

at which the interactions become strong) the strong interactions are described by quarks

and gluons, but at long distances they are described merely by pions. The short-distance

theory is a nonabelian Yang-Mills theory with gauge group SU(3) minimally coupled to

Dirac spinors in the direct sum of Nf copies of the fundamental representation. The long

distance theory is a nonlinear sigma model whose target space is SU(Nf ). (In nature

Nf = 2 or Nf = 3 depending on how accurate the LEET should be.)

For our purposes, with a sufficiently good understanding of the LEET of N=2 SU(2)

SYM one can hope to recast the Donaldson-Witten path integral in a new form which

might yield new insights.

This is precisely what happened. In the spring of 1994 Seiberg and Witten under-

stood the LEET of N=2 SU(2) SYM [47, 46]. This was sufficient information for Witten

to give a stunning reformulation of the Donaldson polynomials in terms of a new set of

(more tractable) four-manifold invariants known as “Seiberg-Witten invariants” [55]. The

formula he wrote is known as Witten’s conjecture, and added a key piece of information

to a structure theorem for Donaldson invariants that had been discovered previously by

Kronheimer and Mrowka [21]. ♣Introductory

remarks took 36

minutes. ♣The goal of these lectures is to:

1. Explain Witten’s formal field theory interpretation of Donaldson’s polynomials in

terms of N=2 SU(2) SYM.

2. Explain how Seiberg and Witten’s physical insights into the low energy dynamics of

N = 2 SYM lead to a compelling (to me) derivation of the Witten conjecture.

3. Explain how the physical viewpoint explains many of the results on Donaldson poly-

nomials and even has led to some mathematical predictions.
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Some important references for the physical approach to Donaldson invariants are:

1. Les Houches lectures of Cordes, Moore, Ramgoolam [4]

2. Textbook of Labastida and Marino [24].

3. Two IAS Volumes: P. Degligne, et. al., Quantum Fields and Strings: A Course for

Mathematicians, 2 volumes. AMS 1999. Of special relevance are the lectures by E.

Witten in volume 2: Lectures 1-3, 8,12, and especially Lectures 16- 19.

2. Plan For The Rest Of The Lectures

1. Formal structure of cohomological TFT: Mathai-Quillen form of the path integral

and localization.

2. How Donaldson Theory fits into the MQ framework: Topologically twisted N=2

SYM.

3. SW solution and structure of the vacuum: Mapping observables from UV to IR.

4. General form of the Higgs branch contribution.

5. Evaluation of the Coulomb branch: The u-plane integral.

6. Deriving the relation of Donaldson to SW invariants.

7. Simple type

8. Applications of the physical viewpoint: (Example: Superconformal simple type and

the generalized Noether inequality.)

9. Possible future directions.

2.1 Acknowledgements

These are much expanded and updated notes from a lecture series initially given at the

Graduate Workshop on Mathematics and Physics at the Simons Center for Geometry and

Physics in March 2012 that I organized with D. Freed and C. Teleman. I thank L. Alvarez-

Gaumé, K. Fukaya, J. Morgan, and S. Donaldson for the invitation to give a lecture series

at the SCGP in March 2017 and for many useful remarks during the series. I thank the

CERN theory group for hospitality while the notes were being updated. I also thank D.

Brennan, J. Clingempeel, A. Daemi, A. Dey, E. Diaconescu, A. Khan, Z. Komargodski, C.

LeBrun, T. Mainiero, I. Nidaiev, D. Park, M. Rocek, and D. Sullivan for useful questions

and remarks during the lectures. I also got some excellent questions from the students at

the Pre-String-Math school in Hamburg, July 17-18, and I thank G. Arutyunov, E. Meir, I.

Runkel and C. Schweigert for the invitation to speak at this school. This work is supported

by DOE grant to Rutgers DOE-SC0010008. Last, but not least, I thank M. Mariño and

E. Witten for great collaborations on the subject matter of these notes.
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3. A Brief Review Of Cohomological TFT Path Integrals

3.1 A Nice Integral

Today we are going to talk about some complicated and fancy integrals, some of them

very complex but well-defined and finite dimensional, some of them infinite-dimensional

integrals over functions spaces - the notorious path integrals of QFT. So it is good to start

with some simple integrals we can all immediately appreciate and understand.

Let x be a real number and consider a function s(x) whose graph is transverse to the

x axis such that |s(x)| → ∞ for |x| → ∞, as in

FIGURE

Consider the Gaussian integral:

Z =

∫ +∞

−∞

dx√
2π
s′(x)e−

1
2
s(x)2

(3.1)

It is easy to do the integral by change of variable, and you find:

Z =
∑
Z(s)

s′(x`)

|s′(x`)|
(3.2)

where

Z(s) = {x` : s(x`) = 0}. (3.3)

It is easy to generalize to n-dimensions. Now s : Rn → Rn and:

Z =

∫
Rn

n∏
i=1

dxi√
2π

det
( ∂si
∂xj

)
e−

1
2
s(x)2

=
∑
Z(s)

sign(det
∂si

∂xj
) (3.4)

where we use the Euclidean metric on Rn to define s(x)2.

Let us make a few remarks about these integrals

1. The answer is a sum of integers. It is a signed sum over solutions of the n real

equations in n unknowns:

s(x) = 0 (3.5)

Our integral Z is counting solutions to equations with signs.

2. In fact, this integer has topological significance. It is the degree of the (proper) map

s : Rn → Rn. Another topological interpretation is that it is the oriented intersection

number of the graph of s with the graph of s = 0. That intersection number is a

topological invariant provided we do not change the asymptotic behavior of s(x) at

x → ∞. For example, in the one variable case, if s(x) is a polynomial we cannot

expect invariance under change of the sign of the leading coefficient.

3. Finally, note that we could put in a parameter ~ and equally well say:

Z =

∫
Rn

n∏
i=1

dxi√
2π~

det
( ∂si
∂xj

)
e−

1
2~ (s(x),s(x)) =

∑
s(x)=0

sign(det
∂si

∂xj
) = deg(s) (3.6)
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The answer is independent of ~. On the other hand, we could take ~→ 0 and clearly

the measure localizes to the zero set

Z(s) := {x : s(x) = 0} (3.7)

Moreover, the saddle-point approximation gives the exact answer.

Now we are going to rewrite this integral as an integral over a superspace so that all

these nice properties can be explained by the existence of a nilpotent “supersymmetry op-

erator” Q. Our integrals over superspace will be finite dimensional models for topologically

twisted path integrals in supersymmetric field theories.

3.2 Supersymmetric Representation Of The Nice Integral

3.2.1 Superspace

We recall a basic construction in supergeometry: 4 Suppose E → M is a vector bundle

over a manifold. We let ΠE denote the superspace where the fibers are considered odd. 5

If we apply this to E = TM then the associated superspace is denoted M̂ , so:

M̂ = ΠTM (3.8)

If xi are local coordinates in a patch U ⊂ M then ψi are corresponding odd fiber coordi-

nates.

We now have the key isomorphism between the complex of smooth superfields and the

complex of smooth differential forms:

C∞(M̂) ∼= Ω∗(M) (3.9)

The basic idea is that a superfield is locally of the form

Φ(x, ψ) =
∑
k

∑
i1<···<ik

φi1···ik(x)ψi1 · · ·ψik (3.10)

and the φi1···ik(x) transform across patches just like the coefficients of the differential form

ωΦ =
∑
k

∑
i1<···<ik

φi1···ik(x)dxi1 · · · dxik (3.11)

The reason is that ψi are the linear functions on the fibers of TM :

ψi(
∂

∂xj
) = δij (3.12)

and are odd - so they can be identified with dxi. We will write Oω for the superfield

corresponding to the differential form ω. Conversely ωO is the differential form associated

to the superfield O.

4For some background on supergeometry see [6][25][58].
5A supermanifold is defined by its “algebra of functions.” Locally the functions form a sheaf of super-

algebras. If E →M is a vector bundle and U ⊂M is a neighborhood on which we trivialize E|U ∼= U × V
for a vector space V then the corresponding Grassmann algebra is C∞(U)⊗Λ∗V . Elements of this algebra

are called superfields.
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1. There is an integral grading so that “ghost number” corresponds to degree of the

differential form:

gh#(Oω) = deg(ω) (3.13)

2. There is a degree one derivation which squares to zero:

QOω ↔ dω (3.14)

Note particularly that in terms of local coordinates:

Qxi = ψi Qψi = 0 (3.15)

We are particularly interested in the Q-cohomology H∗Q and in integrals over super-

space of Q-closed “operators” that only depend on the cohomology class.

3. To define these integrals we need to choose an orientation on the reduced manifold

M . In general, superfields on a superspace can be integrated once one has chosen a

section of the Berezinian of the cotangent bundle of the superspace, i.e. a section of

Ber(Ω1(M̂)). In our case there is a canonical section that we will write as ber(x|ψ).

It has the property that ∫
M̂

ber(x|ψ)Oω =

∫
M
ω (3.16)

where: ♣Maybe include

factors of (2π) in

this definition? ♣ber(x|ψ) = dx1 · · · dxn[dψ1 · · · dψn] (3.17)

where compatibility with the Fubini theorem forces:∫
[dψ1 · · · dψn]ψn · · ·ψ1 = +1 (3.18)

we will also write this loosely at
∏n
i=1 dxidψi.

3.2.2 Rewriting The Integral

Now we introduce anticommuting variables χa, where, for the moment, a = 1, . . . , n and

rewrite the integral as

Z = ξin
∫
R̂n

n∏
i=1

dxidψi√
2π~

∫
Π(Rn)∗

n∏
a=1

dχae
− 1

2~ s
a(x)sa(x)+iχa

dsa

dxj
ψj

(3.19)

Now, we want to write this in a manifestly Q-invariant way, so we need commuting partners

Ha for the χa. We simply introduce them via a Gaussian integral:

Z = ξ(2πi)−n
∫
Ê

ber(x, H|ψ, χ)e
− ~

2
HaHa−iHasa+iχa

dsa

dxj
ψj

(3.20)

where ξ = ±1 and Ê is a superspace so that the functions ♣With our

conventions there is

a definite sign.

Work it out. ♣C∞(Ê) (3.21)
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are C∞ functions of the bosonic variables xi and Ha, both of ghost number zero and are

polynomials in the fermionic variables ψi of ghost number one and χa of ghost number −1:

gh#(χa) = −1 gh#(Ha) = 0. (3.22)

The Berezinian measure is, concretely,

ber(x, H|ψ, χ) =
∏
i

dxi
∏
a

dHa[dψ
1 · · · dψndχ1 · · · dχn] (3.23)

Now we have Z in a very useful form. Note:

1. If we extend Q so that

Qχa = Ha QHa = 0 (3.24)

then we can write the “action” S (so the path integral contains eS) as:

S = Q(Ψ) (3.25)

Ψ = −~
2
χaHa − iχasa (3.26)

2. Crucial Point: Now note that since Q ↔ d if we change the action by Q(∆Ψ) so

that the integral over the boundary (in this case, the integral at infinity) vanishes,

then the integral is unchanged. That is

Small Q-exact perturbations of the action do not change the result of the integral.

The technical meaning of “small” should mean: Do not introduce singularities and

do not “drastically” change the asymptotic behavior of the action at infinity in field

space. A good example of a deformation which is not allowed is to consider n = 1

and take s(x) to be a polynomial with leading order term of degree N :

s(x) = εxN + · · · . (3.27)

A variation of ε does not change the answer unless the sign of ε changes. The latter

is a “drastic” deformation. Note that in a continuous family where ε changes sign the

order of the polynomial must drop below N . It would be desirable to give a useful

technical definition of “drastically,” especially in the case of path integrals.

3. In cohomological field theory, (χa, Ha) is called the anti-ghost multiplet. Note that

χa has ghost number −1, so Ha has ghost number 0. The fields Ha are also called

auxiliary fields. By definition, auxiliary fields are fields that can be eliminated from

action by doing a Gaussian integral (or, more generally, by solving a purely algebraic

- as opposed to differential - equation).

4. Q-Fixed Points: A very useful heuristic viewpoint on the localization of the integral

Z is provided by the idea of Q-fixed points. We noted that for ~ → 0 the integral

localizes on the zero set Z(s). Observe that this is the same as the space of Q-fixed

points:

Q(Fields) = 0 (3.28)
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We solve this by putting the anticommuting fields to zero (after evaluation with Q and

after setting the auxiliary fields to their stationary values in the Gaussian integral).

So we need only examine Q(ψ) and Q(χ). The equation Q(χ) = 0 puts H = 0 but the

Gaussian elimination set Ha = −isa/~ so that the Q-fixed point locus coincides with

Z(s). There is a nice intuitive way of understanding this: We think of the integral

as an integral on a space with an odd vector field. As long as the vector field acts

freely then, since
∫
dθ = 0 for a Grassmann integral, that “part of superspace,” where

the integrand does not depend on θ cannot contribute to the integral. (This is, of

course, an extremely heuristic step.) Therefore the supersymmetric integral localizes

to Q-fixed points. While it is very heuristic, this viewpoint is also extremely useful

because of the meta-theorem:

All natural geometrical PDE’s are Q-fixed point equations of some supersymmetric

field theory.

3.2.3 A Generalization: The Case Of “Nonzero Index”

We can generalize a little by letting s : Rn → V where V ∼= Rm has dimension m not

necessarily equal to n. Now we let the index on the anti-ghost multiplet (χa, Ha) run over

a = 1, . . . ,m.

Define a superfield on M̂ by integrating out the antighost multiplet:

Êuls :=

∫
Ṽ

m∏
a=1

dχadHa

(2πi)
eQ(Ψ) (3.29)

where Ṽ is a superspace whose functions are functions of degree zero bosonic variables

Ha and degree −1 variables χa. This is BRST closed superfield in xi and ψi and hence

represents a closed differential form Euls via the correspondence (3.9). Importantly, it has

ghost number m. This is obvious: χa has ghost number −1 so each [dχa] has ghost number

+1 so [dχ1 · · · dχm] has ghost number m.

Now, if O(x, ψ) is another Q-closed observable, then we can consider the more general

integral

〈O〉 :=

∫
R̂n

ber(x|ψ) O Êuls (3.30)

Note that

1. We are assuming there are more variables than equations, so n > m and, at least

along Z(s), the linear transformation ds is surjective.

2. The integral can only be nonzero when the ghost number of O is n−m.

3. The integral only depends on the cohomology class of O in H∗Q.

Moreover, if Oω is a Q-closed superfield corresponding to a closed from ω is closed

then we can generalize what we said above:

〈Oω〉 =

∫
R̂n

ber(x|ψ) Oω Êuls =

∫
Rn
ω ∧ Euls =

∫
Z(s)

ι∗(ω) (3.31)
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localizes on the zero set Z(s). Here ι : Z(s) ↪→ Rn is the inclusion map and deg(ω) = n−m.

In the QFT application n and m will both be infinite, but n−m will be the index of

a Fredholm operator and hence the integral on the RHS is over a finite-dimensional space.

We will repeat this remark below.

3.3 Thom Isomorphism Theorem

The localization identity (3.31) is very reminiscent of the Thom isomorphism theorem. We

first recall that theorem and then use it to generalize (3.31).

Recall the Thom isomorphism theorem: Let π : E → M be a real oriented vector

bundle over an n-dimensional manifold, where E has rank m. Then the theorem says there

is an isomorphism

H i(M) ∼= H i+m
v−cpt(E) (3.32)

ω → π∗(ω)Φ(E) (3.33)

Moreover if s : M → E is a generic section then s∗Φ(E) is the Euler class of E. If M is

compact the Euler class is Poincaré dual to the zero set of s:∫
M
ωs∗(Φ(E)) =

∫
Z(s)

ι∗(ω) (3.34)

In topology the condition of compact vertical support is very natural, but it is not so

natural in physics. To make contact with physics we endow E →M with a a Riemannian

metric on the fibers of E. Then we can replace compact vertical support by rapid decrease

(so the relevant forms are in a Schwarz-space along the fibers). We can then replace

cohomology with compact vertical supports by cohomology with rapid decrease along fibers:

H∗v−cpt(E) ∼= H∗rd(E).

The Thom theorem with H∗rd(E) motivates us to generalize Êuls above to the case

where we replace Rn × V by an oriented real vector bundle E → M . To do this we must

give E a connection ∇ compatible with the fiber metric. We will denote 6 the local one-

form relative to an ON basis by Θab
j . To covariantize the action we must add a third term

to Ψ:

Ψ = −~
2
χaHa − iχasa +

~
2
χaΘ

ab
i ψ

iχb (3.35)

Working out QΨ the third term covariantizes the derivative of s, and integrating out the

auxiliary fields Ha we find

S = − 1

2~
sasa + iχa(∇js)aψj +

~
4
χaχbF

ab
ij ψ

iψj (3.36)

3.4 The Localization Formula

The general localization formula associated with a real oriented vector bundle over a man-

ifold, π : E →M , together with a generic section s, is the following:

6Thus, if ea is a local ON basis of sections of E and ∇ is the connection then ∇ea = dxjΘab
j e

b with a

sum over j and b.
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Define the superfield on M̂ :

Êuls(E,∇) :=

∫ m∏
a=1

dχadHa

(2πi)
eS (3.37)

where S = Q(Ψ) is given by (3.36) and (3.35).

The connection ∇ on E defines a linear operator:

∇s : TpM → Ep (3.38)

We will assume that s is sufficiently generic so that the fibers of Cok∇s defined by the

exact sequence

0→ Im∇s→ E → Cok∇s→ 0 (3.39)

have finite rank and define a smooth vector bundle. Given orientations on M and E

the bundle Cok∇s is canonically oriented and we claim that for Q-closed functions O on

superspace:∫
Ê

ber(x, H|ψ, χ)eSO =

∫
M̂

ber(x|ψ)Êuls(E,∇)O =

∫
Z(s)

ι∗(ωO) ∧ Eul(Cok∇s) (3.40)

where Ê is the total superspace corresponding to the bundle E. It is the natural general-

ization of (3.21).

Remarks:

1. The proof of (3.40) is straightforward. See [4]. ♣Give section

number, and also

refer to Witten as

in the CMR

reference. ♣2. It is possible to view Êuls(E,∇) as the pullback by s of a representative of a Thom

class Φ̂(E). This particular representative of the Thom class in Hm
rd(E) is due to

Mathai and Quillen. Note that it has rapid decrease along the fibers rather than

compact support. For a full explanation see [4].

3. When we discuss the equivariant case below we will need to add a term to Ψ. Then

we will refer to Ψ in (3.35) as Ψloc.

4. It might be disturbing that (3.35) involves the non-gauge-invariant expression Θab
i .

There is no claim that Ψ is globally well-defined on field-space. Rather writing

the action this way is meant to make clear that the action is Q-closed and small

perturbations of the action are Q-exact (i.e. Q applied to a globally well-defined

expression). The situation is quite analogous to writing a Chern-Weil representative

of a characteristic class as the exterior derivative of a secondary class. (For example,

writing TrF ∧ F = dTr
(
AdA+ 2

3A
3
)
.)

♣43 minutes from

beginning of section

3. ♣
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3.5 Equivariance

For applications to gauge theories we need one more formal development in order to take

into account gauge invariance. Unfortunately, this gets a little involved so we will skip

most of the technical details and try to summarize the story as briefly as possible. For

details see [4] for an extended and leisurely discussion and [37] for a lightning summary.

Suppose that M is a principal G-bundle:

π : M → M̄ (3.41)

for some Lie group G and that E →M is a G-equivariant vector bundle with G-equivariant

connection. Suppose moreover that the section s is also equivariant so that G acts on the

zero-set Z(s). We would like to write integrals of closed forms on the moduli space of

solutions to the equation s(x) = 0

M := Z(s)/G ↪→ M̄ (3.42)

in terms of integrals over Ê.

In order to do this one needs a projection form P̃(M → M̄) that has the property

that ∫
M
π∗(ω̄)P̃(M → M̄) =

∫
M̄
ω̄ (3.43)

It turns out that the most convenient way to write the projection from is in terms of the

equivariant cohomology of C∞(Ê), where we replace the LHS by an integral over equivariant

differential forms:∫
M
π∗(ω̄)P̃(M → M̄) =

∫
Lie(G)

[dφ]

∫
M

Ωω̄ P(M → M̄) (3.44)

where we have introduced new (degree two) bosonic fields φ ∈ Lie(G), 7 Ωω is an in-

variant and equivariantly closed differential corresponding to ω̄, and P(M → M̄) is an ♣say how ♣

equivariantly closed form.

To write the projection form P(M → M̄) one can use either the Cartan or the Weil

model of equivariant cohomology. In terms of the Cartan model our complex is

Sym•(Lie(G)) ⊗̂ C∞(Ê) ⊗̂ W (Lie(G)))∨ (3.45)

where the first factor is generated by φ, the second by x, ψ, χ,H and the last factor is

the Weil algebra but with opposite sign degrees (this is what is meant by the dual). The

generators of this dual Weil algebra are denoted φ̄, η ∈ Lie(G)) and they are, respectively,

7at this point violating our convention thus far of using Latin letter for commuting and Greek letters

for anticommuting fields
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bosonic and fermionic, with ghost numbers −2 and −1. The differential Q now acts by:

Qx = ψ

Qψ = −Lφx

Qχ = H

QH = −Lφχ
Qφ̄ = η

Qη = −Lφφ̄

(3.46)

Here Lφ is the Lie derivative using the vector field corresponding to φ and we have intro-

duced two new fields: An even φ̄ ∈ Lie(G) of degree −2 and an odd η ∈ Lie(G) of degree

−1 generating superfields on L̂ie(G). Then we will have an equation like:

P(M → M̄) =

∫
W(Lie(G)))∨

dφ̄dηeQ(Ψproj) (3.47)

To write Ψproj we put an invariant metric on Lie(G) (giving the measure [dφ] used above)

as well as an invariant measure on the fibers of π : M → M̄ . The vertical vector fields

define a canonical map:

Vm : Lie(G)→ TmM (3.48)

and since we have G-invariant metrics we have a G-covariant one-form: 8

V†m : TmM → Lie(G) (3.50)

Using the Lie(G)-valued 1-form we have

Ψproj = i(φ̄,V†) + (φ̄, [φ, η]). (3.51)

Here the form V† should be interpreted as a Lie(G)-valued superfield. The second term

reflects the fact that the fields φ̄, η themselves transform under “gauge transformations.”
9aaa

One can now check that P(M → M̄) is equivariantly closed. Since s is G-equivariant

we learn that

0→ Lie(G)
V→TM∇s→E → cok(∇s)→ 0 (3.52)

is a complex. We can role it up to define

F = ∇s⊕ V† : TM → E ⊕ Lie(G). (3.53)

8It might help here to note that the canonical connection given by orthogonal complements to the vertical

vector fields is given by:

Θ =
1

V†V V
†. (3.49)

9The second term has always been a bit of an annoyance in this subject, going back to Witten’s original

paper [53].
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Then we have the most general localization formula we will consider:

Z :=

∫
Lie(G)

[dφ]

∫
Ê×W(Lie(G)))∨

ber(x, H, φ̄|ψ, χ, η) ÔeQΨs

=

∫
M
ω̄Ô ∧ Eul(cok(F))

(3.54)

where

Ψs = Ψloc,s + Ψproj (3.55)

and Ψloc is given in equation (3.35) and finally the formula assumes there is an isomorphism

(H∗Q)G ∼= H∗(M) (3.56)

from G-invariant and equivariantly closed superfields Ô to forms ωÔ on M:

Ô ↔ ω̄Ô (3.57)

♣Comment on how

Ô = φ corresponds

to ω given by the

curvature of Θ. ♣

Note particularly that the integral can only be nonvanishing for

gh#(Ô) = Index(F). (3.58)

3.6 The Fields, Equations, Symmetries Paradigm

The above development should be susceptible to a rigorous presentation (ours is not) in

the finite-dimensional setting. We now make a giant leap and assume that the formalism

generalizes to infinite-dimensional path integrals. The main point of all the above formal

development is this:

All topologically twisted quantum field theories fit in the above paradigm.

Quite generally, to specify a topological field theory in what we will call the “Mathai-

Quillen” form one needs to specify

1. Fields: The primary fields of the problem are represented in the above by the xi. The

equations and symmetries of the problem then dictate the rest of the field content:

H,φ, φ̄, ψ, χ, η.

2. Equations: We are interested in some equations on the fields s(xi). They are generally

interesting partial differential equations. We view then as the zero locus of a canonical

section of a bundle of equations denoted above by E.

3. Symmetries: Typically the equations have gauge symmetry. The group of gauge

transformations is denoted G.

The main statement, as above, is that the path integral localizes to the moduli space

M := {x : s(x) = 0}/G (3.59)

and, if we include operator insertions, the path integral computes integrals of cohomology

classes over this moduli space.
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The linear operator F = ∇s⊕ V† we encountered above will be a Fredholm operator,

typically associated with an elliptic complex related to the equation. Its index is the

generalization of n − m. Now n and m are infinite, but the difference can be given a

sensible definition by virtue of index theory. When the index is nonzero we will need to

insert operators with the appropriate ghost number in order to get a nonzero path integral.

The basic paradigm here is due to Witten [Cite:ICTP Lectures]. The reference [4]

works out in detail the MQ formalism for many of the popular cohomological topological

field theories.

Examples

1. Donaldson-Witten theory: The xi should be interpreted as connections A ∈ Conn(P )

of a principal G-bundle over an oriented Riemannian four-manifold X. The equations

are s(A) = F + ∗F . The group G = Aut(P ) is the group of gauge transformations.

2. A-type topological sigma model: Now xi are maps from a Riemann surface to a tar-

get space with a symplectic manifold with a compatible almost complex structure.

The equation is the pseudo-holomorphic map equation and the group of gauge trans-

formations is trivial.

3. B-type topological sigma model: Now xi are maps from a Riemann surface to a target

space with complex structure. ♣Check ♣

4. Other examples include supersymmetric quantum mechanics (as used in the path inte-

gral proofs of the index theorem [CITE: ALVAREZ-GAUME; FRIEDAN-WINDEY],

topological gravity, topological string theory, 2d large N YM as a string theroy, Vafa-

Witten theory, Kapustin-Witten theory, instantons for special holonomy manifolds,

...
♣20 minutes from

beginning of section

3.5. ♣

4. Twisted N=2 SYM In Mathai-Quillen Form

4.1 Fields, Equations, Symmetries

The basic data:

1. A compact Lie group G with Lie algebra g.

2. A closed, oriented, Riemannian 4-manifold (X, gµν).

3. A principal bundle P → X

Our space of fields M with coordinates xi will be replaced by the space of connections

A ∈ A := Conn(P ).

Our bundle E →M of equations will be replaced by

E = A× Ω2,+(X, adP ) (4.1)
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and our section will be

s(A) := F+ := F + ∗F (4.2)

The bundle of equations and section is equivariant for the group of symmetries:

G = Aut(P ) (4.3)

So G is the gauge group of the theory and G is the group of gauge transformations. Locally

we can think of elements of G as gauge transformations given by maps X → G.

We can now run the machine of cohomological field theory reviewed in section 3.

According to the formal structure there the path integral over (A,H, φ, φ̄;ψ, χ, η) localizes

to the moduli space of instantons M(P, g). We now explain how this is related to the

physical supersymmetric Yang-Mills theory.

4.2 Relation To Twisted N = 2 Field Theories

We now explain in detail what is meant by topologically twisted N = 2 QFT in four

dimensions.

In physics, an N = 2 QFT is a QFT with a unitary representation of the N = 2

super-Poincaré algebra in 3 + 1 dimensions on its Hilbert space. After Wick rotation to

Euclidean signature this superalgebra has an even part

SP0 = R4 o (su(2)− ⊕ su(2)+)⊕ su(2)R ⊕ u(1)R (4.4)

and an odd part

SP1 = (1; 2; 2)1 ⊕ (2; 1; 2)−1 (4.5)

The first two summand of SP0 are the rotation generators, split according to left- and

right- action of unit quaternions. The subscript “R” on the next two summands means

they are “R-symmetries.” In general, an R-symmetry is a global symmetry that does not

commute with the supercharges.

We have written the odd part as a representation of SP0. The superscript refers to

the u(1)R-charge. There is an equivariant map

Sym2(SP1)→ R4 (4.6)

satisfying the super-Jacobi relation.

Physicists usually denote odd generators by the supercharges Q̄Aα̇ in (1; 2; 2)+1 and QAα
in (2; 1; 1)−1. The indices α, α̇, A all run from 1 to 2 and indicate a doublet in the relevant

factors. In physics the map (4.6) is almost always written as

{QAα , Q̄Bβ̇ } = 2εABσµ
αβ̇
Pµ

{QAα , QBβ } = 0
(4.7)

Moreover, when the Q, Q̄ are operators acting on a physical Hilbert space there is a reality

condition (QAα )† = εABQ̄
B
α̇ . 10

10In the topologically twisted theory this will be violated. In fact, one can show there is no unitary TFT

that reproduces Donaldson invariants [13].
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The fact that there is an su(2)R symmetry is the origin of the name “N = 2” - it

means there are two sets of N = 1 supersymmetry operators.

In an N = 2 field theory the fields will transform in representations of the supersym-

metry algebra. There will be two kinds of field representations that are very important to

our story: The “vectormultiplets” and the “hypermultiplets.”

4.2.1 N = 2 Vectormultiplets

The fields of a vectormultiplet are listed in the following table.

su(2)− ⊕ su(2)+ ⊕ su(2)R u(1)R
Aµ (2, 2, 1) 0

ψ̄Aα̇ (1, 2, 2) −1

ψAα (2, 1, 2) 1

φ (1, 1, 1) 2

φ̄ (1, 1, 1) −2

D (1, 1, 3) 0

1. I have used mathematicians’ notation for representations of su(2), denoting them by

their dimension.

2. The u(1)R quantum number will correspond to “ghost number,” which in turn will

correspond to differential form degree on the moduli space of instantons.

3. In the physical theory the fields satisfy a reality condition, and they are all valued in

the adjoint representation of g. The fields φ and φ̄ are complex conjugates of each

other so we could write φ = B1 + iB2 and φ̄ = B1 − iB2 with B1, B2 scalar fields

valued in g. In the topologically twisted theory φ and φ̄ play very different roles, and

a relation of complex conjugation is never used. The path integral over B1 and B2 is

replaced by a “contour integral” over φ and φ̄.

4. The above quantum numbers under the local Lorentz group tell us how to interpret

the fields of a vectormultiplet for a general principal G bundle P over a general four-

manifold X. In order to do this we must introduce the extra data of an R-symmetry

bundle

PR → X (4.8)

PR is a principal SU(2) bundle. It is extra data needed to put the vectormultiplet

on a general four-manifold X. Then:

1. A is a connection,

2. φ and φ̄ are sections of adP ⊗ C

3. D is a section of adP ⊗W where W → X is a real rank 3 vectorbundle associated

to PR.

4. ψ and ψ̄ are sections of S±⊗SR⊗ ad(P ) where S± are the spin bundles of X and

SR is a spin representation associated to an
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5. In this subject it is quite important to consider four-manifolds X which are not spin,

(since “most” four-manifolds are not spin). 11 When X is not spin the bundles S±

do not exist. When this is the case we should take the R-symmetry bundle to be a

principal SO(3) bundle and we must have

w2(X) = w2(PR) (4.9)

Then the bundles S± ⊗ SR will exist, even if the separate factors do not. This is

the UV analog of the need to introduce spin-c structures in the IR. In fact, we will

take the R-symmetry bundle with structure group SO(3) to be isomorphic to the

principal SO(3) bundle P+ over X associated to the bundle of self-dual forms. That

is, we choose an isomorphism

PR ∼= P+ (4.10)

♣Is there any

interesting

dependence on the

choice of

isomorphism? ♣4.2.2 Topological Twisting

One of the key innovations of Witten’s 1988 paper was the concept of topological twisting.

There are two useful ways of thinking about this topological twisting:

As we saw, in order to interpret the VM fields for a general principal G bundle P → X

over a general four-manifold X we must also introduce an SO(3) R-symmetry bundle

PR with w2(X) = w2(PR). In order to write the action and hence the path integral we

introduce a Riemannian metric gµν on X and we must also introduce a connection ωR on

PR. The Riemannian metric on X defines a Levi-Civita connection on TM and splitting

the connection one-form into (anti-)self-dual components ω± we see that the path integral

will be a function of the three external fields:

Z(ω−, ω+, ωR) =

∫
[dAdψ · · · ]eSphys (4.11)

where

Sphys = −
∫
X

1

g2
0

tr

(
F ∧ ∗F +Dφ ∧ ∗Dφ∗ − 1

4
[φ, φ∗]2vol

)
+

θ0

8π2

∫
X

trF ∧ F + Sphys,Fermi

(4.12)

where tr (XY ) = − 1
2h∨ tr gad(X)ad(Y ) is a positive form on the Lie algebra g, vol is the

volume form induced by the metric gµν , while g2
0 is the bare Yang-Mills coupling, and

Sphys,Fermi are the terms involving Fermions. In fact, the dependence on the connection ωR
on PR only enters in the kinetic energy of the fermionic terms.

Now choose an isomorphism (4.10) as above and restrict the partition function (4.11)

to external fields so that

ω+ ∼= ωR (4.13)

under the isomorphism. Then something amazing happens:

The dependence on both ω− and ω+ drops out!

11See Appendix A for a crash course on spin structures and related matters.

– 22 –



At least, that is what happens at the formal level. To see why it is convenient to review

a second viewpoint on topological twisting (which was the original viewpoint in Witten’s

paper [53]).

By setting ωR = ω+ we are changing the coupling of the theory to the gravitational

field ω±. The coupling to gravity is determined by the Lorentz quantum numbers of the

fields, and this change of coupling to gravity is described by choosing an isomorphic Lorentz

group with Lie algebra

su(2)− ⊕ su(2)′+ (4.14)

where

su(2)′+ := Diag ⊂ su(2)+ ⊕ su(2)R (4.15)

This has the practical consequence that we read off the geometrical interpretation of the

fields simply by taking the tensor product of the appropriate representations of su(2)− and

su(2)R in the above table, viewing them as a representation of a common su(2).

The key motivation for this topological twisting is that we want a supersymmetry

operator which can function as a BRST operator. That means:

1. It must square to zero.

2. It must be a scalar, and so it can be defined on arbitrary Riemannian 4-folds.

This motivates the twisting defined above, and we take

Q = δα̇AQ̄
A
α̇ . (4.16)

Now, given the topological twisting we can recognize the fields in the paradigm of

CohTFT described in section 3:

1. Aµ remains a connection. But from the field ψAα we get an odd 1-form ψµ, and

QAµ = ψµ. These correspond to the multiplets (xi, ψi) of section 3.

2. From ψ̄Aα̇ the symmetric product of 2 ⊗ 2 gives an odd self-dual form χµν of ghost

number −1. This is the same χa we had above.

3. From Dµν we get an even self-dual form of ghost number 0. This is - essentially -

the field Ha we had above. We said “essentially” because after Gaussian elimination

the standard physical auxiliary field D is set to zero (in the absence of matter hy-

permultiplets) whereas in the general CohTFT formalism H is proportional to the

equations.

4. The field ψ̄Aα̇ also gives an odd zeroform η of ghost number−1 from the anti-symmetric

product of 2 ⊗ 2. This pairs with φ̄ to give the “projection multiplet” needed to

construct Ψproj.

5. What remains is φ, playing the role of the degree two generator of symmetric algebra

of the Lie algebra of G, as used in the Cartan model of equivariant cohomology.
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6. One can also take into account BRST gauge fixing, including the usual ghost fields

b, c. This corresponds to using a different model for the projection gauge fermion that

involves the Weil model of equivariant cohomology rather than the Cartan model.

For details see [4].

Now having transcribed the fields in this way we find 12 that when we compare the ♣NEED TO

MODIFY THE

FOOTNOTE NOW!

♣
action produced by the CohTFT formalism with s(A) = F+ with the physical action we

get:

Sphys = Q(Ψ) + 2πi

∫
τ0tr (F ∧ F ) (4.17)

where

τ0 =
θ0

2π
+

4πi

g2
0

(4.18)

and the trace is normalized so that
∫
X tr (F ∧F ) is an integer on every X, and all integral

values are obtained for a suitable principal G bundle P over X. Note that in deriving

(4.17) one uses the identity∫
X

tr (F±)2 = 2

∫
X

(trF ∗ F ± trFF ) (4.19)

which the student should verify!

Now we can give a formal proof of the claim that Z(ω−, ω+, ωR) is metric-independent

when ωR = ω+: On this locus we have a Q-symmetry of the QFT and moreover the action

is Q-exact except for a metric-independent term as in (4.17). Therefore changes in the

metric gµν lead to Q-exact perturbations of the action and should not change the path

integral Z nor the correlation functions of Q-closed operators.

Put differently: In physics the response to a change in metric is measured by the

energy-momentum tensor, but in this case

Tµν :=
1√

det gµν

δ

δgµν
Sphys = {Q,Λµν}. (4.20)

is Q-exact. So correlation functions of Tµν with Q-closed operators should vanish. We

will need to re-examine this argument when we consider wall-crossing of the correlation

functions of operators on manifolds with b+2 (X) = 1. ♣34 minutes from

beginning of section

4 ♣
4.3 A Little Bit About The Moduli Space Of Instantons

If we accept that the general localization formula (3.54) also applies to infinite-dimensional

path integrals, then it asserts that the path integral of the SYM for a vectormultiplet with

gauge group G will localize to an integral over the moduli space of the zeroes of s(A), that

is, the moduli space of ASD connections, aka instantons:

M(P, g) = {A ∈ A|F+ = 0}/G (4.21)

So let us discuss this moduli space a little.

12Section 8.11.3 of [4] noted an extra shift of Ψ relative to Ψloc + Ψproj. This corresponds to a shift of

the one-form V† to take account of the gauge action on the Cartan complex.
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4.3.1 Deformation Complex And Virtual Dimension

We begin by considering the tangent space to the moduli space. The tangent space to the

space of all connections is TAA ∼= Ω1(adP ). That is, any path of connections through A

is, to first order in t, of the form A + tα where α is a globally defined one-form valued in

the adjoint bundle associated to P . A simple computation shows that

F+(A+ tα) = F+(A) + t∇+
Aα+O(t2) (4.22)

This defines an operator ∇+
A : Ω1(adP ) → Ω2,+(adP ). Now, if we consider a path of

connections in the moduli space then a tangent vector α must be in the kernel of this

operator. On the other hand, before dividing by the gauge group we have trivial tangent

vectors to the space of solutions to F+(A) = 0 in A obtained by gauge transformation.

The above considerations lead one to define the first order deformation complex of the

instanton equation:

0→ Ω0(adP )
∇A→ Ω1(adP )

∇+
A→Ω2(adP )+ (4.23)

At least formally, the cohomology of this complex should define the tangent space to the

moduli space of instantons. Indeed, this complex was studied by Atiyah, Hitchin, and

Singer in [1] for exactly this reason. They show it is elliptic, and in fact, if we role up the

complex we just get that of the chiral Dirac operator:

D+ : Γ(S− ⊗V)→ Γ(S+ ⊗V) (4.24)

coupled to the complex vector bundle:

V = adP ⊗ S+ (4.25)

This shows that the moduli space M(P, g) of ASD instantons has virtual dimension

vdimM(P, g) = 4h∨k − dimG(b+2 − b1 + 1)

= 4h∨k − dimG
χ+ σ

2

(4.26)

where h∨ is the dual Coxeter number of g and

k :=
1

16π2h∨

∫
X

TrgF
2 = p1(adP )/4h∨ (4.27)

is an integer (and the second equality holds when g is a simple Lie algebra). We have

chosen the normalization of k so that when X = S4 all integral values are obtained for

a suitable bundle P . The sign is such that for an anti-self-dual instanton k > 0. In ♣Need to check sign

on the second

equality. ♣particular, for SU(2),

vdimM(P, g) = 8k − 3(b+2 − b1 + 1) (4.28)

with

k = − 1

8π2

∫
X

Tr2F
2 (4.29)
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4.3.2 The Virtual Dimension Is The Ghost Number Anomaly

Now, it is interesting to compare this discussion with CohTFT. The complex (4.23) is a

special case of the sequence (3.52) in the general discussion. In particular, the operator F
of that discussion is indeed Fredholm.

Moreover, the fermions in the vectormultiplet have u(1)R charge ±1. Therefore, after

topological twisting, where we identify SR ∼= S+ the Dirac operator, whose index computes

the anomaly for the u(1)R symmetry, is precisely the same as that used to compute the

index of the AHS complex (4.24). Now, recall that u(1)R charge is ghost number - formally

equivalent to the degree of differential forms on M(P, g). Thus:

The index Ind(F) coincides with the anomaly in u(1)R symmetry and is also the same

as the ghost number anomaly.

4.3.3 Some Essential Mathematical Properties Of Instanton Moduli Space

1. The moduli spaceM(P, g) is in general singular and noncompact. Singularities occur

when H0 of (4.23) is nonzero and the connection is reducible or when H2 is nonzero,

and there are obstructions to the deformations of the instanton being true deforma-

tions. However, the generic metrics theorem [15] states that for k > 0 and G = SU(2)

or G = SO(3) then for b+2 (X) > 0 and for generic metrics the moduli space will be

smooth. Therefore, in the general localization formula of CohTFT, equation (3.54)

above, we will have cok(F) = 0 and we don’t need to include the Euler character. In

[22] Kronheimer has generalized some aspects of the generic metrics theorem to the

case of PSU(N) bundles. . ♣SAY MORE ♣

2. At smooth points,

vdimM(P, g) = dimM(P, g) (4.30)

will be the actual dimension of the moduli space M(P, g).

3. The moduli space M(P, g) is also noncompact because instantons can degenerate to

point instantons where TrF ∧ F is a smooth measure plus a sum of Dirac measures.

4.3.4 Instanton Moduli Space As The Q-Fixed-Point Locus

Since we will consider generalizations of the pure VM theory below it is worth looking at

this as a Q-fixed point equation. We have:

Qχµν = i(F+
µν −D+

µν) (4.31)

Eliminating the auxiliary field through Gaussian integration gives D+
µν = 0. The equation

D+ = 0 will change in a very important way when we include hypermultiplets below.

It is interesting to note that the Q-fixed point equations for the other fermions in the

theory signal where there should be trouble: Setting Qψµ = 0 gives

DAφ = 0 (4.32)
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and Qη = 0 gives:

[φ̄, φ] = 0 (4.33)

Equation (4.32) will only have the solution φ = 0 when the connection is irreducible. At

reducible connections we should expect trouble for many reasons. The equation (4.33)

plays an important role in the physical analysis of the LEET as we’ll explain below.

4.4 Observables

To get an interesting path integral we will need to insert Q-closed and gauge invariant

observables. Recall that in the Cartan model

Qφ = 0. (4.34)

Now, φ is adjoint-valued, so not gauge invariant. However, given any invariant polynomial

P on g we can make a Q-closed and gauge invariant observable P(φ). We will call these 0-

observables, because they are local operators defined at points. They form a ring, generated

by the Casimirs of g. For example, for SU(N) we have generating observables:

O(0)
s (℘) := Trφs(℘) s = 2, . . . , N (4.35)

Given any zero-observable O(0) one can define a hierarchy of nonlocal observables using

the descent formalism. The new observables can be canonically constructed by noting that

under topological twisting Qαα̇ → Kµ with

{Q,Kµ} = ∂µ (4.36)

Therefore if we let K := dxµKµ be a one-form-valued supersymmetry operator we can

define O(1) := KO(0) to get a 1-form-valued operator. Now, for any 1-chain γ

Q

∫
γ
O(1) = O(0)|∂γ (4.37)

This implies:

1. A change of location of the point ℘ in O(0)(℘) is Q-exact: If ∂γ = ℘1 − ℘2 then

O(0)(℘1) = O(0)(℘2) +Q
∫
γ O

(1).

2. If γ is a closed cycle then O(γ) :=
∫
γ O

(1) is BRST closed.

Similarly, O(j) := KjO(0) define j-forms on X and if Σj is a closed j-cycle then

O(Σj) :=

∫
Σj

O(j) (4.38)

is a Q-closed and gauge-invariant observable which only depends on the homology class of

Σj . We call these the “j-observables.”
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In our computations below we will mostly be concentrating on the rank one groups

SU(2) and SO(3). In this case all the 0-observables are generated from the ghost-number

= 4 observable:

O(0)
2 (℘) :=

1

8π2
Tr2φ

2(℘). (4.39)

At this point we adopt the following policy: To keep equations readable we will suppress

real coefficients in some equations. They are typically (fractional) powers of 2 and π. When

we do this we use the symbol ∼. When I write “=” I really mean “equals.” The full

expressions with correct coefficients can be found in [38].

Of particular importance in the rank one topologically twisted SYM are the two-

observables, which work out to be

O(2)
2 (Σ) ∼

∫
Σ

Tr(φF + ψ ∧ ψ) (4.40)

To lighten the notation we henceforth write:

O(0)
2 (℘)→ O (4.41)

Note that since the dependence on the point ℘ is Q-exact we can drop the position ℘ from

the notation. Similarly, we just write:

O(2)
2 (Σ)→ O(Σ) (4.42)

Now we consider correlation functions of these operators in the topologically twisted

theory - which we regard as the physical theory with ωR = ω+. Our notation then is that

- for any expression F in the fields (typically a product of operators) we write〈∏
i

Fi

〉
T

:=

∫
[dAdψ · · · ]eST F (4.43)

for the path integral of the N = 2 field theory T evaluated for ωR = ω+.

Let us now define “Witten polynomials” to be polynomial functions on the homology

H0(X)⊕H2(X) with real coefficients by

PW (℘`Σr) :=

〈
O`O(Σ)r

〉
T

(4.44)

We observe that

1. They are complex-valued polynomials on the homology that are formally independent

of the metric and hence depend only on the smooth structure.

2. Because of the ghost number anomaly PW (℘`Σr) can only be nonvanishing for

4`+ 2r = vdimM(P, g) (4.45)

Remarks:
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1. Note well that neither η nor χ appears in the observables. This will play a very

important role in the evaluation of the u-plane integral below.

2. We stress that even with topological twisting, i.e. setting ωR = ω+, the correlation

functions of the theory on X of almost all operators will depend on the metric (i.e.

on the spin connections ω±). For example if we were to consider correlators of

TrFµνF
µν or Tr(DµF

µν)2 and so on there would be metric dependence. Physicists

speak of a “topological sector of the theory” - meaning that one only considers Q-

closed observables such as those described above.

4.5 The Donaldson Polynomials

We first briefly recall the Donaldson polynomials: We begin with Donaldson’s µ map:

H∗(X)→ H∗(M) (4.46)

from the homology of X to the cohomology ofM. We briefly recall Donaldson’s construc-

tion.

Let us recall Donaldson’s formulation: We consider the principal G bundle and its

classifying map f :

P ×A/G

��
(P ×A)/(G× G)

f // BG

(4.47)

If we choose any invariant polynomial P on g of degree d, thus producing a class

$ ∈ H2d(BG) then we can define the slant product :

µD(Σj) :=

∫
Σj

f∗($) ∈ H2d−j(A/G) (4.48)

This is a cohomology class which can be restricted to M ⊂ A/G, and it only depends on

the homology class of Σj .

For SU(2) we choose $ to be a generator of H4(BSU(2);Z) ∼= Z and thereby define

forms: ♣Probably better

to use Σ instead of

S for surfaces. ♣

℘→ µD(℘) ∈ H4(M) (4.49)

Σ→ µD(Σ) ∈ H2(M) (4.50)

Now we recall that Donaldson defines his polynomials on H0(X)⊕H2(X) by showing

one can choose compactly supported representatives of the cohomology classes and defining

the value on the monomial ℘`Σr as

PD(℘`Σr) :=

∫
M
µD(℘)`µD(Σ)r (4.51)

That is, the coefficients are given by intersection numbers on moduli space.

From the rigorous mathematical analysis we know that:

– 29 –



1. The PD(℘`Σr) are rational number and independent of the metric, except for X such

that b+2 (X) ≤ 1. When b+2 (X) > 1 the moduli space M(P, g) is smooth for generic

metrics. This is known as the generic metrics theorem of Freed and Uhlenbeck [15].

Thus, in those cases, they define smooth invariants of X. When b+2 (X) = 1 the

polynomials are only piecewise constant in the space of metrics and jump across real

codimension one walls. 13

Remark: One can give a precise argument relating O and O(Σ) to µD(℘) and µD(Σ)

following a discussion of Baulieu and Singer. It uses a model for the G-equivariant coho-

mology of A and the “universal connection” on

P ×A → X ×A/G (4.52)

See [4], §8.8 for details. Baulieu and Singer argue that one can identify

F = F + ψ + φ (4.53)

with the curvature of the universal connection, decomposed according to form degree along

X and A/G, respectively. Then the slant product on

TrF2 (4.54)

links Donaldson’s map H∗(X)→ H∗(M(P, g)) to the descent formalism map from H∗(X)

to the Q-cohomology H∗Q.

Certainly it is straightforward to show that when computing quantum correlation

functions of φ we can identify it with the components of the curvature of the universal

connection along A/G.

In the final statement of the localization formula (3.54) above we had a map from

gauge-invariant equivariantly closed classes Ô to differential forms ωÔ on M = Z(s)/G,

putting all these together we have a commutative diagram for each invariant polynomial

of degree d on g:

H∗(X)
descent //

µ
%%

H2d−∗
Q

Ô→ωÔ
��

H2d−∗(M)

(4.55)

Thus, we are naturally led to Witten’s main claim in his 1988 paper:

Under the above correspondence, the physical correlation functions of Q-closed opera-

tors coincide with Donaldson polynomials - up to an overall constant. That was the goal of

Witten’s 1988 paper: The 0- and 2 - observables precisely correspond to Donaldson’s forms

ωD(℘) and ωD(Σ).

13When QX is definite we can choose orientation so that b+2 (X) = 0. In that case the moduli space

need not be smooth. In particular, taking k = 1 it is a 5-dimensional bordism between X and a set of

singular points corresponding to the reducible connections where the moduli space is locally a cone on CP2

or CP2. This is precisely how Donaldson proved that if QX is definite then it must be diagonalizable over

the integers.
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4.6 The Donaldson-Witten Partition Function

In physics it is extremely natural to assemble a collection of correlation functions into

a single generating function corresponding to perturbing the action of the theory by the

observables in question. We call this generating function the Donaldson-Witten Partition

function:

ZDW (p,Σ) :=
〈
epO+O(Σ)

〉
T

(4.56)

We may expand this as a formal series to write:

ZDW (p,Σ) =
∑
`,r≥0

p`

`!r!

〈
O`O(Σ)r

〉
T

(4.57)

Each correlation function at fixed `, r is a sum over instanton sectors: Thus we sum over

isomorphism classes of principal SU(2) bundles P . However, due to the selection rule from

the u(1)R anomaly we know that only the instanton sector with

4`+ 2r = vdimM(P, g) (4.58)

can possibly contribute. We can thus sharpen Witten’s main claim as follows: For T given

by the SU(2) SYM theory,

ZDW (p, s) :=
〈
epO+O(Σ)

〉
T

=
1

2
Λ−

3
4

(χ+σ)
∑
`,r≥0

p`sr

`!r!
Λ2`+|r|PD(℘`Σr) (4.59)

Here we must make several remarks:

1. We have introduced a parameter Λ which is implicit in the path integral of the

quantum field theory. It is needed in order to define the quantum theory. We will

comment more on it below. In most discussions of the physical approach to Donaldson

theory it is set to one, but this is, in fact, misleading.

2. The path integral in (4.59) is a generating functional for the correlation functions

of O and O(Σ). As with all path integrals in an SU(2) gauge theory we must sum

over bundles with connection. The sum over bundles is also known as the sum

over instanton sectors. For a given insertion of O`O(Σ)r only one term in the sum

over instanton sectors will contribute, namely the one satisfying the ghost-number

selection rule (4.45).

3. Mathematical sticklers will insist that a polynomial on a vector space is valued in the

symmetric algebra of the dual of that vector space. Indeed, we should think of p as

dual to the homology class [℘] ∈ H0(X). In this spirit, O(Σ) should be interpreted

as follows: Choose a basis [Σα] for H2(X;Z) and a dual basis sα. Then

O(Σ) = sαO(Σα) (4.60)

– 31 –



and the generating function ZDW (p,Σ) becomes a formal power series in p and sα.

The sum over r ≥ 0 is a sum over a multi-index ~r = (r1, . . . , rb2) and |r| =
∑
rα so

our shorthand means:∑
r≥0

Λ|r|
sr

r!
O(Σ)r :=

∑
rα≥0

∏
α

(Λsα)rα

rα!
O(Σα)rα (4.61)

The coefficient of any term in the series is well-defined, but there is no claim that

the full sum makes sense as a function on the homology of H∗(X) rather than as a

generating series of polynomials on H∗(X). We will often be quite sloppy about this

point and just speak of ZDW (p,Σ).

4. We are working with an SU(2) gauge theory, but the fields are in the adjoint repre-

sentation so it makes sense to define the path integral for a “twisted SU(2) bundle,”

that is, an SO(3) bundle which does not lift to an SU(2) bundle. A principal SO(3)

bundle over X has two characteristic classes, ξ = w2(P ) ∈ H2(X;Z2), which we

will refer to as the ’t Hooft flux, and the instanton number k ∈ H4(X;Z) ∼= Z. In

the generating function we sum over the instanton number k, as appropriate for a

path integral of an SU(2) gauge theory, but there is no difficulty extending the path

integral to fields valued in adP where there is a nonzero ’t Hooft flux. We will denote

the corresponding generating function

ZDW (p,Σ)→ ZξDW (p,Σ) (4.62)

We stress that we are doing SU(2) gauge theory: We do sum over instanton number,

but not over ξ. In SO(3) gauge theory we would also be obliged to sum over ξ.

5. The generating function is closely related to the generating function introduced by

Kronheimer and Mrowka in [21]:

ZξKM (p, s) :=
∑
`,r≥0

p`sr

`!r!
PD(℘`Σr) (4.63)

The relative overall factor of 1
2 is due to the fact that physicists divide by the order

of the center of SU(2), which does not act effectively on the fields.

6. As a simple example, for X = K3 the usual K3-surface we can take ξ = 0 and

ZKM (p, s) = sinh

(
1

2
s2 + 2p

)
(4.64)

♣Proper reference?

Kotschick-Morgan

♣

7. Of course, whenX is not simply connected we can extend this to include 1-observables.

♣End this section:

52 minutes from

section 4.3. ♣

– 32 –



4.7 Generalizations: Lagrangian N=2 Theories

The N=2 SYM theory with gauge group SU(2) is just one of a much larger class of N = 2

QFT’s. It will be quite fruitful to look at some of the generalizations.

The most general Lagrangian N=2 QFT has two kinds of field representations of the

N = 2 superPoincare algebra: Vectormultiplets and Hypermultiplets.

The theories with VM’s and HM’s can again be topologically twisted - and again the

resulting theory fits in the general framework of cohomological TFT described in section

3.

4.7.1 Hypermultiplets

There is another field multiplet - the hypermultiplet

Now, in N=2 SYM theory it is possible to include another kind of field multiplet,

known as a hypermultiplet. A hypermultiplet in a theory with gauge group G is defined

by choosing a quaternionic representation W of G. For simplicity, and with some loss of

generality, we assume that the representation can be written in the form

W = R⊕R∗ (4.65)

where R is a complex representation of G. The field multiplet can be viewed as an N=1

chiral superfield transforming in the representation R ⊕ R∗. An N = 1 chiral superfield

has a leading component which is just a complex scalar field, so we have complex scalars

q ⊕ q̃ transforming in the R⊕R∗ of G. In a hypermultiplet if we consider instead

M := q ⊕ q̃∗ (4.66)

then we get a doublet of scalars under SU(2)R transforming in the representation R. (Note

that SU(2)R does not commute with the supercharges, so M is not a bottom component

of an N = 1 chiral superfield.)

Now, when we topologically twist the theory as mentioned above a doublet under

SU(2)R becomes a spinor under SU(2)′+. Therefore, in the topologically twisted theory on

X the scalar fields in a hypermultiplet become sections:

M ∈ Γ(S+ ⊗R) M̄ ∈ Γ(S+ ⊗R∗) (4.67)

where R→ X is now a vector bundle associated to P → X by the representation R. (The

fermions in a hypermultiplet are invariant under SU(2)R and therefore are also sections of

a spin bundle times R.)

This raises again the important issue that it is important to be able to formulate the

theory X is not spin, w2(X) 6= 0. The resolution is the same as it was for putting the

vectormultiplet on a general four-manifold: We regard S± as “twisted” bundles (in the

sense of twisted K-theory) and multiply them by “twisted” bundles R so that S+ ⊗ R

exists as an honest bundle. So we must take w2(R) = w2(X) which might require us to

choose a certain ’t Hooft flux ξ for P .

Auxiliarly fields D are valued in g⊗R3 and form an SU(2)R triplet. When we consider

the Lagrangian of VM + HM with the HM in a quaternionic representation W Gaussian
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elimination of the D-field identifies it with the quaternionic moment map µ(M) ∈ g∨⊗R3

defined by the action of G on W . Choosing a complex structure so that W ∼= R⊕ R̄ with

M = q ⊕ q̃ the quaternionic moment map is given by the quadratic expression:

T · µr(M) = 〈q, T · q〉 − 〈q̃, T · q̃〉
T · µc(M) = q̃ · Tq

(4.68)

On the LHS we use the natural pairing of g with g∨ and on the RHS we use the Hermitian

structure on R and the corresponding identification of R̄ ∼= R∨. Since the action of the

QFT uses an invariant metric we can identify g ∼= g∨ and this identification is used in doing

the Gaussian integral on auxiliary fields to set D = µ.

It now follows that in the topologically twisted theory the D-field defines a map

µ : Γ(S+ ⊗R)→ Γ(Λ+ ⊗ adP ) (4.69)

from hypermultiplet scalar fields to the self-dual two-forms on X valued in g. Now recall

that δχ = i(F+ − D+). Together with the variation of fermions in the HM, the Q-fixed

point equations work out to be

F+ = µ(M)

/DM = 0
(4.70)

where /D : Γ(S+ ⊗ R) → Γ(S− ⊗ R) is the “spin-c Dirac operator coupled to R.” These

are known as the generalized monopole equations. ♣End this section:

18 minutes from 4.7

. ♣
4.7.2 Charge One Hypermultiplets In A G = U(1) Theory: Spin-c Structures

And The Seiberg-Witten Equations

A special case of the generalized monopole equations has proven to be of fundamental

importance in four-manifold (and three-manifold) theory. We take the gauge group G =

U(1) and the representation R ∼= C to be the defining representation of charge +1.

As discussed above, when X is not spin we must make sense of S+ ⊗R. In this case

we must choose a Spin-c structure.

The way the physicists say this is that we choose a line bundle L2 which only has a

square-root locally, but L does not exist globally. We require that the first Chern class

satisfy

w2(X) = c1(L2)mod2 (4.71)

and then take M ∈ Γ(S+⊗L). Neither S+ nor L exist globally because of −1-signs in the

cocycle relation for the transition functions, but the product does exist as an honest vector

bundle. Mathematicians usually think of L2 as the determinant of a rank two bundle which

we would write as:

Det(S+ ⊗ L) ∼= L2 (4.72)

Note that since the line bundle L need not exist we cannot write c1(L2) = 2c1(L), as would

be the case for ordinary line bundles, and hence c1(L2) ∈ H2(X;Z) is not necessarily

divisible by two! When it is divisible by two, we can find a spin structure.

– 34 –



The presentation we have just given makes many a mathematicians gag. In Appendix

A.3 we give a mathematically more respectable description of a Spinc structure.

Let us write out the generalized monopole equations in this case. For the U(1) case,

in indices if R is the charge q representation of U(1) then after topological twisting the

D-term is the self-dual form:

µ(M) = qM̄(α̇Mβ̇) (4.73)

where we identify self-dual forms with symmetric tensors Sym2(W+). In this case the

generalized monopole equations are the famous Seiberg-Witten equations 14 associated to

a spin-c structure:

F+

α̇β̇
= M̄(α̇Mβ̇)

Dαβ̇M
β̇ = 0

(4.74)

As we have noted, every orientable four-manifold X is spin-c and therefore the Seiberg-

Witten equations can be written on any smooth X.

Remark: In our u-plane computations below we will encounter sums over spin-c

structures, in particular we will encounter theta functions that are associated with the

torsor of spin-c structures. We will be a little sloppy and ignore torsion classes and simply

identify a spin-c structure with an element

λ ∈ Γw :=
1

2
w̄2(X) + H̄2(X) (4.75)

where w̄2(X) is a fixed choice of integral lift of w2(X). In terms of the above discussion

2λ = c1(L2) = c1(detW±).

4.7.3 Generalizing The Donaldson-Witten Partition Function
♣Say more here.

Explain some of

what Kronheimer

did. ♣
The general classical N=2 field theory is defined by

1. Choosing a compact Lie group G. We take the VM for this group.

2. Choosing a quaternionic representation W of G.

3. Choosing “mass parameters”.

One can then write a classical action. The theory can be topologically twisted (subject

to restrictions on the bundles discussed above for non-spin-c manifolds) and the topolog-

ically twisted theories have actions that fit in the cohomological field theory paradigm of

section 3. 15

Given the above remarks, it would seem that there is a vast generalization of Donaldson

theory. However, physics puts a strong constraint on the data for which we can expect

to find reasonable answers: The underlying physical QFT should be well defined. The

quantum field theory is thought to be a perfectly well-defined QFT so long as the beta

14They are also sometimes called the “monopole equations.”
15The “mass parameters” are defined by a choice of element of the Lie algebra of the subgroup of the

orthogonal group of W that commutes with the action of the gauge group. After topological twisting these

parameters can be interpreted as equivariant parameters for the action of global symmetries on the moduli

space of Q-fixed points. This is discussed in [Labastida-Marino], [26][24]

– 35 –



function for all the gauge couplings is not positive. This will never happen if the Lie algebra

of G has abelian summands, and so we should only attempt to define generalizations for

G which is semi-simple.

If G is simple and W ∼= R⊕ R̄ then the beta function is proportional to

β = −2h∨ + C2(R) (4.76)

where C2(R) is the quadratic Casimir of R, normalized so that C2(g⊗ C) = 2h∨.

The simplest generalization to consider is the pure VM theory for a simple Lie group

G. In this case the path integral should localize to the moduli space of ASD instantons

for group G. There are more observables generated by the Casimirs on the Lie algebra.

At least at the formal level we fully expect the obvious generalization of Witten’s basic

identity (4.59) to hold.

On the mathematical side, this generalization appears to be highly nontrivial: The ASD

moduli spaces have additional singularities. Even for SU(N) with no hypermultiplets there

is no known analog of the “generic metrics theorem” of Freed-Uhlenbeck. Nevertheless, in ♣Or is it known to

be false...? ♣
[22] P. Kronheimer gave a definition of the SU(N) invariants for all N . Further rigorous

mathematical treatments of higher rank invariants can be found in [5]. 16 Physics suggests

it can be done for any simple Lie group. The “answer” - worked out using the IR methods

described below for the SU(N) theory has been given in [31]. There is a generalization of

the “Witten conjecture” and one may expect it to generalize further for arbitrary compact

simple Lie group, although this has not yet been carried out.

Even more generally, one should be able to include hypermultiplets so long as the

beta function (4.76) is nonpositive. Formally, the correlators of Q-closed observables of the

twisted theory are computing intersection numbers on the moduli spaces of solutions to the

generalized monopole equations (4.70). For the special case of G = SU(2) and R = 2 is

the fundamental representation of SU(2) the moduil space has been discussed extensively

by P. Feehan and Leness [14]. The mathematical technicalities they have encountered are

formidable. Nevertheless, the “answer” in terms of the IR theory has in fact been worked

out for G = SU(2) and R = Nf2 for Nf ≤ 4 in [38]. 17 It might be illuminating to

work out other examples of the IR theory for UV theories with nontrivial hypermultiplet

representations. We will return to this and other generalizations suggested by physics at

the end of the notes.

4.8 So, What Good Is It?

Witten’s 1988 paper introduced the idea of a topological field theory and in particular the

idea of a topological twisting. This led to a beautiful quantum-field-theory interpretation

of Donaldson’s polynomials.

16For the case when X is an algebraic surface higher rank invariants have also been discussed from the

point of view of algebraic geometry in [36].
17The reason Feehan and Leness study this moduli space is not so much to do intersection theory on it,

but rather to use it as a bordism between the moduli space of SU(2) ASD connection and the Seiberg-

Witten moduli space. This is one approach one might take to giving a mathematically rigorous proof of

the relation between Donaldson and Seiberg-Witten invariants.
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With 20-20 hindsight the interpretation naturally suggests the Seiberg-Witten equa-

tions as a natural outcome of the QFT approach, simply because it is natural to couple

the VM to HM’s. In fact, some physicists DID consider the topologically twisted theory

coupled to hypermultiplets. (See p 77 of [24] and references 52,53,54 cited there.) The ♣Also

Karlhede-Rocek. ♣
generalized monopole equations can, generously interpreted, be considered to be implicitly

defined in those papers, but they were not written out explicitly, nor was the geometrical

content of the equations elucidated. Nobody before Witten seems to have realized the

great power of the U(1) version of the equations. ♣Last sentence out

of place? ♣
In the years following 1988 people asked: “But does the interpretation actually lead

to an effective way of evaluating the Donaldson polynomials?” This was not at all clear

and several naysayers took a negative attitude. There was certainly a certain amount of

skepticism, if not outright hostility, until the fall of 1994.... ♣End this section:

25 minutes from

4.7.2 . ♣

5. Mapping The UV Theory To The IR Theory

5.1 Motivation For Studying Vacuum Structure

For topological invariant correlation functions the partition function ZξDW (p,Σ) - which is

defined by the UV path integral - should be computable in terms of a low energy effective

action:

ZξDW (p,Σ) :=
〈
epO(℘)+O(Σ)

〉
UV

= ZξIR(p,Σ) :=
〈
epOIR(℘)+OIR(Σ)+···

〉
IR

(5.1)

The reason is that we can scale up the metric: We replace:

gµν → tgµν (5.2)

and we take the limit t→ +∞.

On the one hand, changing t is a Q-exact change in the path integral: It cannot change

the integral.

On the other hand, from the physical point of view, we are stretching lengths to

infinity, and correspondingly scaling energies to zero. That is, we are studying dynamics

infinitesimally above the vacuum. Therefore, it must be possible to evaluate the partition

function in the low energy effective theory. (By definition of a LEET!!)

Our goal is going to be to make (5.1) as explicit as possible. We are going to see it

is a generalization of both the Kronheimer-Mrowka structure theorem [21] and Witten’s

conjecture [55].

Remarks:

1. We will find that N=2 theories on R3×R do not have a unique quantum vacuum but

rather a moduli space of quantum vacua. When evaluating the path integral of the

theory on a compact manifold X one must integrate over all the vacua. The reason

is that quantum fluctuations lead to tunneling between these vacua on a compact

manifold. The tunneling amplitude is exponentially suppressed in the volume of X

and goes to zero when X is noncompact. In that case one fixes a particular vacuum

at infinity as part of the boundary conditions. ♣Mathematicians

find this a very

difficult point to

grasp. Further

explanation would

be good here. ♣
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2. The LEET involves a nonlinear sigma model whose target space is the moduli space

of quantum vacua just alluded to. Thus, integration over fields in the LEET involves

integration over these quantum vacua.

3. In general a LEET is not renormalizable, and the LEET describing N=2 field theories

is no exception. Thus, a great deal needs to be said about the meaning of such a

path integral. Fortunately, in the topological field theory one needs to work at most

at one-loop order in perturbation theory about a vacuum, and hence we can in fact

evaluate the path integrals of these non-renormalizable field theories.

4. We will also need to have a precise correspondence of Q-closed operators

O(℘)→ OIR(℘) (5.3)

O(Σ)→ OIR(Σ) (5.4)

between the UV and IR theories. Roughly speaking, this is the mapping of operators

under RG flow to the IR. Although theQ-closed operators form a (graded)commutative

ring the RG map is not a ring homomorphism. This is the origin of the + · · · in the

exponential on the RHS of (5.1) and will be filled in below. It has to do with a

subject known as “contact terms.”

5.2 The Classical Vacua And Spontaneous Symmetry Breaking

We now study the theory on M1,3 with Minkowski metric.

The “vacua” are the minimal energy states in the Hilbert space. In a relativistic

theory, they will be relativistically invariant and thus provide points around which we can

do perturbation theory in the Wick-rotated Euclidean theory.

The Hamiltonian of the general classical Lagrangian with Lie group G and HM repre-

sentation W = R⊕ R̄ is a sum of nonnegative terms. The classical vacua of the theory all

have zero energy. Putting various derivative terms to zero puts the gauge fields to zero and

sets the scalar fields to be constant as a function of position. We will write the constant

values as φ, q, q̃. They are not to be confused with the fields of the same name, which

are functions on M1,3. (These constant values should be thought of as “classical vacuum

expectation values.”)

Setting the potential energy terms to zero we find 18

[φ, φ∗] = 0 (5.5)

µ(M) = 0 (5.6)

φ · q = 0 φ∗ · q̃∗ = 0 (5.7)

The solution set V of pairs (φ,M) that satisfy (5.5)-(5.7) is a G space and the moduli space

of classical vacua is, by definition:

MClassical := V/G (5.8)

18We have put mass parameters to zero.
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Let us describe the space MClassical a little. Equation (5.5) says that φ is semisimple.

It can therefore be conjugated to a maximal torus t⊗ C. In general its vev spontaneously

breaks the gauge symmetry:

G→ Stab(φ) (5.9)

When φ is both semisimple and regular the stabilizer is just the normalizer of the Cartan

torus and the unbroken gauge group is just the maximal torus T whose Lie algebra is t. In

this case equations (5.6) and (5.7) set M = 0. Thus a subset ofMClassical can be identified

with

Mclassical
Coulomb = (t⊗ C−∆)/W (5.10)

where W is the Weyl group ∆ is the subset of semisimple but non-regular elements. This

is known as the Coulomb branch of vacua. It is called the “Coulomb branch” because the

unbroken abelian gauge symmetry means that there are massless abelian gauge fields in

the LEET and they will exert electromagnetic forces on charged particles in the theory.

In particular, two stationary electrically charged particles will feel a long-range Coulomb

force.

When φ ∈ ∆ there are still solutions of the vacuum equations, but some of the non-

abelian gauge symmetry is restored, and it is also possible have nonzero values of M . The

extreme case of this is the point φ = 0. If there are no HM’s then the gauge symme-

try is fully restored. If there are HM’s then there is a branch of vacua which is just the

hyperkahler quotient of W . This is known as the Classical Higgs branch:

Mclassical
Higgs = W////G (5.11)

It is called the Higgs branch because if M is generic then the solution to (5.7) forces φ = 0

and completely breaks the continuous gauge symmetry. Thus the gauge symmetry has

been Higgsed.

In general MClassical is a complicated stratified space

MClassical = qαMClassical
α =MClassical

Coulomb q · · · qMClassical
Higgs (5.12)

with the closures of the various components intersecting in complicated ways. The other

components have φ ∈ ∆ − {0} so it is semisimple but not regular and M is also nonzero.

These are called “hybrid branches” and are not much less well investigated in the literature.

Example: Our main example is G = SU(2) with no matter hypermultiplets. In the

classical theory the vacuum energy is V = Tr([φ∗, φ])2. It is minimized by normal matrices

so we can gauge φ to the form

φ =

(
a 0

0 −a

)
(5.13)

uniquely up to Weyl transformation which takes a→ −a. The classical vacua are parametrized

by the gauge invariant parameter

uclassical = Trφ2 = 2a2 (5.14)
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uclassical can take any value in the complex plane, and conversely, a choice of v uniquely

determines a classical vacuum of the theory on R4. At every point on the uclassical-plane

with a 6= 0 the gauge group is spontaneously broken:

SU(2)→ U(1) (5.15)

and the W± bosons (i.e. the gauge fields associated with the off-diagonal generators) have

mass proportional to |a|. Classically, at uclassical = 0, these gauge bosons become massless,

the stabilizer jumps to Stab(φ) = SU(2) and the full SU(2) symmetry is restored. Thus

for SU(2):

Mclassical
Coulomb = C− {0} (5.16)

FIGURE: COMPLEX uclassical-PLANE. POINT AT ORIGIN HAS ENHANCED GAUGE

SYMMETRY. Caption: The classical Coulomb branch for G = SU(2) with no hypermulti-

plets is C− {0} shown here at the complex uclassical-plane. At uclassical = 0 the nonabelian

SU(2) gauge symmetry is unbroken. ♣End this section:

21 minutes from 5 .

♣

5.3 Quantum Vacua And The LEET

A key point is that:

In the weakly coupled quantum theory the classical vacuum degeneracy is not lifted: But

quantum effects can change the description of low energy fluctuations around that vacuum.

Moreover, purely quantum-mechanical branches of vacua can emerge due to strong

quantum effects.

The argument that the classical vacuum degeneracy is not lifted goes like this: Choose

a classical vacuum and define the theory in perturbation theory by expansion around

that vacuum. Nonperturbative effects are defined by defining the theory in perturbation

theory around instanton solutions. This quantum theory has a LEET description. Since

the N=2 supercharges are integrals of conserved currents the supersymmetry will not be

broken by RG flow to the IR so long as there is no supersymmetry anomaly - and there is

absolutely no evidence for a supersymmetry anomaly. Therefore, we assume there is in fact

no supersymmetry anomaly in the quantum theory. Therefore the LEET will be described

by an N=2 supersymmetric effective action.

However: N=2 supersymmetric actions do not allow for the possibility of spontaneous

supersymmetry breaking N = 2→ N = 0, so the original vacuum must have been an exact

quantum vacuum.

(It is crucial that we have N = 2 supersymmetry here. In N = 1 supersymmetric

actions one can induce a superpotential and/or an FI parameter, either of which can break

supersymmetry.)

How do we describe the LEET for the theory associated with a classical vacuum state?

As long as no new quantum states become massless as functions of the vacuum pa-

rameters, we can describe the LEET using the low energy degrees of freedom obtained by

expanding around the classical vacua.

In order to implement this let us assume for simplicity that we are working with a

single VM with compact simple group G. Then in the usual quantization of the theory
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one must introduce a mass scale Λ at which the coupling becomes strong. One introduces

a bare coupling constant ♣Need to give

normalization of

YM term for this to

be meaningful. ♣
τ0 =

4πi

g2
0

+
θ0

2π
(5.17)

and a cutoff on perturbative Feynman diagrams, Λ0, and defines a quantum theory with

parameter Λ by holding the combination:

Λ2h∨ := Λ2h∨
0 e2πiτ0 (5.18)

fixed as Λ0 →∞ and simultaneously g0 → 0. 19

Now, with a scale Λ in the problem the theory is effectively weakly coupled when u

is far from the nonregular locus - in the natural metric. For SU(2) this is the criterion

|u| � |Λ2| and one can reliably compute the low energy spectrum of fluctuations around a

vacuum on the classical Coulomb branch.

Applying this reasoning to our main example of G = SU(2) with no HM’s we can say

that, at least for |u| � |Λ2|, we can parametrize the quantum vacua |Ω(u)〉 by

2u := 〈Ω(u)|O|Ω(u)〉 = 〈Ω(u)|Tr2φ
2

8π2
|Ω(u)〉 (5.19)

at least so long as we know there are no extra massless states in the quantum theory.

The normalization factor of two on the left-hand-side of the equation is meant to facilitate

comparison with the mathematical results.

In their breakthrough paper in the spring of 1994 Seiberg and Witten proposed - based

on physical reasoning such as semiclassical monodromy and the mass gap and confinement

of the N = 1 SYM obtained by perturbing with a superpotential W = mTrφ2 - that in

the quantum theory the Coulomb branch vacua is not C − {0} but rather the entire u-

plane. That is, for every point on the u plane the gauge group is spontaneously broken

SU(2) → U(1). However, something special does happen at u = ±Λ2. At these points,

indeed, certain quantum states associated with “BPS particles” become massless and new

“quantum Higgs branches” emerge. For the vacua on R4 this is just the HK quotient of

W = C⊕C and is a single point. On a general four-manifold X we will get vacua associated

with the solutions of the Seiberg-Witten equations. 20

The vacua of the SU(2) theory may thus be pictured as follows:

FIGURE: COMPLEX u-PLANE. TWO SINGULAR POINTS. Caption: Two special

points at which there are new massless HM’s are at u = ±Λ2. In the classical limit Λ2 → 0

these points coalesce and we recover the classical picture of the vacua. In the quantum

theory there is an important order-of-limits issue: At any point u 6= ±Λ2 on the u-plane

the LEET is described by a U(1) N=2 abelian gauge theory. However, at a small but

nonzero energy scale the region in a neighborhood of u = ±Λ2 is only accurately described

by a U(1) N=2 abelian gauge theory coupled to a charge one hypermultiplet. ♣11 minutes from

section 5.3. ♣
19This needs to be modified in the presence of matter. We replace −2h∨ by β defined in *** above.
20On a general four-manifold we are abusing the term “vacua.” However, on X = Σ3 × R we do have a

notion of vacua. These would be related to the moduli space of solutions to the Seiberg-Witten equations

on Σ3. In the quantum theory we would consider wavefunctions on this space. The resulting Hilbert space

H(Σ3) should be related to one of the flavors of Seiberg-Witten-Floer homology.
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5.3.1 The General N=2 Supersymmetric LEET Describing Fluctuations On

The Coulomb Branch For Theory On R4

The general N=2 LEET with only abelian vector multiplets in an abelian gauge group T

with Lie algebra t is described by a nonlinear sigma model whose target space is

B = (t⊗ C) /W (5.20)

The description will be valid on the complement B∗ of some codimension one subvarieties

where new massless states beyond those described by the abelian vectormultiplets appear

in the spectrum.

An important theorem of N = 2 supersymmetry is that the general action of the LEET

for fields mapping into B∗ is defined by the data of a family of abelian varieties over B∗

π : A→ B∗ (5.21)

together with a holomorphically varying N = 2 central charge function Z. It should be

viewed as a holomorphic function on the total space:

Z : Γ→ C (5.22)

which is linear on the fibers. Here Γ is a local system of lattices

Γ→ B∗ (5.23)

where the fibers Γu := H1(Au;Z). The lattices have an anti-symmetric integral-valued

“Dirac-Schwinger-Zwanziger” pairing. The local system typically has nontrivial mon-

odromy.

In any monodromy-free neighborhood U of a point u ∈ B∗ we may choose a maximal

Lagrangian decomposition of the fibers of Γ:

Γu = Γelectric
u ⊕ Γmagnetic

u u ∈ U (5.24)

Such a choice is known as a choice of duality frame.

The reason for the labels “electric” and “magnetic” on the sub-lattices of Γu in equation

(5.24) is that the lattice Γu has the physical interpretation of being the lattice of electric and

magnetic charges under the unbroken abelian gauge symmetry. The integral anti-symmetric

pairing has the interpretation of being the Dirac pairing of electric and magnetic charges.

This follows from the Lagrangian described below together with abelian S-duality.

Associated to any choice of duality frame is a system of local coordinates

aI = Z(αI) (5.25)

where I runs over the rank of Γu. Moreover, N = 2 supersymmetry provides a locally-

defined holomorphic function F , known as the prepotential such that

∂F
∂aI

= Z(βI) (5.26)
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These quantities are usually defined to be aD,I . Finally, the period matrix of the abelian

variety Au with respect to the duality frame is

τIJ :=
∂aD,I
∂aJ

=
∂2F

∂aI∂aJ
(5.27)

Now, in terms of all this data the action of the LEET is given by

SIR =

∫
i(τIJF

−,IF−,J + τ̄IJF
+,IF+,J) + ImτIJda

I ∗ dāJ + · · · (5.28)

where all terms in the + · · · involve fermions and nonlinear interactions defined by τIJ and

its derivatives.

The general result of defining the quantum theory of the theory of a vector-multiplet

for compact simple group G around a weakly-coupled vacuum on the Coulomb branch is

that there is a distinguished family of duality frames with special coordinates a ∈ t ⊗ C
and the “prepotential” is

F = Fclassical + F1−loop + F instanton (5.29)

Fclassical + F1−loop =
i

4π

∑
α∈∆+

〈α, a〉2 log
〈α, a〉2

2Λ2
(5.30)

where ∆+ is a set of positive roots of g. To separate this into classical and 1-loop contri-

butions we use equation (5.18) and get:

Fclassical = const.τ0(a, a) (5.31)

♣Work out

constant. ♣
The nonperturbative corrections have the form:

F instanton =

∞∑
k=1

Fk(〈α, a〉−1)Λ2kh∨ (5.32)

where Fk is a homogeneous polynomial on |∆+| variables of degree 2kh∨ − 2.

Remarks:

1. Using techniques developed in [39, 40], Nekrasov and collaborators have computed

these homogeneous polynomials Fk from first principles for all the classical groups, as

well as for extensions with various kinds of semisimple groups with matter [43, 44, 45].

2. It should be stressed that when it is used as a LEET for a UV theory the action

(5.28) is only the leading term in an derivative expansion - that is an expansion of

E/Λ where E is a typical energy scale. However, for the topological questions we

address here only the leading terms in the derivative expansion are of importance.

The higher terms are all Q-exact, and would not matter in the low energy limit in

any case.
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5.4 Seiberg And Witten’s LEET For G = SU(2)

Returning to the case of G = SU(2) with no HM’s original analyzed by Seiberg and Witten

the LEET is described as follows:

When expanding around any vacuum away from u = ±Λ2 the fields in the LEET

comprise a single U(1) vectormultiplet:

a,A,D, η, χ, ψ (5.33)

valued in the Lie algebra u(1). Thus a is a complex valued scalar field on R4. Conceptually

it should be thought of as defining a nonlinear sigma model of maps R4 →MQuantum
Coulomb . A

is an abelian gauge field and so forth.

Remarks:

1. Physicists always write a to describe both the quantum VEV about which we are

expanding as well as the quantum field describing long-wavelength fluctuations of

that VEV.

2. As stressed above, in order to write the LEET we must make a choice of duality

frame. The description in other duality frames is obtained by using electic-magnetic

duality on the U(1) gauge theory - something which can be carried out explicitly in

path integrals [46, 56]. Although there is monodromy of the local system at large u

it is well-understood in terms of the Witten effect. So from physics we know that a

generator acts by (
a

ad

)
→

(
−1 0

4 −1

)(
a

ad

)
(5.34)

In particular, a is well-defined up to sign. (In fact one can derive this immediately

from the expression for the prepotential given above.) ♣Check factor of 2

♣

The Lagrangian is:

LIR,vm ∼ i(τ̄F+F+ + τF−F−)

+ Imτda ∗ dā+ ImτD ∗D
+ τψ ∗ dη + τ̄ ηd ∗ ψ + τψdχ− τ̄χ(dψ)

+ i
dτ̄

dā
ηχ(D + F+) + · · ·

(5.35)

1. Here we have given it in the topologically twisted form we need and the + · · · contain

other complicated interaction terms we will not need (but they would be relevant on

non-simply connected manifolds).

2. As far as the constraint ofN = 2 supersymmetry is concerned τ(a) can be an arbitrary

holomorphic function of a. To give τ(a) is to specify the Lagrangian. Therefore, to

specify the low energy theory we we need to:

a.) Compute τ(a)

b.) Explain how τ(a) is related to u.
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Seiberg-Witten’s solution to this problem is the following: (We will not try to justify

the solution. We merely state the result in a succinct way tailored to our purpose here.)

1. Consider the family of elliptic curves: 21

Eu : y2 = (x− u)(x− Λ2)(x+ Λ2) (5.36)

Note that the discriminant locus is clearly at u = ±Λ2.

2. We equip these curves with a meromorphic one-form

λSW :=
dx

y
(x− u) (5.37)

and then the central charge function is given by taking periods of λSW . Note that

this differential has a pole at x =∞. The holomorphic differential is ω = dx/y.

3. The local system associated to the family (5.36) has indeed a monodromy given by

the transpose of the generator in (5.34). we choose a Lagrangian homology basis

A,B of H1(Eu) so that A is invariant under twice the generator and define

a =

∮
A
λSW . (5.38)

4. Then τ is the period of Eu with respect to this homology basis - this tells us the

function τ(a), and we have -at least implicitly - explained how the (vev of) a is

related to the vacuum u. The relation is given by (5.38). Note that, as is standard

in discussions of LEETs, we are using the same notation, a, for a field, such as a(xµ)

on R4 and its vacuum expectation value on R4.

5. Of course, we have made a choice of homology basis, but the effective theory does not

depend on this choice because a change of Lagrangian homology basis corresponds to

an electromagnetic duality transformation on the abelian theory. In certain regions

of the u-plane there is a preferred choice: In the domain u→∞ we should choose a

homology basis so that

Imτ(u)→∞ (5.39)

because τ = 4πi
e2

+ θ
2π .

This solution of the vacuum structure leads to a very notable phenomenon: The local

system H1(Eu;Z) has monodromy around the discriminant locus u = ±Λ2 where the

fibration E → C becomes singular. At these points a period of λSW goes to zero. This will

be connected with some very important physics. ♣DESCRIBE

LOCAL SYSTEM

BETTER!

CHOOSE CUTS,

BASIS and GIVE

MATRICES OVER

3 explicit loops. ♣

FIGURE: SHOW TORI OVER u-PLANE DEGENERATING AT 2 POINTS.

21This is actually not the most convenient presentation of the family for computational purposes. See

section 5.4.1 below.
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5.4.1 An Alternative Description

There can be many ways of presenting the family of Seiberg-Witten curves. The above de-

scription is a family of curves over the modular domain for Γ(2). An equivalent description

in terms of curves defined over the modular domain for Γ0(4) is

y2 = x2(x− u) +
Λ4

4
x (5.40)

This is a little better because it generalizes more readily to the curves for the inclusion of

HM representations. The discriminant locus is still at u = ±Λ2.

Using τ relative to the preferred basis at infinity it turns out that the relation of u and

τ can be expressed very nicely in terms of modular functions:

u =
1

2

ϑ4
2 + ϑ4

3

(ϑ2ϑ3)2
=

1

8q1/4

(
1 + 20q1/2 − 62q + 216q3/2 + · · ·

)
(5.41)

The duality frame was not quite fixed because the choice of B-cycle was not unique. The

monodromy takes τ → τ + 4, and leaves u invariant, as it should.

Similarly, a(u) and ad(u) are also very explicitly expressed in terms of modular func-

tions. For example,

a(u) =
1

6

(
2E2 + ϑ4

2 + ϑ4
3

ϑ2ϑ3

)
=

1

4
q−1/8

(
1 +O(q1/2)

)
(5.42)

The u-plane can be identified with the fundamental domain for Γ0(4) with the two cusps

at τ = 0 and τ = 2 corresponding to the monopole and dyon point, respectively.

FUNDAMENTAL DOMAIN FOR Γ0(4):

SEMICLASSICAL REGION: F ∪ T · F ∪ T 2 · F ∪ T 3 · F
MONOPOLE REGION: S · F
DYON REGION: T 2S · F
In general, if F (τ) is modular for Γ(2) then G(τ) := F (τ/2) is modular for Γ0(4). Thus

the two families of elliptic curves are isogenous

Remarks:

1. Except for the case of pure SU(2) gauge theory we do not have the luxury of identi-

fying the u-plane with a modular curve. So it is better to try to use arguments that

generalize to arbitrary Coulomb branches. However, we will make use of some of the

simplifications of identifying the u-plane with the modular domain for Γ0(4).

2. In fact, the modern point of view based on theories of class S gives a rather different

(and generally superior) way of writing down Seiberg-Witten curves and differentials.

But we are using the older formulation here because that is the language in which

the u-plane integrals have been done.
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5.4.2 An Important Symmetry

In the case of an N=2 theory with a single VM for compact simple group G there is an

important global symmetry of the quantum theory. It is a finite subgroup of the U(1)R
symmetry group. In general, instanton effects explicitly break this U(1)R to a finite group

Z2h∨ . Then the vacuum expectation values on the Coulomb branch further break

Z2h∨ → Z2 (5.43)

The Z2 is unbroken because it is equivalent to a 2π rotation in space.

In terms of φ we can choose a generator of Z2h∨ to act by

φ→ ωφ (5.44)

where ω = e2πi/2h∨ . It follows that the gauge invariant parameters on the Coulomb branch

uk → ωkuk (5.45)

for 0-observalbes uk ∼ Trφk.

In particular, for G = SU(2) we have a symmetry under u → −u. This maps the

singularity at u = +Λ2 to the singularity at u = −Λ2. That is very useful and cuts down

our work when evaluating the Higgs-branch contribution to ZξDW by half.

5.4.3 Seiberg-Witten Curves In General

The LEET for the SU(2) theory, with “quark” matter hypermultiplets in the representa-

tions R = 2⊕Nf , 0 ≤ Nf ≤ 4, (to use the notation of equation (4.65)) was solved by Seiberg

and Witten [47, 46]. Their discussion has been generalized to a large number of theories

by many other physicists. For a useful review see [51].

As just noted the Seiberg-Witten curve has been derived from instanton calculus for

a large number of theories by Nekrasov et. al. There is also a large class of theories -

the “theories of class S” - which are closely related to Hitchin systems. For these, the SW

curve is the spectral curve over the Hitchin base and can be readily written down.

However, it should be stressed that it is still not known how to write the SW family of

curves and the SW differential for an arbitrary N=2 field theory.

5.5 BPS States

The LEET (5.35) becomes singular at u = ±Λ2. This is particularly obvious if we think

of the u-plane in terms of the fundamental domain for Γ0(4): At the two cusps τ = 0, 2 we

have Imτ → 0, a strong coupling limit. Many terms in the action will blow up. This is a

signal that the LEET with action (5.35) is WRONG in a small neighborhood of u = ±Λ2.

The reason the LEET breaks down is that it is obtained by integrating out massive

modes. Quite generally, suppose the spectrum of the theory, as a function of the vacuum

parameter u, is such that some particles become massless at some point u∗ on the u-plane.

Then, to have a nonsingular LEET, the fields corresponding to these particles must be

“integrated in.” That is, one needs to find a new LEET that includes both the U(1) VM
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describing fluctuations on the u-plane together with the new light fields such that, if we

“integrate out” these light fields we recover the original LEET (at energy scales below the

mass of those light fields). What “integrate out” means is that we do the path integral

over those light fields, but not over the U(1) VM fields and keep the leading order terms

in a low-energy expansion. When one tries to integrate out massless particles, Feynman

diagrams are singular, and singularities in the purported LEET will result.

We conclude that there must be some kind of massless particle in the spectrum of the

theory at u = ±Λ2 in addition to the massless N = 2 Maxwell field multiplet describing

low energy fluctuations around the Coulomb vacuum.

Note the order of limits problem here: For any fixed u 6= ±Λ the theory is well-

described by (5.35) so long as “typical” field configurations do not extend over u = ±Λ2.

However, if one wants a description valid for field configurations that are valued in some

open neighborhood UΛ2 that includes, say, u = Λ2 one must “integrate in” the fields which

become massless at u = ±Λ2.

In general, finding the spectrum of the Hamiltonian, as a function of u, even in the

relatively amenable d=4 N=2 theories is out of the question. Happily, there is a subspace

of the Hilbert space of the theory where the spectrum of the Hamiltonian is known exactly.

This is known as the BPS spectrum. In brief, we can define the BPS spectrum as follows:

The Hilbert space of the d=4 N=2 QFT on R3 with vacuum u at |~x| → ∞, denoted Hu
is graded by the lattice of electro-magnetic charges Γu under the unbroken Abelian gauge

symmetry:

Hu = ⊕γ∈ΓuHu,γ (5.46)

In the super-selection sector Hu,γ the N = 2 central charge operator Z in the N = 2 super-

Poincaré algebra acts as a c-number Zγ(u). Moreover, by considering the Hermitian squares

of suitable linear combinations of supercharges and using the supersymmetry algebra one

can show that the Hamiltonian, restricted toHγ,u is bounded below by |Zγ(u)|. This bound

is known as the “Bogomolnyi bound.” The BPS spectrum then, is, by definition the sum

over γ of the BPS states of charge γ, defined by

HBPS
u,γ := {Ψ ∈ Hu,γ |HΨ = |Zγ(u)|Ψ}. (5.47)

To find the BPS spectrum one must solve two problems: First one must find explicit

formulae for the N = 2 central charges Zγ(u), and secondly one must actually identify

what states in the Hilbert space actually saturate the Bogomolnyi bound. The first step

follows from the Seiberg-Witten curve since Zγ(u) are given by the periods around cycles

of the curve of a meromorphic differential form known as the Seiberg-Witten differential.

For the pure SU(2) theory an exact BPS spectrum was proposed in the original Seiberg-

Witten paper. 22 Since we know the periods of λ we have an exact mass formula:

M = const.|
∮
γ
λSW | (5.48)

22Nowadays one can prove it by solving for the semiclassical spectrum and using the Kontsevich-Soibelman

wall-crossing formula.
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for BPS particles of electromagnetic charge γ.

Now recall that the electromagnetic charge lattice is identified with the fibers Γu.

That is, an electromagnetic charge is identified with a homology class γ ∈ H1(Eu;Z). In

particular, the A-cycle corresponds to electric charge and a dual B-cycle corresponds to

magnetic charge.

In the weak coupling region |u| � |Λ2| one can prove the existence of BPS particles

with magnetic charge by using collective coordinate quantization of the moduli space of

magnetic monopoles. This is an interesting story which, mathematically, involves the

study of the L2-kernel of Dirac-like operators on monopole moduli space. 23 In particular,

magnetic monopoles of magnetic charge 1 have a charge γ that is a B-cycle and moreover

this B-cycle has the property that the period

ad :=

∮
B
λSW (5.49)

vanishes at u = Λ2. This is the famous “massless magnetic monopole” of Seiberg and

Witten.

In the neighborhood UΛ2 , where the monopole hypermultiplet is becoming light it

should be included in the LEET as a hypermultiplet field. Since the particle is magnetically charged,

the corresponding field M couples to the U(1) photon via∫
|(d+Ad)M |2 + · · · (5.50)

where Ad is the magnetically dual U(1) photon. It is related to the photon field A we use

at |u| � |Λ2| by

F (A) = ∗F (Ad) (5.51)

Thus, in order to write a local LEET we must perform a suitable change of duality frame.

The supersymmetric partner of Ad is the period

ad =

∮
B
λSW (5.52)

The electric and magnetic charge lattices get swapped so that

τd = −1/τ (5.53)

(The description in terms of the fundamental domain for Γ0(4) is very useful here.)

Now recall the symmetry of the theory taking u→ −u. There must be a similar particle

that becomes massless at u = −Λ2. It is a ‘dyon” corresponding to cycle B+A. In general,

“dyons” are particles with both electric and magnetic charge. The semiclassical analysis

shows that, in addition to the magnetic monopole, there is also a dyon with magnetic

charge one and electric charge one. This corresponds to the cycle B + A and becomes

massless at u = −Λ2.

23This is a long story with a long history with contributions from many authors. For a recent discussion

see [41] and references therein.
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Remarks

1. In general d = 4, N = 2 field theory there are actually two things we expect to be

able to solve for exactly in N = 2 field theories. In addition to the LEET we expect

to be able to solve for the “BPS spectrum.” These are the lightest stable particles

in a fixed charge sector (of the low energy abelian gauge theory). Again, SW found

the BPS spectrum for the pure SU(2) theory and there has been much progress in

the meantime in understanding that spectrum for many other theories, but again the

general solution has not been achieved. This fascinating topic requires a course all

by itself...

5.6 The Low Energy Theory Near u = ±Λ2

To summarize the previous section: Although the description (5.35) breaks down at u =

±Λ2 it is clear how to correct the low energy description in a small neighborhood U±Λ2

around these points. (The size of the neighborhood depends on the energy cutoff we use to

describe the LEET.) We need to “integrate in” fields corresponding to the particles that be-

come massless at u = ±Λ2. These particles turn out to be BPS particles in hypermultiplet

representations.

Thus, for example, the particle that becomes light at u = Λ2 a single hypermultiplet

which, at weak coupling is a monopole with magnetic charge 1 and electric charge 0.

The field that describes this particle is, in a small neighborhood around u = Λ2 just

a hypermultiplet which has charge +1 under the electromagnetic dual of the U(1) VM

(a, η, χ, ψ,A).

Thus the LEET in a neighborhood of u = +Λ2 is described by a pair of field multiplets:

1. A U(1) VM with scalar field ad and vector field Ad, the electromagnetic dual of A.

2. A HM defined by the charge +1 representation of U(1)D, the dual electromagnetic

gauge group.

♣The following

paragraph has

already been

discussed above.

Delete it? ♣

One way to see that we need to use the dual gauge field is that the monopole scalar

fields M are have magnetic charge +1 in the duality frame at large |u| and hence when we

include them as fields in the Lagrangian the kinetic term must be of the form

|DM |2 = |dM +AdM |2 (5.54)

where Ad is the electromagnetic dual field. Since A and Ad are nonlocally related, and we

wish to work with a local Lagrangian, when writing the contribution of the vectormultiplets

to the action we should use the dual vectormultiplet fields (ad, Ad, . . . ).

24More precisely, because of the monodromy of the charge lattice at infinity, a dyon with magnetic charge

one and even electric charge can become massless at u = Λ2, while a dyon with magnetic charge one and

odd electric charge can become massless at u = −Λ2.
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The action of this LEET will be denoted SIR,UΛ2 to emphasize that it is to be applied

in a small region around u = Λ2. To obtain it one takes the action (5.35) in the duality

frame defined by (5.53), adds the standard HM Lagrangian and topologically twists. The

details can be found in [24]. The LEET accordingly has an action of the form:

SIR,UΛ2 = SIR,V M (ad, Ad, ηd, χd, ψd) + SHM (M = q ⊕ q̃∗) (5.55)

Upon topological twisting, that is, coupling to a background SU(2)R symmetry connection

and setting ω+ = ωR, the above action is in the canonical form for cohomological field

theory, localizing on the SW equations.

A very similar story happens at u = −Λ2. Here, the period of the cycle B+A vanishes. ♣NEED TO SAY

HOW YOU

TRIVIALIZE THE

LOCAL SYSTEM

FOR THAT TO

MAKE SENSE!! ♣

The relevant modular transformation is

τd = −1

τ
+ 2 (5.56)

and it is the dyon with magnetic charge 1 and electric charge 1 (in units where the W±

bosons have charges ±2) becomes massless. The resulting theory has action denoted

SIR,U−Λ2

In practice we can use the useful symmetry of section 5.4.2 to obtain the answer once

we have worked things out at u = +Λ2. ♣33 minutes from

section 5.3.1 ♣

5.7 Putting The Twisted LEET On A General Four-Manifold X

Now that we have reviewed the LEET for the theory on R4 we consider what happens when

we formulate the topologically twisted theory on a general connected, compact, oriented,

Riemannian four-manifold X.

As we have mentioned above, because X has finite volume we must integrate over the

vacua. To motivate this we should think about path integrals on Y × R or Y × S1. The

crucial issue is whether there will be tunneling between different vacua. When the volume

of Y is infinite tunneling amplitudes are zero and we choose a vacuum at infinity when

defining the path integral. 25 On the other hand, when the volume of Y is finite nonzero

tunneling amplitudes will mix all vacua and we must sum over all of them in the path

integral on Y × S1. The only natural generalization to compact X is to continue to sum

over all the vacuum configurations. The sum over vacua is in part achieved by evaluating

the partition function for the LEET describing the fluctuations on the u-plane.

However, in a small neighborhood of u = ±Λ2 we must use instead the LEET SIR,UΛ2

given in (5.55) or its analog in U−Λ2 .

When topologically twisted, this is again in standard form for CohTFT. 26 Therefore

we should study the Q-fixed point equations of this combined theory. These are nothing

other than the famous Seiberg-Witten equations (4.74) we discussed above:

F (Ad)
+ = µ(M)

/DM = 0
(5.57)

25It is important that we are working with a field theory in d > 3 spacetime dimensions. In lower

dimensions there are issues with infrared divergences that require modifications of this statement.
26Once one uses the proper off-shell formulation of the hypermultiplets. See [24] for details.

– 51 –



We must stress that the gauge field used in (5.57) is electro-magnetically dual to the gauge

field used elsewhere on the Coulomb branch.

So, on a general four-manifold there is a new branch of quantum “vacua”, which we will

call the quantum Higgs branch: It is the moduli space of solutions to the Seiberg-Witten

equations. 27 Consequently, the IR evaluation of ZξDW (p, s) involves a sum of two terms:

ZξIR(p, s) = ZCoulomb + ZHiggs (5.58)

Of course, the term ZHiggs is itself a sum of two path integrals, one for the contribution

at u = Λ2 and one for the contribution at u = −Λ2. We will often abbreviate ZCoulomb = Zu
since it reduces to an integral over the u-plane, as we will see.

Now, in order to work out ZCoulomb and ZHiggs explicitly we need to complete the

description of the action for the theory on a general Riemannian manifold X. Seiberg and

Witten determined their effective action on R4. When coupling to a gravitational field

there are new terms which must be taken into account.

5.7.1 Gravitational Couplings On The Coulomb Branch

Let us first discuss the couplings in the effective action on the Coulomb branch.

Because of topological invariance we can only have coupling to the metric via:

∆grvS =

∫
X
e(u)TrR ∧R∗ + p(u)TrR ∧R+

i

4

∫
X
F ∧ w2(X) (5.59)

where F is the fieldstrength of the low energy U(1) abelian gauge theory.

The first two terms exponentiate to functions in the integral over the u-plane:

E(u)χP (u)σ (5.60)

Now, one can derive from physical arguments that:

E(u) = α

(
du

da

)1/2

(5.61)

P (u) = β∆1/8 (5.62)

up to constants α, β (which can depend on Λ, but not u).

1. Here ∆ is the discriminant of the curve:

∆ ∼
∏
i

(u− ui) (5.63)

where ui are the points where BPS states become massless. 28 For pure SYM it is

normalized so that as u→∞
∆ = Λκ

∏
α

Z2
α (5.64)

♣The power κ is

determined by

dimensional

analysis ♣

27These are not vacua in the usual sense of the word: They are not quantum vacua of the theory on R4.

But the path integral clearly must localize to this locus.
28As emphasized in [49] This is, in general, not the discriminant of the elliptic curve describing the rank

one theories. NEED TO CLARIFY IF IT IS THE BRANCH LOCUS OF THE SPECTRAL CURVE

FORM - I THINK IT SHOULD BE.
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2. The derivations given in [38, 56] rely on consistency of the integrand on the u-plane,

the known behavior at u → ∞ and especially the behavior as a function or R-

symmetry transformations.

3. We have written E and P in a form which generalizes when we couple the SU(2) vm

to hypermultiplets (that will be important when we come to geography, later.) In

the pure SU(2) theory ∆ = u2 − Λ4.

4. Here α, β are numerical constants. Ultimately they will be the only unknowns in the

full computation, and will be “fit to the experimental data.” The can be provided by

a. Explicit computations of the Donaldson polynomials in two special cases.

b. The wall-crossing-formula.

c. The blowup formula.

Of course all three methods lead to the same answer! In these notes we will use

method (b) - matching to the mathematically derived wall-crossing-formula. The

result will be

α =

(
2

π2

)1/8

β =

(
27

π2

)1/8

(5.65)

♣Differs from

Labastida-Marino

eq. 8.17. Why? ♣

The third term in (5.59) is an important phase in the sum over flux sectors for the

abelian gauge field A in the LEET U(1) VM:

ZCoulomb =
∑
λ

〈· · · 〉[F ]=4πλ (5.66)

♣We should change

notation from

w2(E) to w2(P )

where P is an

SO(3) bundle. It

makes more sense,

and E is overused

anyway. ♣

To state this phase properly recall that in the UV we have an SO(3) bundle P with

’t Hooft flux ξ ∈ H2(X,Z/2Z). We choose an integral lift ξ of the characteristic class ξ of

the SO(3) bundle P , (we assume such a lift exists), embed it in H2(X,R) and divide its

image in H2(X;R) by two to define

2λ0 = ξ (5.67)

Then the line bundles which arise in the low energy abelian gauge theory have “first Chern

class” in the torsor 29

λ ∈ Γξ := λ0 + H̄2(X) (5.68)

One way to think about λ0 is the following: When we have an SU(2) gauge bundle P

there is an associated rank two complex vector bundle Q using the spinor representation.

After spontaneous symmetry breaking the gauge symmetry is broken to U(1) and Q ∼=
L⊕L−1, where L is a line bundle. The sum over instanton sectors becomes a sum over the

topological classes of the line bundles L. Now, when P is an SO(3) bundle with nontrivial

w2(P ), (i.e. nontrivial ’t Hooft flux) and hence does not lift to an SU(2) bundle, then

Q and L do not exist. The obstruction to their existence can be seen in the ±1’s that

29Again, we are being sloppy about torsion here.
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spoil the cocycle conditions on triple overlaps of charts. These obstructions disappear if

we consider the symmetric square

Sym2(L⊕ L−1) = L2 ⊕O ⊕ L−2 (5.69)

and we are writing 2λ = c1(L2) so that

c1(L2) = 2λ = ξmod2H̄2(X) (5.70)

When evaluating ZCoulomb we need to sum over such line bundles, so the path integral is a

sum over a torsor for H̄2(X).

In [56] Witten argued that there is a relative phase of the path integral measure for

the massive modes which are integrated out to produce the LEET. The only problem is in

orienting the measure for the charged fermions. Remember that ψ, ψ̄ are (locally) valued

in S± ⊗ SR ⊗ g and those in g − t are charged under the unbroken gauge symmetry with

Lie algebra t.

One can try to choose a standard orientation of the fermion measure in the UV theory

by using, say, an almost complex structure 30 After the reduction of structure group, for

each choice λ there is a different canonical orientation of the path integral measure for

the same set of fermions. Witten argues the latter is positive and computes the relative

orientation using the index of a Dirac operator. The net result is that the λ-dependence

of integrating out the massive fermionic modes has a relative sign

(−1)w2(X)·(λ1−λ2) (5.71)

between sectors λ1 and λ2. This still leaves an overall phase to fit. The evaluation of ZDW
below is real (for Λ real) if we take

e±2πiλ2
0(−1)(λ−λ0)·w2(X) (5.72)

The choice of sign in the first exponential corresponds to a choice of orientation of the

moduli space M(P, g). We will choose the + sign:

e2πiλ2
0(−1)(λ−λ0)·w2(X) (5.73)

Finally, for later reference, note that if we shift the origin:

λ0 → λ0 + β (5.74)

thus shifting the lift ξ → ξ + 2β then the overall phase shifts by

(−1)β·w2(X) = (−1)β
2

(5.75)

since w2(X) is a characteristic vector.

Remark:

1. The above discussion is closely related to the discussion in Donaldson-Kronhmeimer

[8], section 7.1.6. See especially the final paragraph on p.283.

2. There remains the issue of orienting the measure for the massless fermions in the

LEET. This orientation will be λ-independent, and is deferred to section 7.1
♣25 minutes from

section 5.7 . ♣30An almost complex structure exists iff there is a c ∈ H̄2(X) with c2 = 2χ + 3σ. We will see that DW

and SW theory are empty if this condition is not satisfied.
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5.7.2 Gravitational Couplings On The Higgs Branch

There is a similar story for the gravitational couplings on the Higgs branch:

The action (5.55) upon topological twisting is of the form

Q(Ψ) +

∫
X
c(u)Fd ∧ Fd (5.76)

where Fd = F (Ad) is the curvature of the dual photon. The gravitational couplings will be

of the form:

∆grvSHiggs =

∫
X
eh(u)TrR ∧R∗ + ph(u)TrR ∧R+

i

4
Fdξ (5.77)

Of these four terms the last can be derived from the analogous term in (5.59). This

follows from the electric-magnetic duality transformation that is necessary to go from

the duality frame appropriate to the u-plane away from u = ±Λ2 to the duality frame

appropriate to the monopole and dyon points. The detailed derivation is best postponed

until we have written the u-plane integrand but the upshot will be that we have photon

quantizations and couplings given by

Away from u = ±Λ2:

[F ] = 4πλ with λ ∈ 1

2
ξ + H̄2(X) (5.78)

and interaction:

e
∫
X

i
4
F∧w2(X) = eiπλ·w2(X). (5.79)

Near u = ±Λ2:

[Fd] = 4πλ with λ ∈ 1

2
w2(X) + H̄2(X) (5.80)

and interaction:

e
∫
X

i
4
Fd∧ξ = eiπλ·ξ (5.81)

Note, especially, that in equation (5.80) the class 2λ is the characteristic class of a Spin-c

structure.

The nature of the other terms is very different. These exponentiate to

e2πi(λ2
0+λ·λ0)C(u)λ

2
Ph(u)σEh(u)χ (5.82)

where now λ is a spin-c structure and 2λ0 is the integral lift of w2(P ) we used before.

A key point is that the three functions C,P,E are thus far undetermined and not easily

derived from first principles. ♣Actually, C(u)

should easily be

derivable from

integrating out the

monopole field and

matching to the

Coulomb branch

action! ♣

However, the functions C,P,E are universal - in the sense that they are independent of

the 4-fold X - and this, together with the wall-crossing phenomenon of the u-plane integral

will allow us to determine them explicitly.

♣6 minutes from

section 5.7.2. ♣
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5.8 Mapping Operators From UV To IR

Now we must understand how to express the operators O and O(Σ) in the low energy

effective theory.

The secret is to understand how the 0-operator maps under the RG and then to realize

that the K operator of (4.36) is RG invariant: The supersymmetry operators do not evolve

with scale.

5.8.1 Mapping Operators On The Coulomb Branch

The operator O is the same as 2u, by definition. This is true both at low and high energy.

The expression for u in terms of fields will be very different in the UV and IR theories.

In any case, in the IR theory we obtain O(1) by acting with K on 2u using the fields

and supersymmetry transformation laws in the low energy effective abelian theory. Then

using standard supersymmetry transformations one finds:

Ka ∼ ψ
Kψ ∼ (F− +D)

(5.83)

and so forth. (Recall that D is a self-dual 2-form.)

Thus in the low energy theory O(1) = Ku ∼ ∂u
∂aψ, and acting with K again we get

OIR,c = 2u

OIR,c(Σ) ∼
∫

Σ

∂u

∂a
(F− +D) +

∂2u

∂a2
ψ2

(5.84)

5.8.2 Mapping Operators On The Higgs Branch

Similarly, on the Higgs branch there is only one 0-operator with the right ghost charge,

and it is ad. The operator O = u is a known function of ad, expressed in terms of modular

functions. Therefore, by exactly the same strategy as we used on the Coulomb branch, we

find the low energy operators

OIR,h = 2u

OIR,h(Σ) ∼
∫

Σ

du

dad
F (Ad) +

d2u

da2
d

ψ2
(5.85)

where Ad is the U(1) gauge field in the duality frame in which the monopole is purely

electrically charged.

5.8.3 Contact Terms

In evaluating correlation functions of the operators O(Σ) in the low energy effective theory

there is an important subtlety. When Σ has self-intersections there will be singularities even

in the topological field theory which must be accounted for. One is looking at contractions

of the operators in a path integral:〈
· · ·
∫

Σ1

Tr (φ(x1)Fµν + · · · ) dxµ1dx
ν
1

∫
Σ2

Tr (φ(x2)Fλρ + · · · ) dxµ2dx
ν
2 · · ·

〉
(5.86)
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Because of topological invariance the contributions from contractions of fields with

x1 6= x2 will combine into total derivatives, and the result will only depend on the topology

of Σ1 and Σ2. However, there will be contributions from these total derivatives at the

intersection points of Σ1 and Σ2 where x1 = x2. Again, invoking topological invariance,

one works with off-shell susy this must be a Q-closed operator associated with a point, and

hence is just a holomorphic function of u. the result must be expressible in terms of some

local Q-invariant operator at ℘ = x1 = x2.

FIGURE: TWO INTERSECTING SURFACES

Put differently, the RG map OUV → OIR is not a ring homomorphism on surface

operators. Rather

OUV (Σ1)OUV (Σ2)→ OUV (Σ1)OUV (Σ2) + Σ1 · Σ2T (u) +Q(∗) (5.87)

for some 0-observable T (u). Note that we have used here that O(℘1) − O(℘2) = Q(∗).
Since there are no such singularities between 0-observables we have a Wick theorem:〈

eOUV (Σ)

〉
UV

=

〈
eOIR(Σ)+Σ2T (u)

〉
IR

(5.88)

The operator T (u) can, in principle, depend on the branch of vacuum and so we have now:

ZξDW (p,Σ) = 〈epO+O(Σ)〉UV
= 〈epOIR,c+OIR,c(Σ)+Σ2Tc(u)〉Coulomb + 〈epOIR,h+OIR,h(Σ)+Σ2Th(u)〉Higgs

(5.89)

♣Perhaps just leave

T (u) as another

unknown function

to be fixed later

when we discuss

making the u-plane

integral

well-defined. ♣

The functions Tc(u) and Th(u) can be determined by self-consistency arguments, as

was done in [38]. A systematic theory of these contact terms was developed by Losev-

Nekrasov-Shatashvili [26]. See also [29] for a simple derivation of the result:

Tc(u) ∼ ∂2F
∂τ2

0

τ0 ∼ log Λ. (5.90)

For pure SU(2) theory this is a certain weight zero almost modular form under the

duality group Γ0(4):

Tc(u) = − 1

24

((
du

da

)2

E2 − 8u

)
(5.91)

We also denote T̂c where we replace E2 by the standard modular (but nonholomorphic)

object

Ê2(τ) = E2(τ)− 3

πy
(5.92)

where here, and below, we write the real and imaginary parts of τ as τ = x+ iy. ♣10 minutes from

section 5.8. ♣

6. General Form Of The Higgs Branch Contribution

Let us sketch now how to evaluate ZIR,Higgs in terms of the unknown functions Th, C, P,E.
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As we said, ZIR,Higgs is a sum of two terms at u = Λ2 and u = −Λ2. The contribution

at u = −Λ2 is related by the symmetry described in section 5.4.2. It takes u → −u and

a→ ia. Therefore we focus on u = Λ2. This term can be written as:

ZIR,Higgs,Λ2 =
∑
λ∈Γw

〈
e

2pu+ i
4π

∫
Σ

du
dad

F (Ad)+Σ2Th(u)
〉
u=Λ2,λ

(6.1)

where we sum over the first Chern class λ of spin-c structures as in (4.75). In writing the

2-observable we have simplified things a little by assuming here that b1 = 0 so that we can

drop the term involving ψ2.

Now we evaluate the path integral in a fixed ”flux sector” λ. The low energy effec-

tive action coupled to the light ”monopole hypermultiplets” is in standard MQ form for

localizing on the SW equations. Therefore the path integral in a fixed flux sector is:∫
M(λ)

e2πi(λ2
0+λ·λ0)e

2pu+i du
dad

Σ·λ+Σ2Th(u)
C(u)λ

2
P (u)σE(u)χ. (6.2)

Here M(λ) is the moduli space of solutions to the Seiberg-Witten equations based on

spin-c structure λ. It is known to be smooth, compact, orientable and of dimension 31

vdimM(λ) =
(2λ)2 − (2χ+ 3σ)

4
:= 2n(λ) n(λ) ∈ Z (6.3)

The moduli space M(λ) is a submanifold of an infinite-dimensional manifold(
A× Γ(S+ ⊗ L)

)
/G (6.4)

where A is now the space of spin-c connections: It is a torsor for imaginary globally well-

defined one-forms on X. The group of gauge transformations is simply G = Map(X,U(1)).

It acts on a spin-c connection ∇ → ∇ + u−1du and on monopole fields M → uM . In

ordinary abelian gauge theory the isomorphism classes of U(1) connections A/G is the

differential cohomology group Ȟ2(X). It is an infinite-dimensional abelain group which

can be written (noncanonically) as T b1 ×V ×H2(X;Z) where T b1 is the torus of harmonic

one forms modulo those with integer periods, H2(X;Z) is the first Chern class and V is an

infinite-dimensional vector space. In our case we are working with spin-c connections but

the space is almost the same: The space of spin-c connections is an affine space modeled

on Ω1(X) and the quotient space is T b1 × V with V an infinite-dimensional vector space.

Global U(1) gauge transformations do not act on the spin-c connection, but they do act

on the spinor field and hence topologically, the space of gauge inequivalent configurations

of (∇,M) can be written as T b1 × V × Γ(S+ ⊗ L)/U(1) where the last factor is the space

of spinor sections modulo global gauge transformations. This is an infinite-dimensional

Hilbert space modded out by a single U(1) and is therefore a cone on CP∞. The tip of

the cone only intersects the moduli space M(λ) if there are abelian instantons F+ = 0.

Otherwise CP∞ has a cohomology ring which is just Z[x] generated by x of degree two.

31The quantity 2χ+ 3σ shows up very frequently in SW theory. It is the first Pontryagin class of the real

bundle Λ+ of self-dual two-forms. For any complex structure there is a canonical class and K2 = 2χ+ 3σ.
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All these assertions are proved in the textbooks [17, 48, 42].

In the topological field theory the cohomology class x is - up to normalization, and

again invoking the correspondence (3.9) - the field ad of ghost number 2. 32 The way we

should interpret the integral (6.2) is that we expand

u = Λ2 − 2iΛad +O(a2
d) (6.5)

This exact expansion is completely known in terms of elliptic functions. Then we define

the Seiberg-Witten invariant to be:

SW(λ) :=

∫
M(λ)

a
n(λ)
d (6.6)

This is an integer, and thus we can express the contribution of a spin-c structure λ to

ZIR,Higgs,Λ2 as

SW(λ)Resad=0
dad

a
1+n(λ)
d

(
e2pu+···Cλ

2
P σhE

χ
h

)
(6.7)

This is as far as we can go without an explicit knowledge of Th, C, Ph, Eh.

7. The Coulomb Branch Contribution aka The u-Plane integral

Now we will evaluate ZIR,Coul.

We have described above all the ingredients that go into doing the u-plane integral.

An important scaling argument [38] shows that when X has b+2 > 0 then the result

is determined by the tree-level path integral : We can forget about one-loop determinants

and nontrivial Feynman graphs.

Thus, we are immediately left with a finite-dimensional integral∫
(dadā)(dηdχdψ)(dAdD)eS+∆grvSe2pu+OIR,c(Σ)+Σ2Tc(u) (7.1)

REMARK ON b+2 = 0. JUST ONE-LOOP CONTRIBUTES AND COULD BE IN-

TERESTING.

7.1 The Integral Over Fermions

Let us first consider the fermionic integral:

1. The space H0(X;R) of η zeromodes is one-dimensional.

2. The space H1(X;R) of ψ zeromodes is b1-dimensional.

3. The space H2,+(X;R) of χ zeromodes is b+2 -dimensional.

There are three remarks to make about the fermionic integral:

32The cohomology classes associated with the factor T b1 are of course the IR versions of the 1-observables

which can be defined on non-simply-connected four-manifolds.
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1. Note that a choice of orientation is needed to define the Grassmann integral dηdψdχ.

As with the dependence on the choice of lift 2λ0 of w2(P ), this orientation question

is beautifully mirrored in Donaldson theory where a choice of orientation of H0 ⊕
H1 ⊕ H2,+ determines an orientation of the moduli space of instantons M. See

[8] Proposition 7.1.39, p. 282. It is reassuring to see these “fine structure details”

mirrored in the physical approach.

2. For simplicity we will assume X is simply connected. This means we can drop the

ψ-integral, and moreover we can drop the ψ-dependence in the action (5.35) and in

the observables. This simplifies the equations a lot. The equations with b1 6= 0 have

been worked out in [38] and [30].

3. Now, a glance at the action (5.35) reveals that the χ zeromode always appears

together with the η zeromode in the combination ηχ. Since there is only a one-

dimensional space of η zeromodes it follows that for the u-plane integral to be nonzero

we must have b+2 (X) = 1. This might seem discouraging, but we will press on. Note

that integrating out η and χ then brings down a factor of

dτ̄

dā
(D + F )+ (7.2)

A useful remark at this point is to note that when b+2 = 1, the cohomology space

H2(X;R) is a vector space with a Lorentzian metric. Once we choose an orientation of

H2,+ there is a unique self-dual class ω so that ω · ω = 1, so ω lies on the ”mass-shell.”

FIGURE: HYPERBOLOID

Therefore, when b+2 = 1 we will adopt the convention that 2-forms can be written as

F = ωF+ + F− (7.3)

where F+ is a scalar. This was implicitly used when writing (7.2).

7.2 The Photon Path Integral

The integral over the gauge field is straightforward. As we have discussed, we sum over

flux sectors labeled by λ ∈ Γξ. The result is that we replace

F → 4πλ (7.4)

and get

e2πiλ2
0

√
Imτ

∑
λ∈Γξ

e−iπτ̄λ
2
+−iπτλ2

−−i
du
da

(Σ,λ−)(−1)(λ−λ0)·w2(X) [4πλ+ +D] (7.5)

7.3 Final Expression For The u-plane Integral

Finally, we just do the Gaussian integral over the zeromodes of the auxiliary field D. This

is a one dimensional integral and the final expression is: ZIR,Coul = Zξu(p,Σ) with

Zξu(p,Σ) = αχβσ
∫
dadā

dτ̄

dā

(
du

da

)χ/2
∆σ/8e2pu+Σ2Tc(u)Θ (7.6)
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Θ =
e

Σ2
+

8πy ( duda )
2

√
y

e2πiλ2
0

∑
e−iπτ̄λ

2
+−iπτλ2

−−i
du
da

(Σ,λ−)(−1)(λ−λ0)·w2(X)

[
λ+ +

i

4πy

du

da
Σ+

]
(7.7)

where we define y = Imτ and the explicit terms involving y arise from the Gaussian integral

on D. 33

Let us make a number of comments about this result for the u-plane integral

1. The expression has been written in a form valid for the inclusion of hypermultiplets

(in the rank one case). That will be useful later.

2. We can rewrite the integral as∫
dadā(· · · ) =

∫
C
dudū |da

du
|2 (· · · ) (7.8)

However, notice that the integrand makes (extensive!) use of a duality frame. It

is not at all obvious that the expression is in fact a well-defined measure on the

u-plane, but this can be checked using the transformation properties of the various

terms under change of duality frame. In this discussion it is important that Θ is

essentially a theta-function and has nice duality transformation properties. Once one

has checked the measure is single-valued one must next check that the integral is

actually well-defined. This turns out to be subtle and is discussed below.

3. In pure SU(2) theory it is better to write∫
dadā(· · · ) =

∫
F
dτdτ̄ |da

dτ
|2 (· · · ) (7.9)

where the integration region F is isomorphic to the fundamental domain for Γ0(4)

on the upper-half-plane:

FIGURE OF FUNDAMENTAL DOMAIN FOR Γ0(4)

Then all the factors in the integrand can be written as modular functions of τ ,

although the relevant expansion in q is different near τ = i∞, τ = 0 and τ = 2.

4. Near the discriminant locus, and u = ∞, various terms in the integrand become

singular. One must define the integral with care in these regions. As an example,

let us examine in detail the nature of the integrand at u = ∞. Our integral can be

written

Zξu(p,Σ) =

∫
F
dτdτ̄H(τ)Θ (7.10)

where H(τ) is a function of τ and not τ̄ :

H(τ) = αχβσ
da

dτ

(
du

da

)χ/2
∆σ/8e2pu+Σ2Tc(u) (7.11)

33The algebra is actually a little easier if one first does the Gaussian integral over D. In this case it is

not even necessary to reduce to its zeromode. However, we felt that doing the integrals in the above order

was pedagogically more useful.
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Now consider the region Imτ → ∞. From expressions such as (5.41) and (5.42) we

find the large y behavior

u =
1

8
q−1/4

(
1 + S(q1/2)

)
da

du
= q1/8

(
1 + S(q1/2)

)
du

da
= q−1/8

(
1 + S(q1/2)

)
da

dτ
=
da

du

du

dτ
= −2πi

32
q−1/8

(
1 + S(q1/2)

)
Tc(u) = q1/4

(
1 + S(q1/2)

)
(7.12)

The notation here means the following: S(q1/2) is a series in positive powers of q1/2

with integral coefficients and leading term of order q1/2. The specific series appearing

in the four lines above are all different - the notation S(q1/2) simply stands for a

generic such series. Recall that q = e2πiτ = e2πix−2πy so we have separated out the

exponentially growing terms as a function of y →∞ from the exponentially decaying

terms. Both H(τ) and Θ have singularities at y →∞.

The net result is that the integral has the form:∫
F

dxdy

y1/2

∑
λ

e−iπτ̄λ2
+−iπτλ2

−(−1)(λ−λ0)·w2(X)
∑
µ∈ 1

8
Z

qµ(c
(0)
λ (µ)+y−1c

(1)
λ (µ)+ · · · ) (7.13)

There are a number of remarks to make about this expression: First although the

series in qµ involves both even and odd powers of q1/8, nevertheless, one checks the

integrand is invariant under τ → τ + 4 after a small calculation. 34 Next, the series

is rather formal: Since the couplings to p and Σ in the exponential involve negative

powers of q1/8, when we expand the expression as a series in p and Σ we will encounter

arbitrarily large positive powers of q−1/8. If we organize the integrand by polynomials

of degree r in S and ` in p (with r, ` ≥ 0) then again there is an expansion in 1/y

and the coefficient of 1/yn for all n ≥ 0 is a modular expression with q-expansion of

the form

q−
3+r+2`

8 (1 + S(q1/2)) (7.14)

(where now the series S(q1/2) has complex coefficients). So an instanton moduli space

M has leading divergence q−(6+dimM)/16 plus higher order terms. Moreover, for a

34Here are some details of how one checks this. Under τ → τ + 4 the quadratic terms in λ in the

theta function pick up an overall phase e−4πiλ2

and because of the torsor in which λ is valued this phase

is e−iπw2(E)
2

. Next, note that q1/8 → −q1/8 so u → u but du
da
→ − du

da
so while the coupling to the 0-

observable is invariant the coupling to the 2-observable changes sign. We will need to undo this by changing

λ→ −λ in the sum over λ. This leads to an extra phase −e−iπ(2λ)·w2(X), where we include the sign coming

from the insertion. Meanwhile, in the measure we have da
dτ
→ − da

dτ
while

(
du
da

)χ/2 → e−iπ χ
2
(
du
da

)χ/2
and

∆σ/8 → e−iπ σ
2 ∆σ/8. Using χ + σ = 4 we learn that the the measure dτdτ̄ da

dτ

(
du
da

)χ/2
∆σ/8 changes by

a minus sign. Thus, the net phase we get is e−iπw2(E)
2

e−iπ(2λ)·w2(X) and again using the quantization

condition on λ this is e−iπw2(E)
2−iπw2(E)·w2(X). Because w2(X) is a characteristic vector for H2(X;Z) this

phase is equal to unity.
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fixed degree r the series in 1/yn terminates at n = r. If we fix a power of qµ as

in (7.13) then each c
(n)
λ is a series in Σ and p with r + 2` ≥ −3 − 8µ. The leading

order term in the 1/y expansion is c
(0)
λ (µ) = λ+c(µ) where c(µ) is a series in p/4,Σ

whose coefficients are coefficients of modular forms for Γ0(4) with integral Fourier

coefficients.

Now consider the definition of the integral near the cusp at y →∞. We first integrate

over x over the range 0 ≤ x ≤ to produce a function of y. This projects the sum on

λ so that only the zeroth Fourier coefficient contributes:

2µ = λ2 (7.15)

leaving us with∫ ∞
ycutoff

dy

y1/2

∑
λ

e−2πyλ2
+(−1)(λ−λ0)·w2(X)

(
λ+c(

1

2
λ2) + y−1c

(1)
λ (

1

2
λ2) + · · ·

)
(7.16)

Now, the integral is absolutely convergent so long as there are no terms with λ+ = 0.

Physically, solutions with λ+ correspond to abelian instantons. Abelian instantons

lead to extra bosonic zeromodes and we should expect new diverences when there are

extra bosonic zeromodes. Moreover, in the series in 1/y only the leading term can

lead to a divergent integral, even if λ+ = 0. This potential divergence is the source

of wall-crossing discussed below.

5. While the integral is subtle and complicated, we must stress that the topology of X

only enters through the classical cohomology ring, and therefore ZIR,Coul is only a

function of the homotopy type of X.

6. Notice that although we are discussing topological field theory the integrand certainly

has nontrivial metric dependence since it explicitly uses the projection of λ to its self-

dual λ+ and anti-self-dual λ− parts. Since we are dealing with topological field theory

we might hope that the result of the integral is metric independent. We next turn to

a detailed study of this question.

7.4 Metric Dependence: Wall-crossing

The formalism of topological field theory guarantees that the variation of the path integral

with respect to the metric will be a total derivative in field space:

δ

δgµν
Z = 〈Tµν〉 = 〈{Q,Λµν}〉 (7.17)

however, in some situations that total derivative will not be zero. One example is the

holomorphic anomaly of BCOV. The u-plane integral is another striking example of this.

The metric dependence enters the u-plane integrand entirely through the projections

such as

λ = λ+ω + λ− (7.18)
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Therefore we can just consider a family ω(t) along the hyperboloid and take derivatives.

One can work out the explicit total derivative and reduce the variation of Z wrt to the

metric to a boundary integral:

d

dt
Zξu(p,Σ) = −iαχβσ

∑
u∗=±Λ2,∞

lim
ε→0

∮
S1(ε)

du

(
da

du

)1− 1
2
χ

∆σ/8e2pu+Σ2T (u)Υ (7.19)

where Υ is another theta function similar to Θ. Close analysis shows that this is a δ-function

(except for Nf = 4).

The support of the δ-function is at certain walls of the form

W (λ) := {ω : ω · λ = 0} (7.20)

To understand this wall crossing in more detail we refer back to the regularization of

the integral in (7.16). Near u→∞ the gauge coupling Imτ →∞, (in the almost-canonical

duality basis), exponentially suppressing all terms in the theta function but one, namely

the term associated with a vector λ so that λ+ → 0. From (7.16) we see that the integral

behaves like:

c(
1

2
λ2)

∫ ∞ dy

y1/2
e−2πλ2

+yλ+ ∼ c(
1

2
λ2)sign(λ+) (7.21)

where c(µ) are formal series in ℘ and Σ and the coefficient of any term are the Fourier

coefficients of a modular form for Γ0(4).

Physically, what happens at the u = ∞ walls is that the connection can become

reducible and there is an abelian instanton, i.e. a connection on the line bundle L with

F+ = 0. This leads to an extra bosonic zeromode in the path integral leading to a δ-

function divergence.

The walls are located at

From u =∞ : λ ∈ Γξ =
1

2
w̄2(P ) + H̄2(X) (7.22)

From u = ±Λ2 : λ ∈ Γw =
1

2
w̄2(X) + H̄2(X) (7.23)

The discontinuity across the walls ∆u∗,λZ
ξ
u(p,Σ) can be expressed as a residue of a holo-

morphic object: This is the Fourier coefficient of a modular form.

The walls divide up the forward light-cone into chambers. A correlator 〈O`O(Σ)r〉 for

fixed `, r will only change across a finite number of chambers.

FIGURE: CHAMBERS

The metric dependence of any correlator is then piecewise constant. The wall-crossing

formula across the walls will involve Fourier coefficients of modular forms.

The WCF for the walls coming from u = ∞, ∆∞,λZ
ξ
u(p,Σ) reproduce precisely the

formula of L. Göttsche for the change of the Donaldson polynomials for b1 = 0 and b+2 = 1

if we set:

αχβσ =
2(2+3σ)/4

π
(7.24)
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Now χ+σ = 4, but σ = 1−b−2 can vary, so this completely fixes α, β. (We have also scaled

Λ = 1 in these equations.)

However, we also have a WCF across the walls coming from singularities at u = ±Λ2.

Since we have already completely accounted for the change of the Donaldson polynomi-

als from ∆∞,λZ
ξ
u(p,Σ), these new discontinuities must not be discontinuities of the full

partition function ZξDW (p,Σ).

8. Derivation Of The Relation Between SW And Donaldson Invariants.

Let us recap the situation:

We have (always!)

ZξDW (p,Σ) = Zξu(p,Σ) + ZIR,Higgs (8.1)

When X has b+2 = 1 we know that Zξu(p,Σ) has discontinuities as a function of ω ∈
H2(X;R) across walls W (λ) coming from the singularities u =∞ and u = ±Λ2.

Moreover, ZξDW (p,Σ) also has discontinuities, and these are perfectly accounted for by

the discontinuities of Zξu(p,Σ) coming from u =∞.

Therefore, across all walls W (λ) we must have

0 = ∆u=Λ2,λZIR,Coul + ∆u=Λ2,λZIR,Higgs (8.2)

Indeed, mathematically, the SW invariant SW(λ) is known not to be an invariant when

X has b+2 = 1 and changes across walls W (λ) determined by spin-c structures. The WCF

is particularly easy:

SW(λ)|ω·λ=0+ − SW(λ)|ω·λ=0− = (−1)1+n(λ) (8.3)

Mathematically, at such walls there is a solution of the SW equations with M = 0,

this is a reducible solution fixed under global U(1) gauge transformations and the moduli

space becomes singular. Physically, at these walls since M = 0 the Higgs and Coulomb

branches can “mix.”

Now, we can compute ∆u=Λ2,λZIR,Coul since we have an explicit expression (7.19) for

it and, given the general form (6.7) of the Higgs contribution and the SW WCF (8.3) we

can compute the unknown couplings C(u), P (u), E(u). For example, we find

C(u) =

(
ad
qd

)1/2

= 4eiπ/4 +O(ad)

P (u) = eiπ/3225/4 +O(ad)

E(u) = eiπ/823/4 +O(ad)

(8.4)

where qd = e2πiτd . These are completely explicitly known series determined by modular

functions.

To summarize: we now have a completely explicit expression for ZξDW (p,Σ), expressed

in terms of the SW invariants and the classical cohomology ring. It is valid for all simply

connected 4-folds with b+2 > 0, and can be easily generalized to include the non-simply-

connected case. ♣51 minutes from

section 6. ♣
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9. Simple Type And Witten’s Conjecture

A key property about the Seiberg-Witten invariants on a 4-fold X is that M(λ) is only

nonempty for a finite set of λ. This follows from a Weitzenbock-type argument by taking

the sum of squares of the Seiberg-Witten equations.

Now, let us define X to be of Seiberg-Witten simple type ifM(λ) 6= ∅ only for λ such

that n(λ) = 0. In this case M(λ) is a finite union of oriented points. When evaluating

SW(λ) we are literally counting solutions to equations, just as we began our lecture.

For b+2 > 1 the SW moduli space depends on the metric, but the cobordism type is

invariant. The SW invariant SW(λ) is then metric independent. The Seiberg-Witten basic

classes are the spin-c structures λ for which SW(λ) 6= 0. ♣This is not the

same as the set of λ

for which

M(λ) 6= ∅. Clarify.

♣

It is a strange fact that all known simply connected X with b+2 > 1 are of Seiberg-

Witten simple type, but there is no proof that all such X must be of simple type.

In any case, let us now suppose that X is of SW simple type, and moreover that

b+2 > 1. In that case ZIR,Coul = 0 and the integral is given entirely by the contributions at

u = ±Λ2. Moreover, these are easily evaluated since n(λ) = 0. Putting it all together we

obtain the key statement of [55], referred to as the “Witten conjecture” in the mathematics

literature:

ZξDW (p,Σ) = 2
1
4

(7χ+11σ)

(
e

1
2

Σ2+2p
∑
λ∈Γw

SW(λ)e2πi(λ·λ0+λ2
0)e2Σ·λ

+ iχhe−
1
2

Σ2−2p
∑
λ∈Γw

SW(λ)e2πi(λ·λ0+λ2
0)e−i2Σ·λ

) (9.1)

where χh := (χ+ σ)/4.

Here we have set Λ = 1. The first sum comes from the monopole point, u = Λ2 and

the second sum comes from u = −Λ2, the dyon point. Note that we have written the

physical partition function. The generating function of Kronheimer-Mrowka is a factor of

two larger.

Now, in their analysis of Donaldson polynomials Kronheimer and Mrowka introduced

the idea of simple type - which we will call KM simple type. It says that the partition

function ZDW satisfies the simple differential equation:(
∂2

∂p2
− 4

)
ZξDW (p,Σ) = 0 (9.2)

We note that from our general physical expression it is an immediate consequence that for

b+2 > 1, if X is of SW simple type then it is of KM simple type.

KM also introduced a notion of generalized simple type. This says that for some r(
∂2

∂p2
− 4

)r
ZξDW (p,Σ) = 0 (9.3)

Note that we have a physical proof that all simply connected 4-folds of b+2 > 1 are of

generalized KM simple type. This is a simple consequence of the fact that there are only

a finite number of basic classes. Therefore, we can take

r = 1 + maxλn(λ) (9.4)
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Remark There is a beautiful interpretation of the localization of ZDW in terms of

localization to N = 1 vacua. The essential idea is that sometimes (e.g. on a Kahler

manifold) one can add a mass term for the fermions breaking N = 2 to N = 1, but

preserving a topological symmetry. See [54]

ADD MORE ABOUT THIS. ♣16 minutes from

section 9. ♣

10. Applications Of The Physical Approach: Postdictions

The introduction of the Seiberg-Witten equations into the theory of four-manifolds had

immediate and immense impact. They continue to exert a great influence on the subject.

Having spent years building up an arsenal of techniques for dealing with the much more

difficult nonabelian equations all of Donaldson’s theorems were reproven with the SW

equations in a matter of weeks. Moreover the SW equations led to the resolution of long-

standing conjectures (such as the Thom conjecture), and allowed mathematicians to go

beyond what had been achieved with Donaldson’s theory.

For a lucid and masterful account see the review by S. Donaldson [9]. For popular

accounts of what happened see [19, 20].

By and large, having gotten the hint that one could work with the technically much

more tractable Seiberg-Witten equations of an abelian gauge theory instead of the non-

abelian anti-self-dual equations the mathematicians have not really used the physical in-

sights I have just explained. Nevertheless there have been a number of mathematical

“postdictions” - that is, illuminating physical interpretations of known mathematical facts,

as well as “predictions” - physically motivated new mathematical statements which are

sufficiently well-defined that they should be susceptible to rigorous mathematical proof (or

counterexample).

We list here a few of the mathematical postdictions and in the next section review

briefly some of the predictions.

10.1 SW=GW For Symplectic Manifolds

In some beautiful work C. Taubes shows that the SW invariants on a symplectic manifold

can be identified with Gromov-Witten invariants counting pseudoholomorphic curves. This

could have been predicted by physicists from the physics of superconductivity, since the SW

equations are very similar to the equations for the Landau-Ginzburg low energy effective

theory of superconductivity. The pseudoholomorphic curves in question can be thought

of physically has worldsheets of Abrikosov-Gorkov flux lines. See the beautiful article by

Witten [57] for an account of this. Unfortunately, for the physicists, this was a physics

postdiction, although the history could easily have been otherwise.

10.2 The Blowup Formula

It gives a simple physical derivation of the Fintushel-Stern /Gottsche-Zagier blowup for-

mula as a kind of “operator product expansion” of the 2-observable for the exceptional

surface of a blowup. Topologically a blowup is X̂ = X#CP 2 and one can show easily from
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the u-plane that

exp[tO(E)] =

∞∑
k=1

tkBk(O) (10.1)

where Bk(O) are polynomials. This is a 4d version of the familiar maneuver in 2d CFT

of replacing a handle by an infinite sum over local operators. Details are in [38]. A

generalization to higher rank is discussed in [10, 24].

FIGURE: COMPARISON WITH FACTORIZATION ON A HANDLE

10.3 Meng-Taubes: SW Invariants And Reidemeister-Milnor Torsion

The derivation of ZDW can be extended to non-simply-connected four-manifolds, and for

the pure SU(2) VM theory this was done in [30, 32].

SAY MORE ABOUT WHAT IS IN THIS PAPER.

11. Applications Of The Physical Approach: Predictions

The most notable physics prediction is the one we have stressed above: ZDW can be written,

for manifolds of b+2 > 1 in terms of the SW invariants.

Still, it is interesting to ask if there are further physical predictions for the mathematics

of four-manifolds. We briefly mention a few here. ♣ Check out the

Meng-Chwan-Tan

papers. What did

he do? ♣

11.1 New Formulae For Class Numbers

In some good cases one can actually do the u-plane integral explicitly. Most notably, the

answer for CP 2 highlights an intriguing relation to class numbers of quadratic imaginary

fields and Mock modular forms. Indeed the u-plane integral is closely related to certain

kinds of “Θ-lifts” which have appeared in number theory as well as in string perturbation

theory. In the latter context they have been used to give conceptual proofs of Borcherds’

results on automorphic products. [Cite: HarveyMoore].

11.2 Donaldson Invariants For Other Simple Gauge Groups

As we stressed above the technique sketched above has a relatively straightforward general-

ization to higher rank invariants. There is an analog of the above formulae for the SU(N)

Donaldson invariants [31]. Dissapointingly, it is again completely expressed in terms of the

classical cohomology ring and the Seiberg-Witten invariants. Kronhiemer has verified that

prediction for some special X’s [22].

SAY MUCH MORE. GIVEN ANALOG OF WITTEN CONJECTURE FOR GEN-

ERAL G

The relation of the topology of 4-folds to the existence of superconformal fixed points

led to some nontrivial new results in topology [33, 34].
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11.3 The Geography Problem

To a compact 4-fold we can associate (χ, σ, t) ∈ Z× Z× Z2 where t is the type, telling us

whether the intersection form is even or odd.

The geography problem asks which values can occur, and for a given (χ, σ, t) how

many examples (i.e. nondiffeomorphic manifolds) are there? For an excellent summary see

[50, 12].

Regarding the uniqueness, it is clear we need to put some restrictions to avoid trivial-

ities. For example,

nCP 2#mCP 2 (11.1)

has χ = 2 + m + n and σ = n −m, and since χ + σ = 2(1 + b+2 − b1) is even there are

essentially no restrictions on χ, σ, except for those from m ≥ 0, n ≥ 0.

Thus we can look at:

1. Complex manifolds.

2. Symplectic manifolds.

3. Irreducible manifolds (This means X = X1#X2 implies X1 or X2 is S4).

It is best to plot the bounds in terms of

c := 2χ+ 3σ χh :=
χ+ σ

4
=

1 + b+2 − b1
2

(11.2)

χh can be integer or half-integer. If it is integer X admits an almost complex structure.

Then c = c1(X)2. If X is complex χh is the holomorphic Euler characteristic.

FIGURE1: SOME KNOWN BOUNDS. Plot minimal surfaces of general type: 2χh −
6 ≤ c ≤ 9χh.

11.3.1 Superconformal Singularities

Now it turns out that the physics of superconformal points actually has some bearing on

the geography problem.

The way this comes about is the following. As we have stressed, Witten’s formula has

a natural generalization to SU(2) SYM coupled to Nf hypermultiplets with R the funda-

mental representation. The UV quantum field theory is only well-defined for Nf ≤ 4, so

we restrict to this case. Each hypermultiplet comes with a complex “mass parameter” mi.

(Mathematically, the mi are parameters in equivariant cohomology, a result of Labastida

and Marino [cite]).

Once again, the quantum moduli space of vacua is the complex plane, parametrized

by u ∈ C, but now the curves Σu in the Seiberg-Witten family over the u-plane degenerate

at 2 + Nf points uj , j = 1, . . . , 2 + Nf . At each of these points a different kind of BPS

state becomes massless:

FIGURE OF U-PLANE WITH SEVERAL SINGULARITIES

For X with b+2 > 1 of SW simple type the partition function becomes:

ZDW (p,Σ;mi) = α̃χβ̃σ
∑

j=1,...,2+Nf

κχhj

(
du

da

)χh+σ

j

∑
λ

SW(λ)e
puj+Σ2Tj−i( duda )

j
Σ·λ

(11.3)

Here
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1. α̃ and β̃ are slightly different numerical constants from before. We have put ΛNf = 1.

2. κj is defined by u = uj + κjqj + · · · , where qj = e2πiτj is the relevant modular

parameter near the singularity uj .

Now, ZDW (p,Σ;mi) is a manifestly finite and well-defined expression for generic val-

ues of the mass parameters mi. However, as we vary the mass parameters the points in

the discriminant locus uj will move, and they can even collide. When that collision in-

volves massless particles which are both magnetically and electrically charged 35 there are

further singularities. Mathematically, this is familiar in Kodaira’s classification of elliptic

fibrations.

Now let us focus on Nf = 1. For Nf = 1 there is a point m∗ where two singularities

collide at a single point u∗. If we parametrize m = m∗ + z and u = u∗ + z + δu then the

Seiberg-Witten curve is, to leading order:

y2 = x3 + zx+ δu (11.4)

up to numerical coefficients. There are then extra zeroes in κj and
(
du
da

)
j
. Since χ + σ

might well be negative there are potential divergences in ZDW (p,Σ;m) as m→ m∗.

However, from the physical perspective there cannot be any such divergences when X

is a compact manifold.

The reason is that in the IR the only singularities can come from noncompact regions

in spacetime or in moduli space. But X is compact, and for Nf = 1 there are no such

noncompact regions. (For Nf > 1 superconformal singularities sometimes can involve

noncompact regions.)

Requiring that ZDW (p,Σ;m) as m→ m∗ turns out to imply nontrivial facts about the

SW invariants.

11.4 Superconformal Simple Type And The Generalized Noether Inequality

A close analysis of the potential singularities of ZDW (p,Σ;m) shows that the absence of a

divergence for m→ m∗ is guaranteed by the following mathematical criterion:

Define

SWX(z) :=
∑
λ

e2πiλc·λSW(λ)ezλ (11.5)

where we fix an integral lift 2λc of w2(X) and we regard powers λn to be in the dual space

of Symn(H̄2(X)). Then

If SWX(z) is analytic at z = 0 with an of order ≥ χh − c − 3 then ZDW (p,Σ;m) is

finite for m→ m∗.

We define X to be of superconformal simple type if SWX(z) has a (nonnegative order)

zero at z = 0 of order ≥ χh− c− 3. Reference [33] did not quite manage to prove that this

is a necessary condition that ZDW (p,Σ;m) be finite, but it was verified that all available

constructions of 4-manifolds satisfy this criterion. Recently [18] have proven that projective

varieties are SST.

35technically, non-mutually-local
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Pursuing this a little further leads to an interesting lower bound on the number of

basic classes. Let B the the number of basic classes (where we count two nonzero classes

λ and −λ as the same. Then

B ≥
[
χh − c

2

]
(11.6)

which implies

c ≥ χh − 2B − 1 (11.7)

A classic result of algebraic geometry is that minimal surfaces of general type satisfy

c ≥ 2χh − 6 (11.8)

This is known as the Noether bound, so we refer to (11.7) as the “generalized Noether

bound.”

This leads to some new lines in the geography problem:

FIGURE: c, χh PLANE WITH SOME LINES WHERE THE SW SUM RULES AP-

PLY.

12. Possible Future Directions.

1. There are interesting cases, such as S3 × S1, where one-loop terms will contribute.

However, as shown in [38], the series stops at one-loop. Recently, beautiful results on

the partition function of N = 2 theories on S3 × S1 have been obtained by Rastelli

et. al. It would be interesting to reproduce those using the u-plane integral. ♣WRONG

TOPOLOGICAL

TWIST? ♣

♣Check this. There

might be no

specialization of

their index which

corresponds to the

Donaldson-Witten

twist. ♣

2. Families of 4-manifolds and H∗(BDiff). Recent progress [CITE:SEIBERG et. al.]

on coupling rigid SUSY theories to background supergravity should help.

3. Give expression for the ”u-plane integral” for theories of class S. What is the UV

equation whose intersection theory we are computing? Can we use the vast new

array of superconformal theories to learn new things, perhaps along the lines of the

superconformal simple type story?

4. When χh =
1−b1+b+2

2 is half-integral all the SW invariants vanish. Can physics really

be blind to half the world of four-manifolds?
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These appendices contain extra material on the mathematics of four-manifolds.

A. Orientation, Spin, Spinc, Pin±, And Pinc Structures On Manifolds

A.1 Reduction Of Structure Group: General Discussion

Given two compact Lie groups G1, G2 and a homomorphism φ : G1 → G2 we can define

a functor Fφ from principal G1 bundles on M to principal G2 bundles on M by taking

principal G1 bundle G1 → P →M to (P ×G1 G2)→M . Recall that (P ×G1 G2) is the set

of pairs (p, g) ∈ P ×G2 with equivalence relation (ph, g) = (p, φ(h)g) for h ∈ G1, and this

clearly admits a free right G2 action.

Definition If G2 → P2 → M is a principal G2 bundle, a reduction to G1 under

φ : G1 → G2 is a principal G1 bundle G1 → P1 →M together with an isomorphism ψ such

that we have the commutative diagram:

(P1 ×G1 G2)
ψ //

%%

P2

��
M

(A.1)

Working through the definitions one can give a description in terms of transitions

functions on patch overlaps Uαβ. If hαβ : Uαβ → G1 are the transition functions of P1 then

there is a bundle isomorphism of P2, as a principal G2 bundle to a bundle with transition

functions φ(hαβ ) : Uαβ → G2.

Examples

1. If φ : H → G is the inclusion of a subgroup then given a G-bundle P → M , H acts

freely, so we can consider G/H → P/H → M , a bundle of homogeneous spaces. In

this case a section of the bundle P/H gives a reduction of P to an H bundle, which

is in fact a subbundle. As a special case, take H = {1}. This is the familiar fact that

a global section of a principal G bundle trivializes the bundle.

2. Take H = O(n), G = GL(n,R). A metric gives a reduction of the frame bundle to

the orthonormal frame bundle BO(M). Clearly the bundle of orthonormal frames is

a subbundle of the frame bundle.

3. Suppose M is a Riemannian manifold, H = SO(n), G = O(n), and φ is the inclusion.

Then BO(M)/H is the orientation double cover. If M is orientable then the orien-

tation bundle has a section. Indeed, if M is connected BO(M) has two components

and there are two sections. A choice of section gives a reduction of the bundle to an

SO(n) bundle of oriented frames. The choice of section is the choice of orientation

of M .
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4. Now suppose φ is a covering map, i.e. φ : G̃→ G is surjective with kernel K. Then a

“reduction” of a principal G bundle P to a principal G̃ bundle P̃ is an isomorphism

P̃ /K
ψ //

""

P

��
M

(A.2)

Note the word “reduction” in the general definition is misleading since P̃ is really

a covering of P . Put differently, a “reduction of structure group” of a principal G

bundle P to G̃ is the same thing as a principal G̃ bundle P̃ that covers P :

P̃ → P →M (A.3)

so that the fiber above every point m ∈M “looks like” the covering

1→ K → G̃→ G→ 1 (A.4)

5. A choice of spin structure on an oriented manifold is a special case of the previous re-

mark, (A.2) for the case φ : Spin(n)→ SO(n). In order to classify spin structures we

begin by classifying principal Z2 bundles over BSO(M) by z ∈ H1(BSO(M);Z2). The

spin structures are those which restrict to the fibers to the double cover Spin(n) →
SO(n). The double cover Spin(n) → SO(n) corresponds to zs ∈ H1(SO(n);Z2) ∼=
Z2. Accordingly, the spin structures are the double covers of BSO(M) which restrict

to the fibers of BSO(M) → M to give the class zs. Note that the difference of two

spin structures z1 − z2 is therefore trivial on the fibers, and hence pulls back from a

class in H1(M ;Z2). Thus, the spin structures on M form a torsor for H1(M ;Z2).

6. We can proceed in this way with other structures. For a manifold M we can speak of

Pinc, Spinc,Pin±,Spin structures based on the above concept applied to the homo-

morphisms

φ : Pinc → O(n) (A.5)

φ : Spinc → O(n) (A.6)

φ : Pin± → O(n) (A.7)

φ : Spin → O(n) (A.8)

(A.9)

Note that these homomorphisms are in general neither injective nor surjective. For a

BLOTZ structure on an oriented manifold we apply the analogous homomorphisms

to SO(n) for the bundle of oriented frames.

A.2 Obstructions To Spin And Pin Structures

It is worthwhile translating the above somewhat abstract description into the language of

transition functions for the tangent bundle of a manifold X. Let {Uαβ} be a coordinate atlas
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for X. Using the metric we can form orthonormal frames and these will have transition

functions

gαβ : Uαβ → O(n) (A.10)

if dimRX = n. If we can modify these with cocycles

g̃αβ = hαgαβh
−1
β (A.11)

with hα : Uα → O(n) so that g̃αβ : Uαβ → SO(n) then the manifold is orientable. The

only obstruction to orientability is provided by a Cech 2-cochain det gαβ : Uαβ → Z2 which

defines a cohomology class w1(X) ∈ H1(X;Z2). Note that if X is simply connected then

H1(X;Z2) = 0 and hence it must be orientable.

When X is orientable we can take gαβ : Uαβ → SO(n). If we choose a good cover,

meaning that all the intersections Uαβ··· are contractible then, on each overlap Uαβ we

can choose lifts g̃αβ : Uαβ → Spin(n). The only problem is that the cocycle condition

for these lifts might fail. Because we have chosen lifts and the kernel of the covering

Spin(n)→ SO(n) is just the group {±1} we know for sure that on Uαβγ

g̃αβ(x)g̃βγ(x)g̃γα(x) := ξαβγ ∈ {±1} ⊂ Spin(n) ∀x ∈ Uαβγ (A.12)

The signs ξαβγ define a Cech 3-cocycle and this defines a cohomology class in H2(X;Z2).

It is one (very concrete) definition of w2. Note that any modification of the lifts gαβ by

a cocycle, or different choice of lift g̃αβ only changes {ξαβγ} by a coboundary. Almost by

definition, this is the only obstruction to the existence of a spin structure.

1. Example: Two spin structures on the circle and relation to the two double covers of

the circle. EXPLAIN.

2. An example: BSO(2) = BU(1) = CP∞. w2 is the reduction mod two of c1, which is

the cochain dual to the 2-cell. So explain why c1 mod two is an obstruction to the spin

structure. On CP 2 c1 = 3x. The complexified tangent bundle admits a reduction

of the SO(4) = SU(2) × SU(2)/Z2 structure group to U(2) = SU(2) × U(1)/Z2.

Restricting to a CP 1 ⊂ CP 2 the tangent bundle splits as O(2) ⊕ O(1) where O(2)

is the tangent bundle of CP 1 and O(1) is the normal bundle. The structure group

is further reduced to U(1) × U(1). Clearly, the principal U(1) bundle associated to

the normal bundle O(1) does not admit a two-fold covering restricting to a double

covering of U(1) over U(1).

3. The obstruction to a Spinc structure is W3, the image of w2 under the Bockstein

map. Therefore, it vanishes when w2(X) ∈ H2(X;Z2) has an integral lift. Using the

fact that, for all σ ∈ H2(X;Z)∫
σ
w2(X) = σ · σ mod 2 (A.13)

where σ · σ is the oriented integral intersection number one can show that indeed

such an integral lift exists. See [52] for the details. The analogous statement fails in ♣Also look up proof

in Gompf, Stipsicz,

4-Manifolds and

Kirby Calculus ♣
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the unorientable case: RP2×RP2 does not admit a Pinc structure. Moreover, there

♣Give proof. ♣
are orientable five-dimensional manifolds which are not Spinc. A simple example is

the space of symmetric SU(3) matrices, which is diffeomorphic to SU(3)/SO(3). See

[28] for an explanation.

A.3 Spinc Structures On Four-Manifolds

The group Spinc(4) is defined to be

Spinc(4) := (Spin(4)× U(1)) /Z2 = (SU(2)× SU(2)× U(1)) /Z2 (A.14)

where we divide by the group Z2 embedded as (−1,−1,−1). The bundle of oriented ON

frames of X, OrFr(X) is a principal SO(4) bundle and a spin-c structure is - by definition

- a reduction of structure group to a principal Spinc(4) bundle defined by the obvious

homomorphism Spinc(4) → SO(4). Working out the definition this means that a spin-c

structure is defined by a principal Spinc(4) bundle P with a projection P → OrFr(X)

which along the fibers looks like the exact sequence

1→ U(1)→ Spinc(4)→ SO(4)→ 1 (A.15)

A spin-c structure exists when w2(X) has an integral lift. As mentioned above, this is

indeed true for every compact orientable four-manifold.

The group homomorphism Spinc(4)→ U(2)×U(2) given by [(vL, vR, ζ)] 7→ (ζvL, ζvR)

defines an isomorphism

Spinc(4) ∼= {(uL, uR)|detuL = detuR} ⊂ U(2)× U(2) (A.16)

and the latter presentation makes it obvious that there are two inequivalent rank 2 rep-

resentations W± of Spinc(4) simply defined by the fundamental representations of each of

the two U(2) factors. Given a spin-c structure there are therefore two associated complex

rank two bundles W± → X and we can identify

W± = S± ⊗ L (A.17)

in the discussion of section 4.7.2 above. Conversely such a pair of bundles W± defines a

spin-c structure. Consequently the space of spin-c structures is a torsor for the group of

line bundles, since give a line bundle L we can always take

W± →W± ⊗ L (A.18)

so that

c1(detW±)→ c1(detW±) + 2c1(L) (A.19)

Note that given an almost complex structure on X there is a canonical spin-c structure

W+ = Ω0,0(X)⊕ Ω0,2(X) W− = Ω0,1(X) (A.20)
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A.4 ’t Hooft Flux

At several points in the notes we used the second Stiefel-Whitney class w2(P ) where P

is a principal SO(3) bundle. In general, an SO(n) bundle P over a manifold M has a

characteristic class w2(P ) ∈ H2(M ;Z2). One way to define it follows the discussion of spin

structures above: Choose a good cover {Uα} of M and a trivialization of P on this cover.

On patch overlaps Uαβ choose lifts g̃αβ : Uαβ → Spin(n) and measure the failure of the

cocycle condition on Uαβγ to define a class in H2(M ;Z2). If w2(P ) is nonzero then there

is no reduction of structure group of P from SO(n) to Spin(n).

A simple example of an SO(n) bundle that does not lift to a Spin(n) bundle is obtained

by considering M to be a two-dimensional compact surface. Choose a point p ∈ M and a

small disk around p. Define an SO(n) bundle by taking the transition function around the

boundary of the disk to define a nontrivial closed loop in SO(n).

B. The 11/8 Conjecture

Even unimodular forms must be of the type Q = mE8 ⊕ nH, where m is an integer of

either sign. Note that E8 ⊕−E8
∼= 8H.

Rokhlin’s theorem: If X is smooth and w2(X) = 0 then σ(X) = 0mod16. Equivalently,

if X is smooth and QX is even then σ(X) = 0mod16.

Therefore, for a smooth manifold with even indefinite form Q = 2mE8 ⊕ nH. From

Donaldson we know that n > 0.

Connected sums with S2 × S2 increases H, so the interesting question is: What is the

minimal number of H’s needed for Q to be QX for a smooth 4-fold X?

Note that

X = K3#`#(S2 × S2)#t ⇒ QX = −2`E8 ⊕ (3`+ t)H (B.1)

so in this case m = −` and n = 3`+ t with `, t ≥ 0. Therefore there exist smooth X with

n ≥ 3|m| (B.2)

and the bound is saturated by taking t = 0.

The so-called “11/8 conjecture” says that K3#` is the optimal four manifold for this

inequality:

Conjecture: Every smooth X with even intersection form must have n ≥ 3|m|, or,

equivalently

b2(X) ≥ 11

8
|σ(X)| (B.3)

Note that for Q = mE8 + nH, where WLOG we can take n ≥ 0, we have

b2(Q) = 16|m|+ 2n

|σ(Q)| = 16|m|
(B.4)

so n ≥ 3|m| iff

b2(Q) ≥ 22|m| = 11

8
|σ(Q)| (B.5)
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A stronger conjecture is the 3/2 conjecture, which applies to irreducible X. This is a

manifold that does not split as a connected sum of two 4-folds one of which is not S4.

Conjecture: Let X be a smooth irreducible 4-fold with even intersection form. Then

n ≥ 4|m| − 1 (B.6)

(Again note that K3 with m = −1 saturates the inequality.) Equivalently

b2(X) ≥ 16|m|+ 8|m| − 2 = 24|m| − 2 =
3

2
|σ(X)| − 2 >

3

2
|σ(X)| (B.7)

Some known results in this direction:

1. Theorem[Donaldson] The forms H and H ⊕ H are the only even forms that can

appear for smooth X with b+2 = 1 or b+2 = 2. (So, if there is an E8 then n ≥ 3. )

2. Theorem[Furuta] For X smooth with even intersection form n ≥ 2|m|+ 1, that is

b2(X) ≥ 10

8
|σ(X)|+ 2 (B.8)

Furuta et. al. also show that ±4E8 ⊕ 5H cannot be the intersection form of any

smooth X. So the first unkown case allowed by Furuta’s theorem, but violating the 11/8

conjecture is |m| = 3 and n = 7, 8.

The method of Furuta is to exploit a Pin(2) invariance of the SW equations....

C. Theorems On SW Moduli Space

CITE REFERENCES! AT LEAST write the key Weitzenbock identity.

1. b+2 ≥ 1, generic metric: M(λ) is either empty or a smooth manifold of the expected

dimension.

2. b+2 ≥ 2: For generic paths gt we get a smooth cobordism between smooth manifolds.

3. M(λ) is only nonempty for a finite number of spin-c structures.

4. M(λ) when nonempty are compact.

5. M(λ) are orientable, depending on an orientation on H1 ⊕H2,+ (as in Donaldson

theory).

6. Simple type conjecture: For any simply connected X with b+2 ≥ 2, if M(λ) is

nonempty then it is zero-dimensional.

7. Simple type conjecture is true for symplectic manifolds.

8. There are examples of b+2 = 1 and non-simply connected X showing thatM(λ) can

have arbitrarily high dimension.

D. Constraints On π1 Of Three-Manifolds

Any orientable three-manifold admits a Heegard decomposition. This means we can find

an embedded closed oriented surface Σ ⊂ Y so that Y is the gluing of two handlebodies

(bordisms of Σ to the emptyset) using a diffeomorphism of Σ. Such a Heegard decom-

position strongly constraints the fundamental group, thanks to the Seifert-van-Kampen
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theorem: A set of generators is given by a set of generators of the two handlebodies. The

fundamental group of the handlebody for Σ of genus g is just a free group on g generators.

(The “A-cycles” contract to a point, leaving the “B-cycles” with no relation.) After gluing

to the other handlebody there will be g relations expressing the contractibility of the new

“A-cycles” of the second handlebody.

Thus, for any orientable three-manifold Y , π1(Y, y0) admits a presentation where the

number of generators is equal to the number of relations. The existence of such a presen-

tation is certainly not possible for a general finitely generated group.

If the universal cover Ỹ of Y is a rational homology sphere we can same more. 36

(From the Poincaré conjecture we know it is S3, but we don’t actually need that for the

following argument.) So, π1 must act continuously on S3.

Now consider the Gysin sequence of EG ×π1 S
3. On the one hand, this is homotopy

equivalent to S3/π1 which cannot have cohomology above degree three. On the other hand,

it is a sphere bundle over BG. Now consider the Gysin sequence for the pair (D,S) where

S is the above sphere bundle over BG and D is the corresponding disk bundle. (Extend

the action by π1 into the disk.)

Of course, the disk bundle contracts to BG and H∗(D,S) ∼= H∗+4(BG) by Thom

isomorphism, so in the Gysin sequence we get Hk(BG)→ Hk+4(BG) which is sandwhiched

between zeroes for k > 3 since Hk(S) ∼= Hk(S3/π1). In fact, Hk(BG) → Hk+4(BG) is

multiplication by the Euler class. This shows that above some low degree the cohomology

of BG must be periodic. But already for sufficiently many products of Z2’s we see that the

cohomology is not 4-fold periodic. Therefore, such groups cannot arise as π1 of any 3-fold.
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