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Applications of conformal field theory to the theory of fractional quantum Hall systems are 
discussed. In particular, Laughlin's wave function and its cousins are interpreted as conformal 
blocks in certain rational conformal field theories. Using this point of view a hamiitonian is 
constructed for electrons for which the ground state is known exactly and whose quasihole 
excitations have nonabelian statistics; we term these objects "nonabelions". It is argued that 
universality classes of fractional quantum Hall systems can be characterized by the quantum 
numbers and statistics of their excitations. The relation between the order parameter in the 
fractional quantum Hall effect and the chiral algebra in rational conformal field theory is 
stressed, and new order parameters for several states are given. 

I. Introduction 

The past few years have seen a great deal of interest in two-dimensional many 
particle and (2 + 1)-dimensional field-theoretic systems from several motivations. 
These include the fractional quantum Hall effect, high-temperature superconduc- 
tivity and the anyon gas, conformal field theory in 1 + 1 dimensions and its relation 
to 2 + 1 Chern-Simons-Wit ten (CSW) theories, knot invariants, exactly soluble 
statistical mechanical models in 1 + 1 dimensions, and general investigations of 
particle statistics in two space dimensions [1-6]. A common theme in most of these 
investigations is the richness of representations of the braid group, ~ , ,  which 
replaces the permutation group as the group describing particle statistics in two 
dimensions. In particular, in the fractional quantum Hall effect (FQHE) it was 
suggested early on that the fractionally charged quasiparticle excitations obey 
fractional statistics [7, 8], that is adiabatic interchange of two identical quasiparti- 
cles produces a phase not equal to + 1. In other words, in a suitable gauge, the 
wave functions transform under interchange of quasiparticles as a one-dimen- 
sional, i.e. abelian representation of the braid group, in a way not possible in 
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higher dimensions because there the only one-dimensional representations of the 
permutation group correspond to Bose or Fermi statistics. Mathematically, it is 
known that higher-dimensional representations of .~, exist, and it has recently 
been shown that some of these are quite acceptable as a description of particle 
statistics [2]. In these representations, the wave function of a set of excitations of 
specified position and quantum numbers becomes a vector, and each exchange of 
these "particles" gives a matrix, i.e. nonabelian action on this vector. It is 
interesting to ask whether there exist in nature exotic two-dimensional systems 
whose elementary excitations include some transforming as nonabelian representa- 
tions of 8 , .  Particles defining nontrivial abelian representations of .~. are known 
as "anyons" and it seems apt to call these new objects "nonabelions". Fractional 
quantum Hall systems are the best candidates for such behavior since fractional 
statistics is already believed to occur there. This idea is further supported by the 
development of Ginzburg-Landau (GL) theories of the FQHE where the action 
contains a Chern-Simons (CS) term [4,9,10]. Actions similar to the low-energy 
limit of these theories, but with more complicated gauge groups have recently been 
shown to be related to the "holomorphic half" of rational conformal field theories 
(RCFTs) which in turn provide a wealth of nonabelian braid group representations 
[1,5]. 

In this paper we will discuss how the G L - C S W - R C F T  connection suggests a 
new viewpoint on the strongly correlated ground states of the FQHE, and in 
particular we will use this viewpoint to construct wave functions for the exact 
ground state of a certain hamiltonian and for quasiparticle excitations which are 
nonabelions. The main idea is that certain conformal blocks (i.e. the holomorphic 
square roots of correlation functions) in (1 + 1)-dimensional conformal field theo- 
ries can be interpreted as wave functions for the electrons in the FQHE ground 
and excited states, the latter including quasiparticles with non-trivial statistics. 

Beyond these specific examples, we will give some arguments for a wider point 
of view, in which elementary excitations of ground states of incompressible FQHE 
systems are to be characterized by their quantum numbers and braiding properties 
(statistics). These properties are rather rigidly constrained, they cannot be per- 
turbed at all by small changes in the hamiltonian of the system, and at the same 
time seem to give enough information to distinguish physically different systems. 
This suggests that incompressible FQHE systems fall into classes which we may 
call "universality classes" by analogy with critical phenomena where the scaling 
fields of the critical system, together with their corrections, play a similar role. 
Indeed, this analogy becomes a correspondence when we use the mathematical 
relationship outlined above. An explicit representative of each class of systems can 

be constructed using this relationship. 
(To avoid confusion, note that these FQHE systems are not themselves critical; 

it is only the braiding properties of 1 + 1 RCFT which are being used. The critical 
properties of the transitions between different states, whether at the same or 
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different filling factor, are an important but separate issue which will not be 
discussed in this paper.) 

It will be seen that this point of view is really an analysis of the (dynamical, 
spectrum-generating) symmetry. It amounts to an analysis of the possible kinemati- 
cal properties of the incompressible ground states and their excitations. Dynamical 
questions, such as how to find the ground state of a given hamiltonian, or how to 
calculate excitation energies, will not be discussed. This is in accordance with the 
usual procedure in physics, that kinematics and symmetries of a problem are 
studied before dynamics. We hope that the general point of view given here will 
aid in constructing field theoretic representations of FQHE states with the help of 
which questions such as the stability of different states can be studied. This might 
be useful in understanding such longstanding problems as the nonappearance of 
FQHE plateaus at even-denominator ~,.~, in high magnetic fields which is "ex- 
plained" in numerical calculations but for which there is no convincing physical 
picture. 

The rest of this paper is organized as follows. In sect. 2 we review some relevant 
background on both rational conformal field theory and the theory of the frac- 
tional quantum Hall effect, and outline our view of their relation. In sect. 3 we 
discuss Laughlin's states and their hierarchical descendants from the RCFT point 
of view. The corresponding field theory for filling factor v = 1/q is identified as 
the level q/2 rational torus, and the implications for FQHE states on higher-genus 
Riemann surfaces are discussed. In sect. 4 we address spin-singlet ground states; 
the principal example of such a state is Halperin's state, which we show corre- 
sponds to the level k - 1 SU(2) Wess-Zumino-Witten theory [11] combined with 
the rational torus. In sect. 5 we construct perhaps the simplest of all states with 
nonabelion quasiparticles, at even-denominator filling factor, using a combination 
of the rational torus and the Ising model. Conformal field theory leads to a 
hamiltonian for which our state is the exact ground state. Sect. 6 contains final 
discussion and speculations. 

A few aspects of our constructions have been discussed previously. Banks et al. 
[12] explored the idea of relating anyon wave functions to conformal blocks in 
unpublished work. Wen, in a series of papers [13], has used Witten's work on 
Chern-Simons gauge theory [5] to discuss ground-state degeneracy of FQHE and 
chiral spin liquid systems on two-dimensional surfaces of genus larger than zero, 
and has also applied conformal field theory to the study of edge excitations of 
these systems. 

2o Adiabatic transport, statistics, order parameters and extended algebras 

This section summarizes relevant background material on the fractional quan- 
tum Hall effect and conformal field theory and gives our general picture of how 
they are related. Some readers may prefer to read it in conjunction with sect. 3. 
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2.1. ADIABATIC TRANSPORT, NONABELIAN STATISTICS AND THE FUSION ALGEBRA IN 
INCOMPRESSIBLE SYSTEMS 

The fractional quantum Hall effect (FQHE) [3], i.e. a plateau in the Hall 
resistance, is observed in two-dimensional electron gases in high magnetic fields 
only when the mobile charged excitations have a gap in their excitation spectrum, 
so the system is incompressible (in the absence of disorder). Therefore the theory 
of the FQHE begins with the search for ground states of the interacting electron 
system which exhibit such a gap. In this paper, our goal is not to solve any 
particular hamiltonian, but to characterize the general properties such states must 
have if they exist. Accordingly, we will begin by assuming that we have an 
"incompressible F Q H E  system" defined as follows. We take a system of electrons 
confined in a two-dimensional layer, with a strong perpendicular magnetic field. 
We assume that the field is sufficiently large in comparison with other energies, in 
particular the interactions between electrons, that the electrons of each spin may 
be assumed to fill an integer number of Landau levels and partially fill a "last" 
Landau level (often the lowest); excitations of electrons to higher Landau levels or 
holes in lower Landau levels than the last can be neglected. (This may not always 
be strictly true, but we expect that the physics of the states is not affected by some 
admixture of excited Landau levels.) In this case the hamiltonian reduces to 
potential energy terms, up to constants; we will take only translationally invariant 
hamiltonians. The spins of the electrons in the last Landau level may not necessar- 
ily be fully polarized by the magnetic field, i.e. the total spin in the ground state 
may not be given by the value it would take for non-interacting electrons. At high 
fields, the spins are observed to be polarized, and a Landau level polarized 
parallel to the field is filled before the same Landau level with opposite polariza- 
tion. In this regime, F Q H E  plateaus with Hall conductance o-xy a rational number 
(in units of e2/h)  are observed, the rational having odd denominators only. At 
lower fields, the partial occupation of the first excited Landau level, the FQHE 
with even-denominator Orxy is also observed [14] in which not all spins are 
polarized [15]. We will limit ourselves to the two extreme cases, very strong 
polarization where spin reversal can be neglected and the problem reduces to that 
of spinless electrons, and small Zeeman splitting where we may look for spin 
singlet ground states. Finally, by "incompressible" we mean that all excited states 
have a finite energy difference from the ground state, including ~pin excitations in 
the spin singlet case. We will assume incompressibility in some places in the 
discussion, although it is not clear that a gap for all types of excitations is 
necessarily required to observe a Hall plateau (compare "gapless superconductiv- 
ity"). Also, our states will be fluids, that is they have no long-range positional order 
(as opposed to solids, which would have gapless phonon modes). 

In an incompressible system, one expects that excitations can be localized into 
wave packets whose quantum numbers differ from those of the ground state only 
in a finite region, up to exponentially small corrections. In particular, the charged 
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excitations will feel the background magnetic field and so their spectrum will have 
a Landau level-like structure; in this case a localized wave packet is a "coherent 
state" since the x and y coordinates of the excitation are non-commuting opera- 
tors. For a single, charged "quasiparticle" excitation, these coherent states are 
eigenstates and for several well-separated quasiparticles (in a simultaneous coher- 
ent state for all quasiparticles)will  be approximate eigenstates. For neutral 
excitations, a wave packet is, of course, not expected to be an eigenstate. One may 
try to distinguish "particle-like" from "collective" excitations, the latter having 
Bose statistics and being typically related to fluctuations of conserved quantities 
such as charge and spin, thus being neutral and having spin zero or one. The other 
excitations have either non-trivial charge, spin or other quantum numbers, a n d / o r  
non-Bose statistics. The latter are very important; we regard statistics as like 
another quantum number (though strictly speaking it is not one and should not be 
confused with them) related to the braid group, which can be used to classify and 
distinguish excitations. This point will be extensively discussed in this paper. We 
note some ambiguity in whether a neutral Bose excitation should be regarded as 
"collective" or not. Eventually, our point of view will be that collective excitations 
are always generated by "charge" densities or currents related to some continuous 
symmetry which may or may not be present in the underlying electrons but is 
present in the many-body state. In the two-dimensional conformal field theory 
point of view to be discussed below, they correspond to currents in a current 
algebra. The other excitations correspond to nontrivial "primary" fields or their 
descendants under the chiral algebra (see below). This will sharpen the definitions 
considerably. 

We are interested in the statistics of excitations, that is, how the wave function 
changes when the locations of excitation wave packets are exchanged. In two space 
dimensions, such exchanges involve braiding of the world-lines of the excitations 
and so smooth motions of their positions. In higher dimensions, exchanges are just 
permutations (all exchange paths are homotopic to one another). Braiding by its 
very nature involves exchanges along continuous paths, which suggests that ex- 
changes must be done slowly. It is then natural to try to invoke the quantum 
adiabatic theorem. In our incompressible FQHE systems, we are in good shape to 
apply this theorem. Consider a state with several well-separated localized excita- 
tions. Since excitations are gapped, internally exciting some mode within a local- 
ized excitation should cost a finite amount of energy. If we choose a lowest energy 
internal state of each excitation, for given quantum numbers (drawn from whatever 
are available in our particular system) of each, the remaining states close in energy 
should correspond to changes in position of the localized excitations. Thus a small 
change in position of an excitation gives a state partially orthogonal to the original 
state. A key point is that, even when we specify positions and quantum numbers 
(drawn from some set) of each excitation, we may still have a vector space (a 
subspace of Hiibert space) of approximately degenerate states whose dimension is 
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larger than one. Therefore we must consider adiabatic transport (on the positions 
of the excitations) within this isolated degenerate manifold. Let us transport 
excitations with all separations remaining large. Since all virtual excitations which 
might mediate interactions between our excitations have energy gaps, we expect 
that the energy of our states remains constant on transport. The phase resulting 
from the energy of the states is in any case removable [16]. We then consider 
transport around a closed loop in the configuration space, which means that 
excitations return to their original positions or are exchanged with identical 
excitations. In the case where the space of states is one-dimensional, the result of 
transport is a phase factor, known as Berry's phase. In the general, higher-dimen- 
sional case the result is a unitary matrix operation on the state vector we started 
with [17]. In either case, the effect on the wave function can be expressed as the 
exponential of the line integral of a vector potential (possibly matrix-valued) 
[16, 17]. Matrices for all possible different closed loops will not commute, because 
if they did we could diagonalize them and decompose the vector space into 
one-dimensional subspaces. The degeneracy of these spaces would have to be 
accidental and so nongeneric. The generic case will involve noncommuting matri- 
ces. We stress that the result of adiabatic transport is gauge invariant; gauge 
transformations merely shift unitary factors between the states and the hamilto- 
nian. For charged excitations, the result of transport contains a phase given by the 
exponential of i times the charge of each excitation times the area of the loop it 
swept out, due to the magnetic flux enclosed by the loop. The remaining matrix or 
phase should depend only on the homotopy class of the loop in configuration 
space. 

"Statistics" means the effect of exchange of identical excitations (other than the 
magnetic flux piece). The one-dimensional case, where the effect is a phase, is the 
usual case of Bose, Fermi or fractional statistics. The higher-dimensionai (non- 
abelian) case is not nearly as familiar. (An early discussion of the general ideas 
involved is given in ref. [18].) Particles obeying fractional statistics are called 
"anyons", and those obeying nonabelian matrix statistics "nonabelions". For an 
elementary interchange of two excitations (one where the loop swept out does not 
enclose other excitations) we have [1], omitting any flux factor, 

~bp:i, . . . i , . . . i , . . . i , ,(z~.. .Zg . . . z ,  . . . z , , )  = ~/.Bp,~[i~. . . i , , ]~bq:g, . . . i , , (z~. . .z , , )  (2.1) 
q 

for the interchange of particles r, s (r  < s), where p, q label a basis in the vector 
space, and B is a matrix on the p , q  labels, not on the quantum numbers 
(observables), {i,,; a = 1, . . . ,n},  which label the individual particles. Here we have 
defined the matrix B even for exchange of nonidentical excitations (i r ~ is). The 
braid group for a set of identical braids is generated by all possible elementary 
interchanges. The group for distinguishable braids may he defined as finally 
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bringing each object back to its original position and is called the pure braid group. 
We are interested in an intermediate case where the braids carry labels some of 
which may be identical. The symmetry group we want brings the braids back to 
their original positions up to permutations of braids with identical labels. The 
structure of the pure or intermediate braid group is best described in terms of the 
generators of the full braid group with some additional constraints. The matrices B 
furnish a representation of this full braid group. Their dependence on {ia} and p, q 
is specialized by imposing locality properties in both conformal field theory [1] and 
in particle statistics [2]; this will be discussed later. The operation of taking one 
excitation completely around another gives a matrix operation called monodromy 
which is given loosely speaking by B E . 

Another kind of operation on a wave function for a set of excitations is called 
"fusion" or "operator product". It is natural to make new excitations by bringing 
together two others. Two excitations close together should look like one excitation 
with quantum numbers given by some kind of "sum" of the two original excita- 
tions. Examples are charges, which add, and spins, where we must use the 
Clebsch-Gordan formulas. More generally, we write symbolically 

&j x q , ,  = E Nj~.&,. (2.2) 
i 

Here i runs over a set X including the "identity" which is the trivial excitation, i.e. 
its creation operator is 1. ~bj., ~b k represent two excitations of generic quantum 
numbers ./, k and Nj~, are integer coefficients. The wave function obtained by 
"fusing" ~bj, ~bt, is a linear combination of wave functions with a single excitation at 
z. Nj~, :~ 0 means that an excitation of type 4, i appears in the linear combination, 
Nj~, > 1 that there is more than one way to fuse ~bj. and 4, k to get t~i (thus the space 
of resulting wave functions with t~i a t  z potentially has dimension > 1, depending 
on the other excitations present). In the example where the quantum numbers are 
ordinary charge only, N/k = 6i, j+ k while for spin Nil k is 1 if spin i appears in the 
decomposition of the tensor product of spins j and k and zero otherwise (in 
general (2.2) is no t  tensor product). Clearly fusing of excitations should be 
commutative, so 

= 

and also the order of the successive fusions should not matter (associativity) 

E M m M ! - -  ~ M n M  m 
4 "fl j l "gk z.__, ' " i j '  " n k  " 

I n 
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The coefficients ~.~, can therefore be regarded as matrix elements in an algebra of 
matrices which is commutative and associative; it is called Verlinde's algebra [19]. 
We have already assumed that two excitations close together "look like" their sum, 
and that braiding matrices depend on the homotopy class of the path. The latter 
implies that successive braidings obey the relations of the braid group (one of 
which has the form of the Yang-Baxter equation) while the former means that 
taking an excitation around a pair before or after fusing makes no difference. 
These consistency conditions are physically plausible because they rest on locality; 
the structure of the states and their B and N properties is "topological" and local 
because the underlying physics is local - we have a short-range hamiltonian and 
the basic correlations are short range (actually, the realistic hamiltonian has a 1 / r  
Coulomb interaction; while not strictly short range, it is short range enough for 
most purposes, and replacing it by a short-range interaction should not affect the 
existence of incompressible fluid states). The consistency conditions place impor- 
tant constraints on the possible braid group representations. They are built in to 
conformal field theory [1] and also play a key role in the analysis of Fr~ihlich et ai. 
[2]. In spatial dimensions greater than two the analogous conditions ultimately lead 
to Fermi or Bose statistics being the only acceptable permutation group represen- 
tations, once other labels are identified as group theoretic in origin [20]. We will 
not try to prove that these conditions hold in general in the FQHE situation, 
though we conjecture that they do; instead they will appear automatically in our 
constructions based on conformal field theory. 

We now explain very briefly where nontrivial braiding appears in conformal field 
theory (CFT). In a two-dimensional conformal field theory, we have correlation 
functions of fields ~bi(z, ~,) (where z = x  + iy)which are real functions but may be 
decomposed as 

¢~ia( Za' Za) = E I  ~'p;,," ...in( Z l ' " ' ' Z n ) l  2, 
= p 

where the conformal block functions J'~ are holomorphic in their arguments and 
we have taken the "diagonal" case for simplicity. Here p labels members of a basis 
of functions Jrp;i~...i,(zl,...,z,,) which form a vector space for each n-tuple 
(z~,.. . ,z,) (more precisely, a vector bundle over the complex n-dimensional 
manifold with coordinates (z~,...,z,)). 3-~ transforms just like ~,p in (2.1) [1]. 
Furthermore, fusion of operators 4,i(z) (obtained, heuristically, by factorizing 
~b~(z, ~,)= ~b~(z)~(~,) in this diagonal theory)is defined exactly as above. Thus the 
natural correspondence that this suggests is that holomorphic wave fimctions of 
particle systems in two spatial dimensions might be conformal blocks of some 
conformal field theory in two-dimensional space-time. In the simpler of the 
examples to be discussed later (namely the so-called "parent" states), it is clear 
that the wave functions of excitations in FQHE systems vat3' holomorphically in 
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the quasiparticle positions, but it is not so clear in general. We will, however, argue 
that wave functions can usually be brought to such a holomorphic form, or else can 
be built as holomorphic and antiholomorphic factors, each of which are conformal 
blocks. 

In the case when the wave functions vary holomorphically the adiabatically- 
obtained vector potential (whether scalar or matrix) can be uniquely characterized 
as the unique connection compatible with both the induced inner product on the 
restricted space of states and the complex structure [21]. This suggests that the use 
of adiabatic transport could be eliminated and a more general formulation given 
which would not require the existence of energy gaps. These ideas should have 
very wide applicability in two-dimensional many-body systems. 

2.2. O R D E R  PARAMETERS A N D  C H I R A L  ALGEBRAS 

The Laughlin state for N particles in the lowest Landau level, denoted 10L; N )  
has coordinate representation in the symmetric gauge (we set the magnetic length 
to 1 throughout)[22] 

iI-I(zi-z~)qexp[-¼~i[zi!2] <j . (2.3) 

(where now i = 1, . . . ,  N)  and has filling factor v - 1/q with q an odd integer for 
fermions. This state has long-range order in the operator [4] 

W*( Z) -- ~i*( z )Uq(  z ) e  -Izl2/4 , 

where 0*(z)creates a particle in the lowest Landau level and U(z) is a Laughlin's 
quasihole operator [22], in first quantization 

N 

= H (2.4) 
i = l  

Furthermore, the unnormalized Laughlin state can be written as a Bose conden- 
sate in ~* [4]: 

(S)N 10L;N) = d2z q t t ( z ) 1 0 ) ,  (2.5) 

where 10) is the vacuum state (no particles). By taking linear combinations of 
states IOL; N )  with different N one can obtain a state with a non-zero expectation 
value for qt+(z). In ref. [4] a classical Ginzburg-Landau (GL) theory for (qt)  was 
developed, which involves also a vector potential .a¢ identical to that obtained by 
adiabatic transport as discussed above, and a scalar potential ~0. The action 
contains a Chern-Simons term which gives the vortex excitations fractional charge 
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and statistics in agreement with direct calculations on the Laughlin states. While 
the explicit demonstration of long-range order is for the Laughlin state, and the 
derivation of the GL theory assumed such order but not a particular ground state 
[4,9, 10], one expects the order to persist in the exact ground state at v = l /q  of a 
hamiltonian more general than that for which Laughlin's state is exact, as long as 
the ground state is incompressible. We expect similar order parameters and GL 
theories to exist for all incompressible FQHE ground states. Such order parameter 
operators will add both charge and flux, in the ratio v, as for the Laughlin state. 
The statistics of the operator, found from adiabatic transport and use of canonical 
anticommutators for the creation operators, must be bosonic so that these "pseu- 
doparticles" can Bose condense in the FQHE ground state. The form of these 
operators for a few other states will be described later in this paper. 

Three-dimensional gauge theories (abelian or nonabelian), but with the 
Chern-Simons (CS) term as the only term in the action, have also appeared 
recently as "topological field theories" [5] and have been shown to reproduce the 
braiding and fusing properties of corresponding two-dimensional CFTs. Given a 
quantum field theory version of the GL theory of the FQHE, it is reasonable to 
argue that, in the presence of quasiparticle (vortex) excitations, low-energy adia- 
batic transport can be represented by keeping only the CS term in the action, since 
all other terms vanish far from a quasiparticle. The quasiparticles then appear as 
charged sources whose worldlines are Wilson lines in the pure CS gauge theory [5], 
giving another view of the connection with CFT. 

A quantum field theory with a CS term for the Laughlin state can be produced 
by a similar gauge transformation of the electron system [10]. (Note that the 
resulting scalar field is not quite the same as qt and does not have long-range 
order in the Laughlin state, but only algebraic order [9].) A heuristic long-wave- 
length field theory of the FQHE is then obtained by coarse-graining arguments. 
The power-lay decay of the order can be reproduced in this field theory [23]. It is 
possible to reproduce the Laughlin wave function itself by solving this field theory 
for a specific form of hamiltonian [24], but this derivation is not yet in our opinion 
fully convincing. 

The role of the CS theory is to produce the appropriate Friedan-Shenker (FS) 
vector bundles [25] describing braiding of quasiparticles. Actual wave functions (or 
conformal blocks) are sections of these bundles. The e::istence of an order 
parameter in the Laughlin state means that destruction of an electron, i.e. creation 
of a hole, is equivalent to creation of q quasiholes of charge - e / q  [4]. Hence not 
only the statistical properties of quasihole states, but also wave functions in the 
electron coordinates themselves should be given by conformal blocks. This is one 

of the main points in this paper. 
There are several ramifications of this point. First, if we wish to take a CFT and 

produce a FQHE system, we must demand that among the spectrum of primary 
fields is one that behaves as a fermion with the quantum numbers of the electron. 
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Second, we can produce a "representative" wave function, essentially by condens- 
ing the order parameter operator (built out of the primary field just mentioned) in 
a way analogous to (2.5). It is a "representative" of an infinite family of possible 
wave functions, all with identical braiding and fusing properties, because in a 
conformal field theory there are infinitely many "secondary" fields for each 
primary field [26]. The secondary fields are often called descendants of the primary 
fields. In particular, the Virasoro algebra is always present, allowing us to generate 
descendants which are essentially linear combinations of derivatives with respect to 
z of the correlations of the primary fields. We expect that this freedom can be 
used, for example, to move some of the zeroes of the wave function slightly away 
from the particles, where they are sitting in the Laughlin state (observe the 
multiple zeroes z+ =z~ in eq. (2.3)). This is the expected form of a general 
incompressible state at v = 1/q with the zeroes bound close to but not all exactly 
at zi = zi; it is responsible for the long-range order in 1/'. This freedom in the 
construction will be advantageous if we are ever to solve arbitrary, hamiltonians in 
this framework. It is the basis for the universality of the braiding and fusing 
properties of the quasiparticle excitations. Each family is a "universality class"; 
universality classes are to be distinguished solely by the quantum numbers of the 
ground state and excitations, and by the braiding and fusing algebras; in other 
words by the corresponding CFT. In the literature there are many constructions of 
different "trial" states; it would be interesting to see which of these are actually in 
the same universality classes. 

We do not know if all universality classes of FQHE behavior are given by some 
CFT or CSGT, but we conjecture that this is so. This question is related to other 
conjectures involving these objects [1], and an affirmative answer would open the 
way to a classification of FQHE systems. 

A third ramification concerns the fully extended or chiral algebra of the CFT 
and by implication the FQHE system. In the fusion rule algebra (2.2) of a CFT, it 
may happen that some subset of fields ~i form a closed subalgebra. If in addition, 
all other fields are local with respect to these fields (that is transport of one around 
the other produces a phase factor of 1) then all the fields can be regarded as 
falling into representations (multiplets) of an extended algebra, consisting of the 
above-mentioned subset as well as whatever algebra we started with (which always 
includes the Virasoro algebra). Thus fusion of a field d~i with one of the extending 
fields produces a field d~r whose monodromy and fusing matrices with other fields 
are identical to those of d~ by the consistency conditions mentioned above. All 
fields that differ only by fusion with extending fields can be put into the same 
multiplet of the extended algebra. The fusion algebra (2.2) can then be rewritten 
for the irreducible representations [~ ]  generated from d~ by the extended algebra. 
Note that the extending fields themselves now appear in the "identity" representa- 
tion. We usually prefer to work with algebras that are extended as far as they can 
be in this way. The best studied case, the case of rational conformal field theory 
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(RCFT) occurs when the CFT contains only a finite number of distinct representa- 
tions of this chiral algebra, so the index set X is finite (we often let 4~i denote 
irreducible representations of the fully extended algebra from now on). An 
important example of CFT (rational or irrational) arises whenever a continuous 
symmetry is present; the symmetry is generated by integrals of current density 
fields, which generate a chiral algebra called an affine or Kac-Moody Lie algebra 
(or current algebra). The algebra contains a parameter k, called the level: rational 
CFTs with this algebra exist whenever k is itself rational (positive integral if 
unitarity is required). Another, very simple, example is the so-called rational toms. 
Suppose i ~ 7/denotes charge, so that there is a U(1) current algebra, the fusion 
algebra is Nj~, = 8i.j÷ k, and that ~b2N is local with respect to the other 4~. Then 
4~ _+ 2N are the extending fields, and representations of the full chiral algebra are 
fields [~bi] where i and i + 2N are identified, so the fusion algebra is now given by 
addition modulo 2N. The notation N for the level is conventional: usually it is 
assumed that N is integral, which makes ~b2N bosonic (no confusion should arise 
from the use of the same symbol N for both the level and the number of particles). 
More generally, RCFTs are usually defined as possessing only bosonic extending 
fields, whereas our definition in terms of locality allows also fermionic extending 
fields. In this case we could speak of a chiral superalgebra. This occurs in the 
rational torus for N half-integral and turns out to be relevant for the FQHE for 
electrons, for the following reasons. 

There is a close relation between any order parameter in any FQHE system and 
the chiral algebra of the corresponding CFT. Consider a quasiparticle excitation of 
the FQHE ground state, at position z. Acting with the order parameter operator 
on this state at z '  close to z, should according to the notion of an order parameter 
and the GL picture only produce some unimportant "collective", bosonic excita- 
tions of the state, which will not change the braiding and fusing of this composite 
object with other quasiparticles. Now the order parameter operator can be 
assumed to consist of one or more electron creation operators close to z', and one 
or more quasihole operators which (speaking globally) add flux but not charge or 
spin. One or more of the electron operators can be removed from the order 
parameter operator at z', because they merely create particles in gaussian wave 
packets which do not affect the structure of the many-particle state. Then the net 
operator applied to the quasiparticle state has (locally) non-zero charge and 
possibly spin and may be fermionic but still does not change the braiding and 
fusing properties in any significant way. Noting that this operator is itself a valid 
excitation, we see that it can be regarded as an extending field which should be 
included in the chiral algebra along with the charge density and spin density 
operators. We will see below that in the example of the Laughlin state at filling 
factor v -  l / q ,  this leads directly to the identification of the corresponding RCFT 
as the rational torus at level N---q/2 .  Thus the idea of a FQHE at rational filling 
u, as characterized by the existence of one or more order parameter operators, 
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corresponds directly with the idea of the chiral algebra in rational conformal field 
theory (the condition of a finite number of representations in the latter will be 
discussed further below). Therefore we may speak of the chiral algebra of the 
FQHE system. As a corollary, we note that if just one electron operator is removed 
from the order parameter in the above argument, we obtain an excitation with the 
quantum numbers and Fermi statistics of a hole, which lies in the chiral algebra. 
The chiral algebra is therefore in fact always a chiral superalgebra for the FQHE 
for electrons (for a FQHE in a system of charged bosons in a magnetic field, it 
could be simply a bosonic ct.iral algebra). From the construction of a "representa- 
tive" ground state by condensing the order parameter as in eq. (2.5), destruction of 
any electron in a state containing quasiparticles is equivalent to acting with this 
same extending field, which is by definition local with respect to any quasiparticle, 
i.e. a single-valued function of ( z ' -  z). The fact that the hole operator lies in the 
chirai algebra therefore automatically implies that the electron wave function for a 
quasiparticle excitation is single valued in the electron coordinates, which is 
obviously a necessary constraint on such wave functions. 

2.3. HIGHER-GENUS SURFACES AND EDGE STATES AT BOUNDARIES 

It is of considerable interest to consider the FQHE in different geometries, such 
as a closed oriented two-dimensional manifold of genus g (a sphere with g 
handles) or manifolds with edges; the latter is of course the experimental situation. 
After Laughlin's work describing a disc of FQHE fluid in an infinite plane, 
Haldane [27] considered the sphere and Haldane and Rezayi [28] the torus. Our 
remarks up to now completely describe a homogeneous FQHE fluid filling the 
surface of a sphere. An interesting feature of the torus (genus 1) is that for a 
hamiltonian that is translationally invariant on the surface (which can be repre- 
sented as a parallelogram with periodic boundary conditions), all states in the 
system are q-fold degenerate at filling factor v = p / q ~  for any finite system, 
irrespective of the nature of the ground state [29]. Here v is the number of 
electrons divided by the number of flux quanta piercing the surface. This degener- 
acy is found explicitly for Laughlin's ground state at v = 1/q  on the torus [28]. In 
general, the degeneracy of the ground state in the thermodynamic limit could be 
larger (though still a multiple of q), because some energy gaps might tend to zero 
in this limit. 

Understanding the nature of the degeneracy on a torus is of interest in 
connection with topological approaches to explaining the quantization of Hall 
conductance in the presence of a random background potential; these approaches 
require a q-fold degeneracy on the torus, in the thermodynamic limit [30]. Other 
approaches to the quantization issue involve the existence of gapless "edge states" 
localized along the boundary of a system [31], which seems to be related to 
degeneracy on closed manifolds. In the integer quantum Hall effect, that is, for 
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non-interacting electrons, these edge states are well known [32], but they are much 
less well understood in the FQIIE  case where interactions are involved. Wen and 
Niu [13] have discussed these questions in a similar framework to ours below, 
though in less generality. 

Both of these questions have analogues in RCFT and CSGT. While the 
zero-point function or conformal block of a system on a sphere is nondegenerate, 
on higher-genus surfaces it is a member of a vector space analogous to that for the 
n-point functions on the sphere (it is really a vector bundle over the moduli space 
of Riemann surfaces, but we will not need this). Conformal blocks for n operators 
~b i feel the effects of these nontrivial backgrounds also. In a beautiful paper, 
Verlinde [19] has obtained simple formulas for the dimensions of the conformai 
blocks of the vacuum on a genus-g surface, by arguments that relate them to 
braiding and fusing as discussed above. A very simple picture of the degeneracy is 
as follows. If in a FQHE system we have a quasiparticle (or in CFT, an insertion of 
a primary field) ~i at z, then we can picture it as a source of a fictitious, 
generalised "electric flux" which is divergenceless except at the quasiparticles. On 
a surface of genus greater than 0, we can have electric flux flowing round the 
nontrivial loops on the surface. The flux can be changed by creating a quasiparti- 
cle-antiquasiparticle pair, transporting the quasiparticle around a nontrivial cycle 
on the surface and then reannihilating the pair. This leaves an extra flux along the 
path of the quasiparticle. This defines Verlinde's operators. Note that addition of 
flux is given by the fusion rules (2.2), and that the operators for the two loops on 
each handle do not commute because changing their order is equivalent to taking 
one quasiparticle around the other. Hence the operators for at most one direction 

per handle can be diagonalized. 
In RCFT, a consequence of Verlinde's arguments is that for a toms, the 

degeneracy k, say, is equal to the number of distinct primary fields of the chiral 
algebra, which is finite by definition in a rational theory. For higher genus, the 
degeneracy grows as k g only if the monodromy is abelian. When nonabelions are 
present, the formula becomes more complicated. In the FQHE, it seems reason- 
able to assume the ground-state generacy is finite in the apparent absence of any 
spontaneously broken symmetry, and so we expect only a finite number of primary 
fields (or types of quasiparticles, modulo extending fields) to be present. Thus we 
are conjecturing that the relationship of the FQHE t.nd RCFT extends also to all 
the properties of higher genus surfaces. Indeed, it seems to us highly likely that a 
FQHE system should define a "modular functor" or a "modular tensor category" 
(see ref. [1]; actually what we really require here is an extension of these concepts 

to chiral superalgebras as opposed to algebras). 
Turning to gapless edge states, it is interesting to note Witten's construction [5] 

of CS gauge theory on a space in the shape of a disc (see also refs. [1, 6]). The edge 
then forms a (1 + 1)-dimensional conformal field theory, i.e. there are physical 
gapless excitations. The CFT obtained at the edge is the same one that is related 
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to the braiding and fusing properties in the interior of the disc. This leads us to 
conjecture that the same holds in the FQHE: the edge states are described 
physically by the same RCFT that describes the bulk mathematically. However, we 
will not elaborate further on this point in this paper. 

In summary, we have made a number of conjectures which unify many aspects of 
the FQHE and suggest a classification of the kinematically allowed states through 
the corresponding RCFTs. In the following sections we will attempt to clarify and 
justify these ideas by showing that they are true in a number of important known 
FGHE systems, and that examples of nonabelions can be constructed. 

3. Electron wave functions as conformal blocks: Laughlin states 
and the hierarchy 

Let us return to the Laughlin state in the disc geometry: 

, 2] 
~l~.gi, l i , , (z l ,--- ,  zN) = r l  ( z , -  zs) aexp[ - ~ Y:lz, I , 

i < j  
(3.1) 

where q is an odd integer [3]. In the thermodynamic limit this state IOL; N )  
describes a fluid ground state with a uniform number density P0 - v/2z: = 1/2zrq 
inside a radius of order 2~-N. The GL description of this limit for a normalized 
fluid state [t~ ) of slowly varying density involves a gauge field 

i ~ ( z ) ~  f z - z '  d z' (3.2) 

In the GL description [4] this gauge field couples to the order parameter (which 
has charge q; we set the charge of the electron to 1 from now on) and also enters 
with a Chern-Simons term 

q 
4rr f z C d ~  (3.3) 

in the action. If we are interested primarily in statistics of excitations we may 
expect such topological terms in the action to play a dominant role - since they 
dominate all other terms at long distances and low energies. On the other hand, it 
is now well known that CSW theory (i.e. (2 + 1)-dimensional gauge theory with 
only a CS term in the action) for an abelian gauge field is closely connected to the 
(1 + 1)-dimensional conformal field theory known as the "rational torus" [1,5]. 
The rational torus theory is characterized by a "level" N and is denoted by 
U(1)N*. The level N can be determined in terms of q by comparing the abelian 

* See ref. [ l ]  sect. lO for an explanation of the notation, 
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representations of ~n  which arise in the FQHE system to those defined by the 
braiding of Wilson lines in the CSW system, as we have discussed in sect. 2. We 
will return to this below. However, we believe that in fact a stronger statement can 
be made, namely that one can expect the actual conformal blocks of the rational 
torus theory to be related to the electron wave functions of the FQHE system. The 
reason for this is that both the ground state of the FQHE system and the quantum 
state obtained in hamiltonian quantization of the CSW theory can be characterized 
by a condensation of operators associated with singular gauge transformations, as 
we now explain. 

The Landau-Ginzburg action describing the fractional quantum Hall system is 
derived from the condensation of the order parameter [4] 

~ * ( z )  = $,*( z)Uq( z )e -Izl2/4, (3.4) 

where ~ is the electron field and U is the quasihole creation operator (see ref. [3] 
and eq. (2.4)). U can be regarded as the "holomorphic version" of the insertion of 
a flux quantum, that is, of a gauge transformation which is singular at z. The 
holomorphic version of the transformation softens the singularity to a simple zero 
of the wave function of each electron, so that no physical flux is actually added at z 
and the operator U might be better described as creating a vortex at z (but note 
that, on a compact surface, U does add a net flux quantum [27]). 

On the other hand, from the CSW point of view an analogous operation U can 
be defined by the effect of a singular gauge transformation g(O)= e i°, where 0 is 
an angular coordinate centered around the point z. Since the Chern-Simons term 
is invariant only up to boundary contributions, making such a gauge transformation 
in a path integral with action (3.3) corresponds to the insertion of a Wilson line [6]. 
Thus, the "ground state" (i.e. the physical gauge invariant state in the CSW 
Hilbert space) must be unaffected by gauge transformations g(O)= e iq°. We may 
say that in the physical state there is a "condensation of Wilson lines," and 
precisely this condensation is the explanation, from the (2 + 1)-dimensional per- 
spective, of the rationality, of the rational torus [6]. 

Alternatively, starting from the Ginzburg-Landau theory in the formulation of 
ref. [10] we may attempt to quantize the theory directly (progress in this direction 
has been made recently by Girvin et al. [24]) by treating the scalar field in first 
quantization as a collection of N Bose particles, coupled to the fictitious gauge 
field. The bosons play the role of Witten's Wilson lines in pure CS gauge theory 
[5], and when the gauge field has been integrated out the hamiltonian for the 
bosons contains covariant derivatives which are the same ones that appear in the 
U(1) Wess-Zumino model [5,33]. The remaining problem of quantizing the Bose 
field (or finding the N-particle wave function) is therefore a problem of finding the 
appropriate section of the FS line bundle, again suggesting the connection with the 

two-dimensional rational torus CFT. 
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We may therefore postulate that a "representative" ground state is described by 
the thermodynamic limit (N  ~ o0) of the conformal-field-theoretic correlator 

ifd2z'v/-qpo4,(z')] >, (3.5) 

where P0 = 1/2~rq is the electron density in the ground state, ~b is a free massless 

scalr.r field in two dimensions 

<~5(z)~b(w)> = - l o g (  z - w) ,  (3.6) 

and the exponentials are normal ordered as usual. Use of eq. (3.6) in eq. (3.5) 
indeed reproduces (3.1) in the thermodynamic limit, after a certain gauge transfor- 
mation has been made. The exponentials in eq. (3.5) represent (two-dimensional, 
holomorphic) Coulomb charges and so the last factor is needed to ensure charge 
neutrality; the integral is taken over a disc centered at the origin with radius 
chosen to satisfy this condition. The self-interaction of this background charge is 
neglected. The interaction of the ~ charges with this factor produces the 
exponential of a sum of singular integrals of the form 

-qpof d2z' l°g( z i -  z ' )  (3.7) 

which must be handled with care. The real part of this integral produces the 
nonholomorphic gaussian factors in (3.1) (apart from edge effects in the finite 
system); this of course ensures that the electrons are in lowest Landau level 
single-particle states. The imaginary part is ill defined because as a function of z it 
has a branch point at each point in the integration region (see a related discussion 
in ref. [34]) and arises for the following reason. The expression (3.5) is trying to 
give us the answer in a gauge where the vector potential is zero, which means it 
differs by an everywhere-singular gauge transformation from the usual symmetric 
gauge vector potential for the uniform background magnetic field. The gauge 
transformation in question has just the form of the exponential of the singular 
imaginary part of (3.7). We can use this gauge transformation to remove the 
ill-defined phase and obtain the symmetric gauge Laughlin state as desired. In 
the following this step will usually be left implicit, and we will often ignore the 
exponential factor in the wave function and refer to it as holomorphic. 

Note that the charge current of the rational torus, i.e. J(z)=(i/v/q)O4~(z) 
attributes the correct physical charge to each electron. The large uniformly 
distributed background charge in (3.5) thus has the physical meaning of the 
background magnetic field, in view of the proportionality of charge and flux in CS 
theory. It is amusing to note that the Coulomb gas correlator (3.5) is just the 
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holomorphic version of Laughlin's original mapping of the modulus squared of his 
wave function to a one-component plasma! 

It is important to realize that we are not insisting that (3.1) is the only possible 
FQHE ground state. In fact, in eq. (3.5)we could have replaced the Coulomb 
operators, which are charged extending fields of the rational torus chiral algebra, 
by any linear combination of their descendant fields (the same for each particle i 
by symmetry) and obtained the same statistical properties of the quasiparticles. 
The possible descendants include Virasoro secondary fields, which are linear 
combinations of derivatives of the primary field and so will lead to wave functions 
in which the zeroes are not all fixed to the particles as they are in Laughlin states. 
Far from being a special property of Laughlin states, the relationship with CFT 
and CSGT is a general feature of the physics of the FQHE systems. Laughlin's 
state, or the expression (3.5), is just a "representative" of a whole "universality 
class" of states with equivalent braiding (statistics) properties. It is remarkable that 
these wave functions can be recovered from the GL-CSW formulation. 

It was pointed out by Haldane that l / ' r L a u g h l i n  is in fact the unique incompressible 
ground state for a special hamiltonian with an interaction involving suitable 
short-range "pseudopotential" interactions [27,35]. These interactions may be 
given a conformal field-theoretic interpretation which will prove quite useful in a 
later section. Haldane's hamiltonian is of the form 

: :  = ~., -~---mm I - i V  i - eA ( zi)l 2 + E V/ P.]J , 
i I = 0  " " 

(3.8) 

where V t are positive constants (the pseudopotentials) and P/~ is the projection 
onto the relative angular momentum state of angular momentum ! for particles 
i, j. Mathematically, the operator P/~ acting on the function f ( z l , . . . ,  ZN) is 

I 
obtained by first expanding f in powers of z i - z j  in the variables zi = 3(z~ + zj) 

1 ! = .  ~(zi + ~ ( z  i - z j )  and zj  ~ ( z  i + z j ) -  - z j )  about their common center of mass 
z[ij] = l ( z i  + zj) .  P/J then projects onto the lth term of this expansion. If we 
interpret a function of the z~ as a correlation function, i.e. f ( z l , . .  , z N )  ~ 
(~ (z~ ) . . .  qb(zN)), then this expansion is simply the operator product expansion, 
so the relative angular momentum projection operators are simply the operators 
extracting certain terms from the operator product expansion. In particular, since 

e i (  4 ~  eil4*tw~ ~ ( z - w)  'i e 2i¢~(~tz +w)) + ... (3.9) 

begins at a relative angular momentum of q, the Laughlin state is a zero-energy 
eigenstate of (3.8) and since it is the densest such eigenstate it is incompressible. 

We now consider the conformal field theoretic interpretation of excitations 
about Laughlin's state. Quasihole excitations about Laughlin's state are created by 
insertion of a flux quantum, i.e. by the operator U (in the GL picture, they are 
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vortices). As explained above, this operation has an analogue in the Chern-Simons 
theory, namely, the action of a singular gauge transformation g(O)=  e i°, where 0 
is an angular coordinate centered on some point z. In the CSW theory we insert a 
Wilson line, and the corresponding operation in RCFT is the insertion of the 
vertex operator ei~{-}/fi [6]. This operator is the primary field which generates the 
basic nontrivial representation of the rational torus chiral algebra, and from an 
expression similar to (3.9) its operator products also generate the other primary 
fields of the rational torus at level N = q / 2 ,  which are ei'~'{-')/¢ ~, where r =  
0, 1 , . . . ,  q -  1 (r = q  gives the extending field). Thus, according to the hypothesis 
that conformal blocks and electron wave functions should be identified, we expect 
the electron wave function for a quasihole to be 

( [: 1) l/tquasihole( Z i , . . .  , ZN" , W)  = ei*'"/v q 1--I ei~'b{='~ exp - i  d2z ' grq-po~b(z') 
i=1 

= 1 - I ( z i - w ) I - I ( z i - z ~ ) q e x p  
i i <j 

, 2 1 ]  
- ~  Elzil - ~-~-qlwl 2 

(3.10) 

which is indeed Laughlin's quasihole wave function. As an alternative to the usual 
charge counting or adiabatic methods of determining the charge of the quasihole, 
we may note that from the operator product expansion 

1 / q  
J(  z )e i'~{w)/vq ~ ~ ei~'{w)/fi + . . .  (3.11) 

Z - - W  

we learn that the charge of the quasihole is - 1 / q  as it should be. (The extra 
minus sign may be understood in CFT language as follows. If we wish to measure 
the charge of a quasiparticle we must surround the particle by a line integral of the 
current. Deforming the line integral away from the quasiparticle we pick up a 
contribution N from the electron operators e ~  4,(z) but we also pick up charge 
- ( N  + 1 / q )  from the neutralizing background.) The wave function for several 
quasiholes is obtained by inserting several of the quasihole vertex operators: 

"" E e i * ° " ' / f i  I - I  eifi6{:" exp - i  d2z ' vfq-po~b(z') . (3.12) 
j = l  i = l  

Note these electron wave functions contain the correct prefactor, as a function 
of the w i, to describe the fractional statistics of quasihole wave funct ions-  in 
other words our procedure naturally gives the "fractional statistics gauge" [7,36]. 
The statistics of the quasiholes is O/zr = 1/q as is well known. Thus, we can regard 
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(3.12) as an electron wave function parametrized by the wi, or we can regard it as 
the electron coordinate representation of a coherent state in the M quasihole 
sector of excited states, in the sense of sect. 2. We know from refs. [7,36] that 
(3.12) gives an acceptable quasihole wave function and so we extend our hypothesis 
about the equality of wave functions and conformal blocks to the case of quasipar- 
ticles. Of course, this is extremely natural from both the GL and CSW points of 
view. 

The identification of the level of the rational torus as q/2 is completed by 
noting that (i) q quasiholes close together have the same charge and statistics as a 
real hole; (ii) the charge of the quasiholes was quantized in units of 1 /q  because 
any wave function must be single valued in the electron coordinates, so the q 
quasihole composite has trivial monodromy with all other excitations; (iii) the 
latter property coincides with the definition of any field in the fully extended chiral 
algebras; (iv) these chiral and fusion algebras are exactly those of the rational torus 
at level q/2. Furthermore, the q quasihole composite, together with the creation 
operator for an electron, is the order parameter ~'* for the Laughlin states (see 
ref. [4] and sect. 2). Here we see clearly the relation between the order parameter 
and the extending fields, which was already discussed in sect. 2. Some interesting 
issues are raised by the correspondence since the level N of the rational torus is 
half odd-integral: N =q/2. Usually it is required that the rational torus be well 
defined on an arbitrary Riemann surface without the introduction of any addi- 
tional mathematical structure, and this forces N to be an integer [6]. However, it 
appears that if additional structure, such as a spin structure, is provided, then 
half-integer level can be defined [37]. In the present case, there is no physical 
reason why the FQHE system should not be defined on surfaces of arbitrary genus, 
and so the requisite mathematical structure must arise naturally. Thus, a complete 
understanding of fractional Hall systems in arbitrary topology will involve some 
notion of "spin theories" along the lines described in ref. [37]. It is illuminating to 

! 
note that the rational torus with N = 3  describes a non-interacting massless 

3 
right-moving Dirac fermion (without spin projection)while the case N = 3  has 

" N  = 2 supersymmetry". 
The point of view advocated in this section can be extended to study states on 

the torus or on even higher-genus Riemann surfaces. The appropriate technology 
has been well developed in the literature on conformal field theory. For example, 
interpreting wave functions as conformal blocks allows one to reinterpret some of 
the results of ref. [28]. The q-fold degeneracy of all states for filling factor v = 1/q 
on the torus [29] corresponds to the q distinct representations of the rational torus 
chiral algebra which can flow around the torus; this result follows just from the 
fusion rules and the statistics of the quasiholes, following Verlinde [19] (see also 

ref. [13]). 
We should also make some remarks about wave functions for quasi-electrons 

(i.e. quasiparticles of positit'e charge in our units). These have always presented 
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more difficulty than quasiholes [36]. Since our approach emphasizes holomorphy of 
wave functions, and since also in the rational torus point of view we regard the 
charge of quasiholes as defined mod 1 because of the extending field, it seems most 
natural to make a quasielectron of charge 1/q from q -  1 quasiholes plus an 
electron creation operator, all located at z'. In other words, it differs from q - 1 
quasiholes by one electron, which is equivalent to the conjugate of the extending 
field as defined above. This wave function is holomorphic in its dependence on z'  
through the electrons other than the one localized at its center, which is created in 

the gaussian (coherent state) packet 

1 
p ( z ,  E') = 2rr exP[½Z,~' - ¼lzl 2 -  ¼1z'l 2] 

centred at z'  in which this function is antiholomorphic (if we ignore the gaussian 
factors); here z represents the coordinate of the added electron itself. This form 
ensures that the wave function is sufficiently close to being holomorphic in z' for 
the purpose of adiabatic transport, etc. It is easy to see that this quasi-electron has 
the correct statistics, bearing in mind that the extending field is fermionic (the 
rational torus chiral algebra is a superaigebra for half-integral level). From the 
point of view of CFT, another natural choice would be e-i~t~)/v q. The use of such 
alternative forms is expected to make no essential difference. 

The above picture of quasihole wave functions is well suited to describing the 
hierarchy [7, 27]. Starting from an electron wave function with electrons at z~ °> we 
may use (3.12) to produce the wave function for a gas of quasiholes at z~ n). We can 
then make a new electron wave function by 'projecting the quasiholes into a 
Laughlin-type state. We do this by taking an inner product, in the quasihole 
coordinates, between the quasihole gas state and a Laughlin-type state for the 
quasiholes (neutralizing backgrounds are omitted): 

d ~i I I  eix/2p2+l/'n 
1 1 L 

X I- I  ei6(zI")A/;ff I-I ei~/~4'tzI"'~ • ( 3 . 1 3 )  
j = l  i = I  R 

By locality - i.e in order that the integrand is single valued - P2 is determined to 
be an integer*. The filling fraction is determined by the largest power of Z (°) and is 
seen to be 

1 p 
/ ) - -  ~ . 

m + 1/2P2 q 

* The subscripts R, L above refer to right- and left-movers, i.e. to holomorphic and antiholomorphic 
contributions to a correlation function, and are meant to emphasize the analogy to similar inner 
products which arise in siring theory. 
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Quasihole excitations of the left-moving part of this state are obtained by insertion 
of 

expf / ] 
[ ¢ 2 P 2 +  1/m q~(z') 

in the left-moving piece of the above wave function, and are quasi-electrons from 
the electron point of view, i.e. they have charge 1 /q  [7,27] in the original units. 
Evidently, these excitations have statistics O/rr = - m / ( 2 P 2 m  + 1)(the minus sign 
comes from the dependence on ~, rather than z). To continue building the 
hierarchy we now make a gas of these new excitations and project their wave 
function onto a Laughlin-type state. This requires introducing a new holomorphic 
scalar field. In this way we can produce a sequence of states g'~* }. E~r example the 
state ~{2s-!} is given by 

~(2~-~)(z~O>,..., z{~l) 

= f d2z~ ') 1-I exp 
l= l  i \ j = l  

i 

X • = exp ~b (,~I 2) FI exp[ivC~z ~(~")] 
i=1 

N3 
X jI"Ii.= exp[/----~7~(z~ 3 ) ) [  ~/m3 I-I exp[ i¢-~3 *(z~2')] 

i=1 

X ( [. ) /v2.~_, i - -2,)] 
I--[ exp - c~( z~2s-''-, exp[ i¢m2,-  ,~b( z'2s-i 
j= 1 V m 2 s  - ! = 

[ )]} X l-I  exp  i m¢~2~2s2s~(Y.} 2s-!} , (3.14) 
i=1 

where m j + !  = 2 p j + !  = 1 / m j ,  m Z = m and N 0 = N. From the above one may obtain 
the usual continued fraction expansion for v [7, 27]: 

1 P 
= . (3.15) v =  1 q 

m +  1 
2P2 + "'" + 1 

2 P z s -  i + 
2P2.~ 
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Quasiholes at the last level are made by inserting 

i ~b(,T) 
exp ~/m 2s + 1 

Similar expressions hold for an odd number of levels, giving g, t2s~. Also, quasi-elec- 
trons can be used in place of quasiholes at any level and similar results obtained; 
we will not give explicit results for this case. These constructions precisely repro- 
duce Halperin's version of the hierarchy [7]. 

The following facts may be established from the above formulas. First, when the 
continued fraction (3.15) is multiplied up one finds that p and q have no common 
factors and that q is odd; every such fraction is obtained once only in this way 
[7,27,35]. If n is the number of levels (n = 2s in eq. (3.14)), then p has the same 
parity as n. Second, a quasihole at the last level has charge ( -  1)"/q in electronic 
units. This object has statistics 

0 ( -1)"- '  v' 
rr 1 q, (3.16) 

2p,  + 1 
2P._ l + . . .  + 1 

2 p  2 + 
m 

(This expression can also be obtained by generalizing the method of ref. [8] to the 
hierarchy wave functions.) Then, using elementary results on continued fractions 
[38], one can prove that q'=q and p'  are odd and p'  satisfies 

pp ' -  1 (mod q) .  (3.17) 

These conditions clearly fix p '  (mod 2q) and hence 0 (mod 2zr). Consequences of 
(3.17) are that a cluster of q quasiholes has total charge - 1  and statistics 
O/ar =q2p,/q_ 1 (mod 2), the same as an ordinary hole, while a cluster of p 
quasiholes has charge - -p /q  and statistics 0/ r r  = p2p,/q _ p / q  (mod 2), the same 
[8] as a Laughlin quasihole U(z) (a "single flux") acting on this state. (These 
conclusions were stated by Su [39] though our formula (3.17) has apparently not 
appeared in the literature previously.) If one assumes that these identifications 
hold and that 0/Tr has denominator q, then one is led to eq. (3.17) [39]. 

It should also be possible to extend these ideas to the study of the hierarchy 
states on the torus. 

In summary, we have shown in this section that Laughlin's ground state and 
quasiparticle excitation wave functions, and their hierarchical extensions, can be 
interpreted as conformal blocks in certain CFTs, in accordance with the idea that 
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such a connection should exist because of the Ginzburg-Landau-Chern-Simons  
theory of the F Q H E  [4,9, 10] and the Chern-S imons-CFT relationship [1,5]. 

4. Spin-singlet states 

4.1. HALPERIN STATE 

It is commonly supposed that the spin of the electron is irrelevant in the 
quantum Hall effect since the large magnetic field polarizes the electrons. As 
pointed out in ref. [40] this is not necessarily the case at low magnetic fields. Since 
the effective mass of the electron is only ~ 7/100 of the true mass and since the 
effective g factor is only ~ 1/4,  the ratio of Zeeman to cyclotron energies is 
~ 7 /400 and the electron spin can be important even in the lowest Landau level. 
Halperin [40] has proposed a spin-singlet state for electrons with spin up located at 
zi T and spin down located at zi~: 

1/¢Halperin ( z ? , . . . ,  Z ~ / 2 ,  ZlJ" , . . . , Z ~NI2 ) 

= _ ) , ,  ),,+, _ ),, [_, iI~<j " ZJT +! H (Zii iH ZjJ" exp ~- t~(Izili. + Iz? I : ) ] ,  

(4.1) 

where n >/0 must be an even integer to satisfy the Pauli principle. Here the filling 
factor is u = 2 / ( 2 n  + 1). To see that this state is singlet, we may first consider the 
case n = 0, which represents a Landau level filled with electrons of both spins, and 
clearly must be a singlet. The general case is obtained by multiplying by Fl(zi - zj) 2 
(where the product runs over all pairs) which is totally symmetric and spin 
independent and so leaves the state a singlet. It is possible that the particle-hole 
conjugate of this state, with u = 8 /5 ,  has been seen in recent experiments [41]. 

An analogous discussion to that of sect. 3 can be carried out regarding order 
parameters and effective gauge fields (see also ref. [42]). If we do not demand 
manifest SU(2) (spin rotation) symmetry, this can be done straightforwardly. 

Introduce an operator 

N / 2  

U,~(z) = r l  ( z T - z )  (4.2) 
i=I 

i 
which acting on 1/¢tlalperi n creates a quasihole of charge - 1 / ( 2 n  + 1) and spin ~; 
this is the basic quasihole of the Halperin state [35] and has statistics 0/zr = 

(n + 1)/(2n + 1). Then define the operator 

%*( z ) = ~,,*, ( z)U,; '+ ' U'_',,( z ) e - ' : " / ~  e ~s:  , (4.3) 
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where ~* is the creation operator for an electron of spin or, and the factor 
involving the total z-component of spin S: is a "cocycle" needed to make 

= 0  

for all or, or'. ~,~ condenses in the Halperin state: 

IO.; N> = ( f dZz 
N/2 

r d2z s gt~(z  r ) ~ ( z ~  ) 10). (4.4) 

Note that the integrations over z for 1' and $ spin particles are completely 
independent and the operators can be re-ordered arbitrarily. We have here a 
two-component order parameter (~, , )  with independent phases for the two spin 
directions (the reader is cautioned again that this approach is not manifestly SU(2) 
invariant, so arbitrary unitary rotations of this spinor order parameter cannot be 
made). A nonzero expectation is of course only obtained in a state with indefinite 
charge and S_ in this case. The GL action will contain the order parameter and a 
two-component gauge field 5~',; the latter is best treated by taking + and - 
components with respect to S: to obtain a gauge field ~¢' coupling to U(1) charge 
as in the spin-polarized (charge only) case and a field ~¢~ which couples to S: only. 
In terms of corresponding CFTs, this is clearly very similar to the treatment of 
Dirac fermions with (iso-)spin cia abelian bosonization, while the previous section 
is like the spinless case. In each case, this becomes an exact correspondence in the 
case of maximal filling (u = 2 or 1 respectively) when the quasihole statistics reduce 
to those of fermions, 0 = rr. This immediately suggests that the Halperin state can 
be reproduced from CFT correlators like those in eq. (3.5) but using one scalar 
field ~b for charge and another ~b~ for S..; each electron of course carries both 
quantum numbers. This calculation is left as an exercise for the reader; we need 
only remark that the CFT involved is just the direct product of a rational torus 
with N = 2 n + l  for ~b and N = I  for ~b~, and in terms of the basic fields 

exp(irq~/V~), where r=O, 1 , . . . , 2 N - 1 ,  the electrons are represented by r =  
N = 2n + 1 for the charge part and r = 1 for the spin. Quasiholes must be single 
valued in the electron coordinates, which leads to the rule that their rational torus 
representatives must have r in the charge part even for integer spin objects and 
odd for half integer spin (thus the sum of the r 's  for spin and charge must be 
even). Spin and charge have therefore not separated in these excitations; the 
physical charge in our units is - r / (2n  + 1). Put another way, the electron 
representative above extends the algebra (in accordance with the general argument 
of sect. 2) to a chirai superalgebra, and only the members of this subset are 
representations of this algebra. (For the charge-only case of sect. 3, the level 
N =q/2  system can be thought of similarly as an extension of a level N = 2q 
rational torus algebra.) There are q such representations, and so the degeneracy 
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on the torus will again be only q-fold, the minimum it can be according to Haldane 
[29]. 

Although this representation is very simple and useful for calculations, it is still 
desirable to have a manifestly SU(2) invariant formulation. Unfortunately, a direct 
quantum mechanical formulation (in terms of operators on the electrons) of the 
order parameter  and nonabelian SU(2) gauge field, whose GL theory will contain 
the nonabelian Chern-Simons term, has so far eluded us. Here we will only write 
the electron wave functions as the conformal blocks which must result from such a 
formulation (this uses the work of Witten [5] relating the nonabelian CSGT to 
nonabelian current algebra), and complete the identification of the RCFT. 
(Another interesting approach is given in ref. [43].) 

We may represent the Halperin state in terms of conformal blocks using the 
k = 1 SU(2) W Z W  model together with the rational torus at level 2n + 1 as 

i follows. Let V -+(z) be the primary spin-~ multiplet in the WZW theory, then we 

have 

I//Halperin = (V+(Z:)...V+(z~/2)V-(z: ) • • • V-(zA~r/2))su{2,k=, 

' - i  d~z 'V/n ~ po~b(z  × I-I  exp i~/n + ~ d~(zi) exp _ + i ') , (4.5) 
i = 1  

where Po = 2 /2 r r (2n  + 1). The charge current is given by 

i 
I a~b. 

Obviously, the V -+ operators have replaced the e i~'-'/v5- operators used before for 
the spin part, while the rational torus for the charge part is unchanged. This 
isomorphism between the k = 1 SU(2) WZW and N = 1 rational torus models is of 
course well known. The quasihole operators are now built up with the same rules 
to ensure single-valuedness as in the abelian representation; for example the 

elementary quasihole is created by 

V -+ (w)exp , ) 
23/n + 

(4.6) 

From the operator product expansion we may reobtain the fact that they have spin 
and charge - 1 / (2n  + 1). We note that the restrictions on the representations can 
be simply stated as the fact that we are really dealing with U(2) current algebra, 

extended by the fermionic field that condenses in (4.5). 
Finally, we note that from the SU(2) Ward identities it is manifest that the 

ground state is a spin singlet. 
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4.2. H A L D A N E - R E Z A Y I  STATE 

Recent experiments have shown clear indications of a FQHE plateau at a filling 
5 factor v = v  [14]. Motivated by this result, Haldane and Rezayi [44] proposed a 

1 ( o r  s state which is a spin singlet and has v = ~ 2 on including a completely filled 
Landau level), and showed that this state is the incompressible ground state of a 
certain "hollow core" pseudopotential hamiltonian. Some support for the idea of a 
spin-singlet ground state in this system is provided by later results which showed 
that not all the electrons in the "last" Landau level are polarized parallel to the 
magnetic field [15]. 

The Haldane-Rezayi (HR) state is 

1/'tHR(ZI 1" , . . . ,  Z~N,2) = .l--!. (Zi T - - Z / ) 3 ( Z i ~  - - Z /  ) 3 ! 7  (Zi T - -Zj  J" ) p e r  
t <j t , j  

)2 [ 1 
= 1-'I ( z i - zj det ~ )2 

i <j ( Zi "t -- Zj "L 

where per is the "permanent" of a matrix, defined in general by 

4 1 z/) 

(4.7) 

L 

per Mij = E l I  Mi,~(i) (4.8) 
t r~S L i=  1 

for an L x L matrix with elements Mij. More generally, similar states can clearly 
be constructed at filling v-- 1 /q ,  with q even, by replacing the exponent 2 in the 
product in the last line by q. Such states are singlets, from a physical point of view, 
because the determinant in (4.7) has the form of the well-known real space version 

l of a BCS paired spin-singlet wave function of spin-~ fermions. Indeed, in the 
order parameter picture of the FQHE [4], the condensate in the HR state involves 
spin-singlet pairing of fermions [42], rather than the condensation of singlet bosons 
we have seen up to now (more on this in sect. 5). This state may be expressed in 
terms of conformal field theoretic correlators by introducing first-order bosonic 

l ghost systems as used in superstring theory [45]. In particular, let/3, y be a A = 
bosonic first-order ghost system, i.e./3, y are free fields with 

( / 3 ( z ) y ( w ) )  = = ( y ( w ) f l ( z ) )  (4.9) 
Z - - W  

the only non-zero expectations, and introduce two scalar fields 4), to. We may then 
write 

qtHR = fl( Zi ~ ) ei'°tz/ ' F I  Y( Zi' ) e-i'o(z'' ' FI  eii2'b(z" exp - f d2z ' fqp0~b(z') . 
'= i = l  i = l  

(4.10) 
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Unfortunately there seems to be no natural conformal-field-theoretic explanation 
of why this state is a spin singlet. Nevertheless, we may make three remarks. First, 
the identity 

det - per - - det - (4.11) 
z, wj z, wj (z, wj) 

which was used in eq. (4.7) and is needed in the proof of the spin-singlet property 
[44] may easily be proved using bosonization of the/3,1'  system [45]. Second, the 

! 2 fields /3, 7,to can be used to form dimension-one currents - 37,½/37, 3/3,~ 2 
e + i,,y, e -+ i'/3, Oto, which generate an affine superalgebra. It would be of consider- 
able interest to find and test any physical implications of this symmetry. Third, we 
speculate that the spin part of the HR state may be related to k = -54 SU(2) 
current algebra with the electron corresponding to the spin-½ field of that system 
(times a rational torus field as in (4.10)), not in the sense that the conformal blocks 
give the HR wave function (it can be shown that they do not), but in the more 
general sense that the braiding properties of the excitations are the same. The 

5 k = ~ theory is unique among rational k values in that it has a spin-½ primary 
field with fermionic statistics as required in any expression like (4.10). 

This speculation is perhaps strengthened by the observation that a state closely 
analogous to the HR state in structure is obtained from conformal blocks of 
fractional k SU(2) theory. It resembles (4.7)when written in the second form in 
(4.7) but with a permanent in place of the determinant: 

1/tper = I"I ( Z i -  zy)qP er 
i<j z ~ T - -  z j J, 

(4.12) 

Here q is odd and again v = 1/q. This state was proposed in ref. [46]. It is a singlet 
1 because a singlet BCS wave function for spin-~ bosons must have an odd parity 

pairing function, here 1/z, and q is odd to make it antisymmetric. This state can 

be obtained from a / 3 - 7  system: 

(N j2 N j2 /( [ 
~9'pe r = ~.=/3(ZiJ')iI~ll.= "y(Z, T ) ,=,fi eiv cff6tzi) exp -- f d2z ' ~fq-p0t~(z')  . 

(4.13) 

In this case there is no mystery about the SU(2) symmetry because the currents 
1 fl2,fly, y2 generate the Kac-Moody algebra at level k = - ~  and the pair fl, y 

1 ! form the spin-~ representation. This state possesses spin-~ neutral boson excita- 
I 

tions as well as charged quasiparticles, while HR similarly has neutral spin-~ 
fermions. These objects are the BCS quasiparticles corresponding to the condensa- 

tion of pairs in the respective ground states. 
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5. Conformal  blocks as electron wave functions 

In this section we reverse the reasoning of the previous discussion, and, starting 
with certain conformal blocks we ask if they correspond to reasonable electron 
systems. As we have seen, sensible electron wave functions must be single valued 
and must satisfy the Pauli principle. If the electrons have spin we may ask that they 
be in a definite spin state, e.g., in a spin-singlet state. Many conformal field 
theories may be seen to give rise to conformal blocks satisfying such properties. 
For example, fractional level sl(2) current algebra naturally produces spin-~ 
operators with only abel;an monodromy (two examples were given in sect. 4). 

! 
Another example is provided by spin-~ descendents of the spin j = k/2 field in 
odd integer (=  k) level sl(2) current algebra. These functions, when multiplied by 
an appropriate rational torus correlator to make them single valued, give accept- 
able electron wave functions. In this section we focus on a simple example of this 
technique• The system we discuss might not be very realistic, but the purpose of 
our discussion is simply to give an existence proof that there are "reasonable" 
electron systems with nonabelian excitations. To this end we study the "pfaffian 
state" ~pf defined for N spinless electrons by 

1/ ) 'p f (  Z l , . . .  ' Z N )  = Pfaff 
Z i - -  Z j  

I--I ( z , -  zj)q e x p [ -  ¼ ~ lz12] .  (5.1) 
i < j  

Here q is an even integer and the filling fraction is u = 1/q. The pfaffian is 
defined by 

1 L /2  

PfaffMij= 2L/2(L/2)w ~_, sgno-kI-'IlM,~(2k_l).,~(2k ) (5.2) 
• t r •  Sl. = 

for an L × L antisymmetric matrix whose elements are Mij, or as the square root 
of the determinant of M. It arises from applying Wick's theorem to real fermion 
fields, or as the real space BCS wave function for pairing of spinless fermions. The 
structure of this state was originally inspired by that of the HR state. 

We interpret this state as a product of a correlator of energy operators in the 
Ising model (or Majorana fermions in the holomorphic half of the model) times an 
appropriate rational torus correlator: 

<0,z, o (Hei  (Z,exp[ iSd2z  0 ,z,]),53, 
(The Majorana fermions ~b here in the Ising model should not be confused with 
the destruction operator for physical electrons which appears elsewhere.) The 
reader may well object that it is unreasonable simply to pull wave functions out of 



G. Moore, N. Read / Quantum Hall effect 391 

a hat and try to extract physics from them. Therefore, our next task is to produce a 
hamiltonian for which 1/¢af is an exact incompressible ground state. We will apply 
the insight that the relative angular momentum operators extract terms from the 
operator product expansion. Thus from the expansion 

I/t( z i )ei¢ ~'*(z') i~( z2)eq ff*(z2) 

~ • - )2( "e2icff*(z['2])" :0'~( z[ 12]) ( Zl2)q-I('eEili~b(z[IEl)" + (  Zi2 . . " 

+ ¼iv/q-:e 2i¢~*(z['2], 4)"( z[ 12]):) + O( z42)}, (5.4) 

where z [12]-½(z~ + z 2) and z l 2 - z  I - z  2, and an application of the conformal 
Ward identities we get 

i=3 (z[12]--Zi) 2 - q  i= Z [ 1 2 ] - z i  

+ Y" z [ 1 2 ] - z  i ~ + ~z, (p,2,~pt).q_ (5.5) 
i=3 

Therefore, defining the operators @i j, e.g. for i, j = 1, 2 

4 + 3 .  
@'2- P~2' - z22 - - - - 2  ) 2 - 4 q  

i=3 (ZI + Z2 Zi i=3 ZI 

+ E Jr "4Zi q - l ,  
i=-3 Z1 + Z 2 -  2zi aZi 

+ z z - - 2 z  i 

(5.6) 

we may form the positive definite hamiltonian 

1 q - 2  
~ '=  ~ ~ m ( - i V - e A )  2+ E VtEP/J+t'E(GiJ) +~ij, 

i i = 0 i <j i <j 
(5.7) 

where v is a small positive constant, possibly representing the effective interactions 
of other degrees of freedom in the two-dimensional system which have been 
integrated out from the problem. Since the operator @ involves a first-order 
differential operator we may expect that 1//'af is nondegenerate, for this filling 
factor. 

We now consider excitations around this ground state. The state may be 
described in the order parameter formalism [4] by 

d2z d2w ~ j l ( z ) u q ( z ) ~ j * ( w ) U q ( w ) e - ( l ' l : + l " ' l ' - ) / 4  10). (5 .8 )  
z - w  
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(Similar expressions hold in the HR and permanent states of sect. 4.) Since the 
order parameter is paired, the flux quantum in the GL theory is halved (excitations 
need only be single valued when dragged around the pair of operators ~btUq~btUq), 
and thus we expect that there will be excitations with half units of flux. Since the 
filling factor is 1/q these will be quasihole excitations of charge 1/2q. By flux 
quantization these excitations themselves can only occur in pairs (not bound). A 
trial wave function for a pair of excitations with effectively a half quantum of flux 
each can be written as 

ltrpair( Z l , . . . ,  ZN'~Ui,U2) 

N/2 

= _ _ _ _ _ . _ = _ . . _ _ = _ _  . . . . . . . . . . . .  

. tv,- 2j 

x I-I ( z~ - zJ)qexp[-¼ ~lzil2] (5.9) 

A calculation (verifying the conformal Ward identities) shows that this wave 
function is exactly reproduced by the insertion of a pair of spin operators as in the 
following correlator: 

1/¢pair-- / i=lfi~/(zi)exPli~rqf~(Zi)]or(ul)exp i ] 

×o-(va)exp i ] i ij , 1/ ~-~-~ ~(v2) exp v/q-Oo~(Z') (5.10) 

and thus we interpret the spin operator (times the basic rational torus representa- 
tion) as the quasihole excitation operator in this system* (the rational torus now 
has level 2q and the square root branch cuts in the RT part of (5.10) are cancelled 
by the square root as a fermion moves round the spin field). 

Assuming the existence of a LG description of this system we expect that once 
again there will be a Chern-Simons description of the two relevant conformal field 
theories (the CSW description of the critical Ising model is given in ref. [1]) and 
that the quasiholes will be described by singular gauge transformations. (When 
making several such gauge transformations we must choose the cuts carefully.) 

*The equality of (5.9) and (5.10) implies an interesting combinatorial identity described in appen- 
dix A. 
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Thus, we expect that the four-quasihole wave functions will be given by 

1/Fquartet-- ( i=IFI*(z')exp[ix/~4'(z')] 
4 [ ,  

X 1-1 ~(c i )exp ) exp (5.11) 

Unfortunately, we have not so far been able to write a formula as explicit as, say, 
(5.9) for (5.11). As is well known in conformal field theory, conformal blocks of the 
type (5.11) in fact span a vector space of dimension greater than one. From the 
fusion rules of the Ising model it is easy to see that there is a two-dimensional 
space of blocks of the type given in eq. (5.11). In other words, the notation in eq. 
(5.11) is ambiguous because there are actually two linearly independent such 
functions gq, gt 2 (the ambiguity is resolved by using the machinery of chiral vertex 
operators [1]). Intuitively, we may think of these states as defining a strong pairing 
of quasiholes 1 2 and 3 4 with two distinct ways of joining the groups 1 2 and 3 4 
together. If we now transport the quasihole 2 around quasihole 3 the wave 
functions will change by a nontrivial monodromy matrix. The monodromy of such 
blocks is well known to be identical to the monodromy of the four spin blocks and 
so, upon transport of quasihole 2 around quasihole 3 there will be nontrivial 
mixing of the two degenerate excitations described by 

(The form of the matrix is obtained from the explicit four spin blocks in appendix 
D of the second paper in ref. [1].) This is therefore a "physical" system whose 

excitations are nonabelions. 
Since the combination 0*U q is always a fermion at v = 1/q, q even, and so 

these must pair if they are to have any chance to condense, and since the pfaffian 
state is the simplest way for them to do so, we feel that it is likely that if an 
incompressible state is ever observed at these filling factors with full spin polariza- 
tion, it should be this state. Such a state will inevitably have neutral fermion and 

charged nonabelion excitations. 

6. Conclusions 

In this paper we have given a description of certain correlated electron ground 
states in terms of conformal-field-theotetic conformal blocks, and shown how some 
methods of conformai field theory can be used to rederive some standard results in 
the theory of the fractional quantum Hall effect. Furthermore, this point of view 
can be turned around to produce new and possibly interesting correlated electron 
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ground states, together with model hamiltonians for which these ground states are 
exact. We have indicated that the ultimate reason these two subjects are related 
must be found in the relation of two-dimensional conformal field theory to 
Chern-Simons-Wit ten theory, on the one hand, and the Landau-Ginzburg de- 
scription of the fractional quantum Hall effect on the other. We have also argued 
that incompressible FQHE systems should be classified according to the quantum 
numbers and statistics of their elementary excitations, as well as their ground-state 
quantum numbers. Finally, although the system with nonabelion excitations con- 
structed in this paper may seem a little contrived, we have tried to show that it is 
really rather simple and so we may expect that something like it might eventually 
be observed. Of course, other natural states may also exist and in general the 
possibility of nonabelions in fractional quantum Hall effect systems deserves 
serious consideration. 
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Note added 

Recent work by one of us (N. Read [48], see also Blok and Wen [49]) has shed 
additional light on the hierarchy states. The latter can now be understood as 
multicomponent Coulomb gas systems which in the framework of this paper would 
be described as a set of n right-moving scalar fields compactified on a torus O~"/A, 
where n is the number of levels in the continued fraction for v and A is an 
integral lattice. Many new states can be obtained by different choices for A, 
subject to certain rules. Other papers exploring the relationship of conformal field 
theory and Chern-Simons theory with the quantum Hall effect and "chiral spin 
liquids" have now appeared [50, 51]. 

Appendix A 

A COMBINATORIAL IDENTITY 

One can compare the formula (5.9) for the correlation function (5.10) with the 
formula one would have obtained for the same wave function using the methods of 
ref. [47], where one interprets the square of the lsing model as tile Ashkin-Teiler  
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model .  F r o m  these  two formula t ions  we obtain the identi ty (for N even)  

395 

sgn tr 
E ( 

N/2  

Zo'(2k - I ) 

=2N/2(N/2)! 2 Ill P f a f f i / ~ t  zi-zj (zj-c)(z~-c') ( U - -  l " )  N - i l l  

(A.I) 

where I runs directly over distinct subsets of { 1 , . . . ,  N}  containing an even number 
Ill of  e lements.  
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