# Four Lectures on Web Formalism and Categorical Wall-Crossing

Lyon, September 3-5, 2014

Gregory Moore, Rutgers University

collaboration with Davide Gaiotto & Edward Witten

draft is ``nearly finished"...

#### Plan for four lectures

Lecture 1: Landau-Ginzburg models; Morse theory and SQM; Motivation from spectral networks; Motivation from knot homology

Lecture 2: Webology part 1: Plane webs. Definition of a Theory. Half-plane webs.

Lecture 3: Webology part 2: Vacuum and Brane A∞ categories; Examples.

Lecture 4: Webology part 3: Domain walls and Interfaces; Composition of Interfaces; Parallel transport of Brane Categories; Categorified wall-crossing.

## Three Motivations

1. IR sector of <u>massive</u> 1+1 QFT with N =(2,2)

SUSY

- 2. Knot homology.
- 3. Spectral networks & categorification of 2d/4d wall-crossing formula [Gaiotto-Moore-Neitzke].

(A unification of the Cecotti-Vafa and Kontsevich-Soibelman formulae.)

$$\{Q_{+}, \overline{Q_{+}}\} = H + P$$
  $\{Q_{-}, \overline{Q_{-}}\} = H - P$   $\{Q_{+}, Q_{-}\} = \bar{Z}$   $[F, Q_{+}] = Q_{+}$   $[F, \bar{Q}_{-}] = \bar{Q}_{-}$ 

We will be interested in situations where two supersymmetries are unbroken:

$$U(\zeta) := Q_{+} - \zeta^{-1} \overline{Q}_{-}$$

$$\{U(\zeta), \overline{U(\zeta)}\} = 2 \left(H - \operatorname{Re}(\zeta^{-1} Z)\right)$$

#### **Outline**

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

# Example: LG Models - 1

$$\phi, \psi_{\pm}, \bar{\psi}_{\pm}, \dots$$
 Chiral superfield

 $W(\phi)$  Holomorphic superpotential

$$S = \int d\phi * d\bar{\phi} - |\nabla W|^2 + \cdots$$

Massive vacua are Morse critical points:

$$dW(\phi_i) = 0 \quad W''(\phi_i) \neq 0$$

Label set of vacua:  $\phi_i \in \mathbb{V}$ 

# Example: LG Models -2

More generally,...

 $(X,\omega)$ : Kähler manifold.

W:  $X \longrightarrow \mathbb{C}$  Superpotential (A holomorphic Morse function)

$$\phi:D imes\mathbb{R} o X$$

$$D = \mathbb{R}, [x_{\ell}, \infty), (-\infty, x_r], [x_{\ell}, x_r], S^1$$

# Boundary conditions for $\phi$

**Boundaries** at infinity:

$$x o -\infty$$

$$\begin{array}{ll}
\phi \to \phi_i & \phi \to \phi_j \\
x \to -\infty & x \to +\infty
\end{array}$$

Boundaries at finite distance: Preserve ζ-susy:

(Simplify: 
$$\omega = d\lambda$$
)

$$\phi|_{x_{\ell},x_r} \in \mathcal{L}_{\ell,r} \subset X$$
 $\iota_{\mathcal{L}}^*(\lambda) = dk$ 

$$\pm \operatorname{Im}(\zeta^{-1}W) \ge \Lambda$$

# Fields Preserving ζ-SUSY

 $U(\zeta)$ [Fermi] =0 implies the  $\zeta$ -instanton equation:

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial \tau}\right)\phi^{I} = \zeta g^{I\bar{J}}\frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

Time-independent:  $\zeta$ -<u>soliton</u> equation:

$$\frac{\partial}{\partial x}\phi^I = \zeta g^{Iar{J}} \frac{\partial ar{W}}{\partial ar{\phi}^{ar{J}}}$$

# Projection to W-plane

$$\frac{\partial}{\partial x}\phi^I = \zeta g^{I\bar{J}} \frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

The projection of solutions to the complex W plane are contained in straight lines of slope  $\zeta$ 

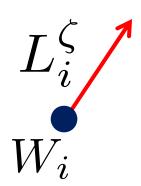
$$\frac{dW}{dx} = \frac{\partial W}{\partial \phi^I} \frac{\partial}{\partial x} \phi^I = \zeta \frac{\partial W}{\partial \phi^I} g^{I\bar{J}} \frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

$$W(x) - W(x_0) = \zeta \int_{x_0}^{x} |\nabla W|^2 dx'$$

# Lefshetz Thimbles

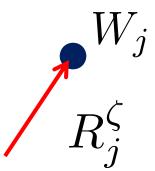
If D contains  $x \longrightarrow -\infty$ 

$$\phi \rightarrow \phi_i$$



If D contains 
$$x \to +\infty$$
  $\phi \to \phi_j$ 

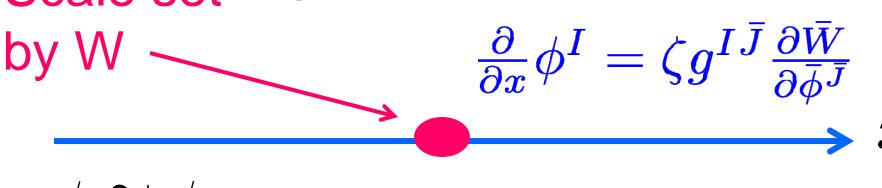
$$\phi \to \phi_j$$



Inverse image in X of all solutions defines left and right Lefshetz thimbles

They are Lagrangian subvarieties of X

# Scale set Solitons For $D=\mathbb{R}$



$$\phi \cong \phi_i$$

$$\phi \cong \phi_j$$

For general  $\zeta$  there is no solution.

$$\zeta = \zeta_{ji} := \frac{W_j - W_i}{|W_j - W_i|}$$

But for a suitable phase there is a solution

$$W_j$$

This is the classical soliton. There is one for each intersection (Cecotti & Vafa)

$$p \in L_i^{\zeta} \cap R_j^{\zeta}$$

(in the fiber of a regular value)



# Near a critical point

$$W = W_i + \sum_{I} \frac{1}{2} \mu_I (\phi^I - \phi_i^I)^2$$

$$\phi^I = \phi_i^I + r^I \sqrt{\frac{\zeta \mu_I}{\kappa_I}} e^{\kappa_I x}$$

$$r^I \in \mathbb{R} \quad |\kappa_I| = |\mu_I|$$

$$L_i^{\zeta} \quad \forall I \quad \kappa_I > 0$$

$$R_i^{\zeta} \quad \forall I \quad \kappa_I < 0$$

#### Witten Index

Some classical solitons are lifted by instanton effects, but the Witten index:

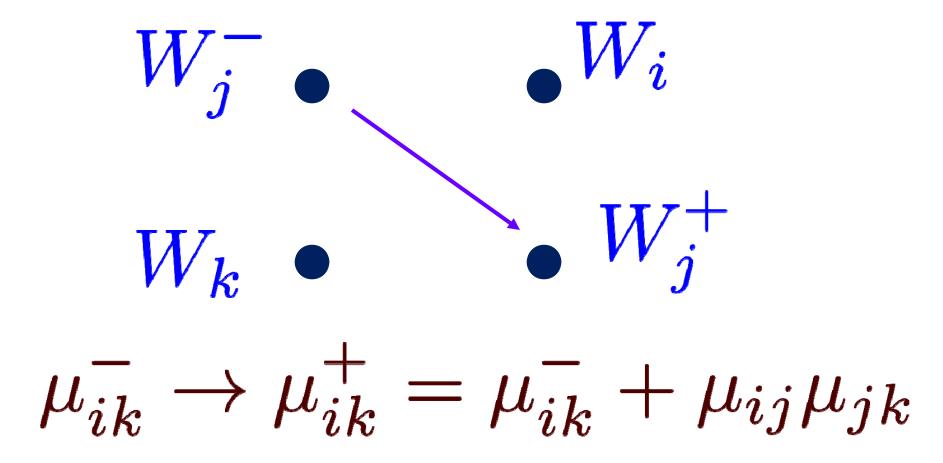
$$\mu_{ij} := \operatorname{Tr}_{\mathcal{H}_{ij}^{BPS}}(-1)^F$$

can be computed with a signed sum over classical solitons:

$$\mu_{ij} = \sum_{p \in L_i^{\zeta} \cap R_j^{\zeta}} (-1)^{\iota(p)}$$

These BPS indices were studied by [Cecotti, Fendley, Intriligator, Vafa and by Cecotti & Vafa]. They found the wall-crossing phenomena:

Given a one-parameter family of W's:



One of our goals will be to categorify this wall-crossing formula.

#### **Outline**

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

# Goals & Results - 1

Goal: Say everything we can about the theory in the far IR.

Since the theory is massive this would appear to be trivial.

Result: When we take into account the BPS states there is an extremely rich mathematical structure.

We develop a formalism – which we call the ``web-based formalism" -- which shows that:

#### Goals & Results - 2

BPS states have ``interaction amplitudes" governed by an L∞ algebra

There is an  $A\infty$  category of branes/boundary conditions, with amplitudes for emission of BPS particles from the boundary governed by an  $A\infty$  algebra.

 $(A\infty \text{ and } L\infty \text{ are mathematical structures which play an important role in open and closed string field theory, respectively. Strangely, they show up here.)$ 

#### Goals & Results - 3

If we have continuous families of theories (e.g. a continuous family of LG superpotentials) then we can construct half-supersymmetric interfaces between the theories.

These interfaces can be used to `implement' wall-crossing.

Half-susy interfaces form an  $A\infty$  2-category, and to a continuous family of theories we associate a flat parallel transport of brane categories.

The flatness of this connection implies, and is a categorification of, the 2d wall-crossing formula.





# EMERGENCY EXIT ONLY





## Some Old Questions

What are the BPS states on  $\mathbb{R}$  in sector ij ?



Fendley & Intriligator; Cecotti, Fendley, Intriligator, Vafa; Cecotti & Vafa c. 1991

Some refinements. Main new point: L∞ structure

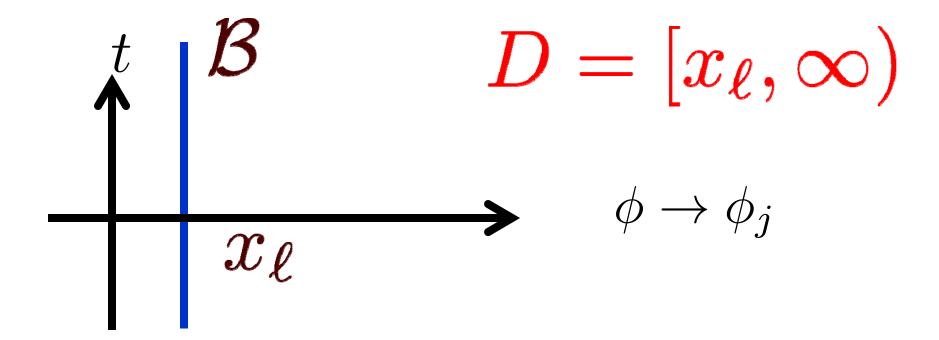
What are the branes/half-BPS boundary conditions?

B

Hori, Iqbal, Vafa c. 2000 & Much mathematical work on A-branes and Fukaya-Seidel categories.

We clarify the relation to the Fukaya-Seidel category & construct category of branes from IR.

## Some New Questions -1

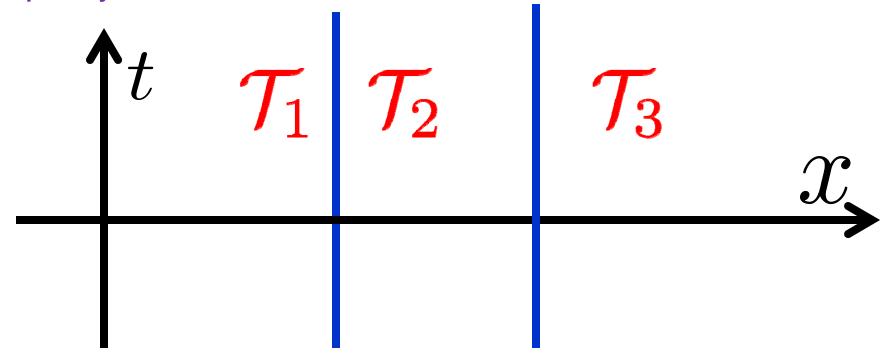


What are the BPS states on the half-line?

$$\mathcal{H}^{\mathrm{BPS}}_{\mathcal{B},j}$$

## Some New Questions - 2

Given a pair of theories  $\mathcal{T}_1$ ,  $\mathcal{T}_2$  what are the supersymmetric interfaces?

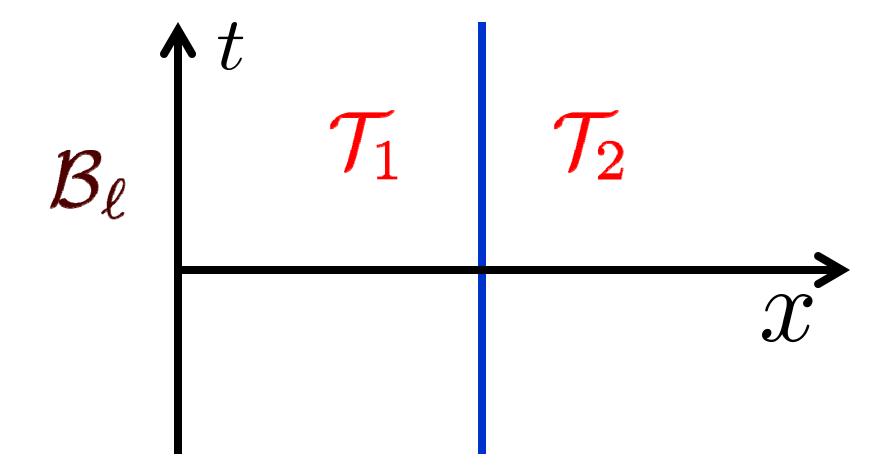


Is there an (associative) way of `multiplying' interfaces to produce new ones? And how do you compute it?

# Some New Questions - 3 $\uparrow t \qquad \mathcal{T}_1 \qquad \mathcal{T}_3 \qquad \qquad \mathcal{X}_{\bullet}$

We give a method to compute the product. It can be considered associative, once one introduces a suitable notion of ``homotopy equivalence" of interfaces.

# Some New Questions - 4



Using interfaces we can ``map" branes in theory  $\mathcal{T}_1$ , to branes in theory  $\mathcal{T}_2$ .

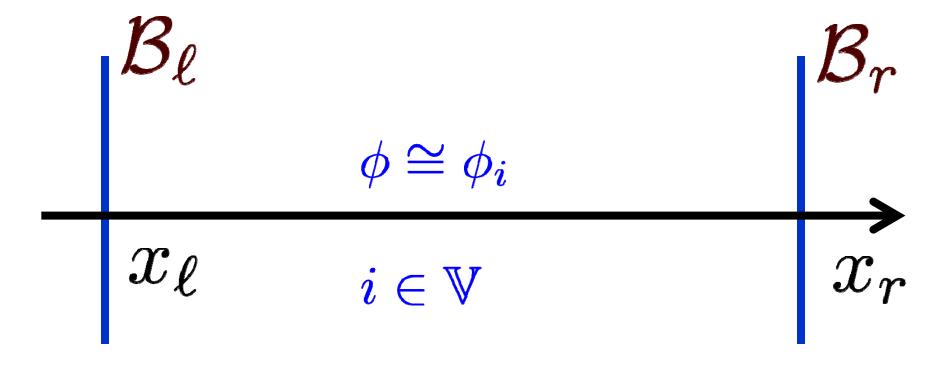
This will be the key idea in defining a ``parallel transport" of Brane categories.

# Example of a surprise:

What is the space of BPS states on an interval?

The theory is massive:

For a susy state, the field in the middle of a large interval is close to a vacuum:



#### Does the Problem Factorize?

For the Witten index: Yes

$$\mu_{\mathcal{B}_{\ell},i} = \operatorname{Tr}_{\mathcal{H}_{\mathcal{B}_{\ell},i}^{\mathrm{BPS}}} (-1)^F e^{-\beta H}$$

$$\mu_{\mathcal{B}_{\ell},\mathcal{B}_{r}} = \sum_{i \in \mathbb{V}} \mu_{\mathcal{B}_{\ell},i} \cdot \mu_{i,\mathcal{B}_{r}}$$

Naïve categorification?

$$\mathcal{H}_{\mathcal{B}_{\ell},\mathcal{B}_{r}}^{\mathrm{BPS}} 
eq \sum_{i \in \mathbb{V}} \mathcal{H}_{\mathcal{B}_{\ell},i}^{\mathrm{BPS}} \otimes \mathcal{H}_{i,\mathcal{B}_{r}}^{\mathrm{BPS}}$$
 No!

# Enough with vague generalities!

Now I will start to be more systematic.

The key ideas behind everything we do come from Morse theory.

#### Outline

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

# SQM & Morse Theory (Witten: 1982)

M: Riemannian; h:  $M \longrightarrow \mathbb{R}$ , Morse function

SQM: 
$$q: \mathbb{R}_{\text{time}} \to M \quad \chi \in \Gamma(q^*(TM \otimes \mathbb{C}))$$

$$L = g_{IJ}\dot{q}^I\dot{q}^J - g^{IJ}\partial_Ih\partial_Jh$$

$$+g_{IJ}\bar{\chi}^ID_t\chi^J - g^{IJ}D_ID_Jh\bar{\chi}^I\chi^J - R_{IJKL}\bar{\chi}^I\chi^J\bar{\chi}^K\chi^L$$

dh(m) = 0  $\to \Psi(m)$ **Perturbative** vacua:



$$F(\Psi(m)) = rac{1}{2}(d_{\uparrow}(m) - d_{\downarrow}(m))$$
 q

# Instantons & MSW Complex

Instanton equation: 
$$\frac{d\phi}{d\tau} = \pm g^{IJ} \frac{\partial h}{\partial \phi^J}$$

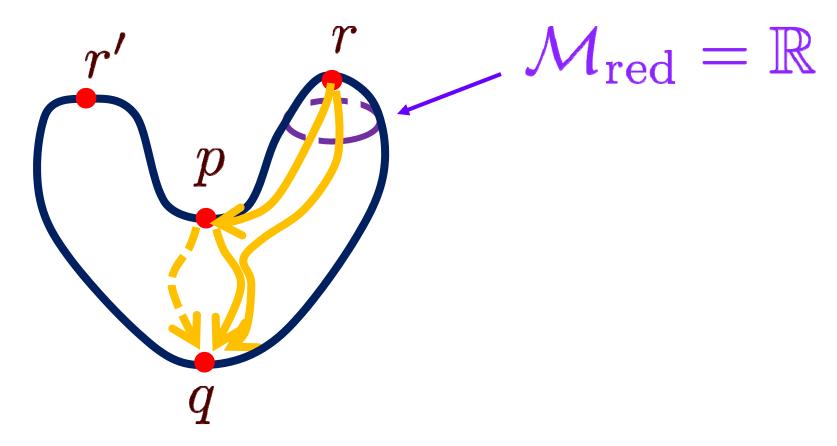
"Rigid instantons" - with zero reduced moduli – will lift some perturbative vacua. To compute exact vacua:

MSW complex: 
$$\mathbb{M}^{ullet}:=\oplus_{p:dh(p)=0}\mathbb{Z}\cdot\Psi(p)$$

$$d(\Psi(p)) = \sum_{p': F(p') - F(p) = 1} n(p, p') \Psi(p')$$

Space of groundstates (BPS states) is the *cohomology*.

# Why $d^2 = 0$



Ends of the moduli space correspond to broken flows which cancel each other in computing  $d^2 = 0$ . A similar argument shows independence of the cohomology from h and  $g_{IJ}$ .

#### 1+1 LG Model as SQM

Target space for SQM:

$$M = \operatorname{Map}(D, X) = \{\phi : D \to X\}$$
 $D = \mathbb{R}, [x_{\ell}, \infty), (-\infty, x_r], [x_{\ell}, x_r], S^1$ 
 $h = \int_D (\phi^* \lambda + \operatorname{Re}(\zeta^{-1} W) dx)$ 
 $d\lambda = \omega \quad \lambda = pdq$ 

Recover the standard 1+1 LG model with superpotential: Two –dimensional  $\zeta$ -susy algebra is manifest.

We now give two applications of this viewpoint.

### Families of Theories

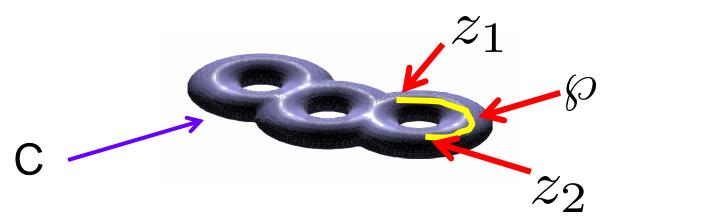
This presentation makes construction of halfsusy interfaces easy:

Consider a *family* of Morse functions

$$W(\phi;z)$$
  $z \in C$ 

Let  $\wp$  be a path in C connecting  $z_1$  to  $z_2$ .

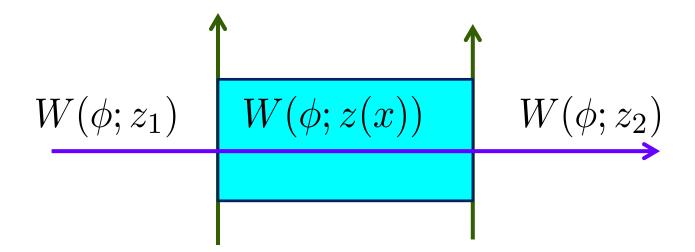
View it as a map z:  $[x_1, x_r] \rightarrow C$  with  $z(x_1) = z_1$  and  $z(x_r) = z_2$ 



#### Domain Wall/Interface

Using z(x) we can still formulate our SQM!

$$h = \int_D \phi^*(pdq) + \operatorname{Re}(\zeta^{-1}W(\phi; z(x)))dx$$



From this construction it manifestly preserves two supersymmetries.

# MSW Complex

Now return to a single W. Another good thing about this presentation is that we can discuss ij solitons in the framework of Morse theory:



$$rac{\delta h}{\delta \phi} = 0$$
 Equivalent to the  $\zeta$ -soliton equation

$$\mathbb{M}_{ij} = \bigoplus_{\text{solitons}} \mathbb{Z} \cdot \Psi_{ij}$$

(Taking some shortcuts here....)

$$D = \sigma^3 i \frac{d}{dx} + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \frac{\zeta^{-1}}{2} W'' + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \frac{\zeta}{2} \overline{W}''$$

$$F = -\frac{1}{2} \eta (D - \epsilon)$$

#### Instantons

Instanton equation  $\frac{d\phi}{d\tau} = -\frac{\delta h}{\delta \bar{\phi}}$ 

$$\frac{d\phi}{d au} = -\frac{\delta h}{\delta \phi}$$

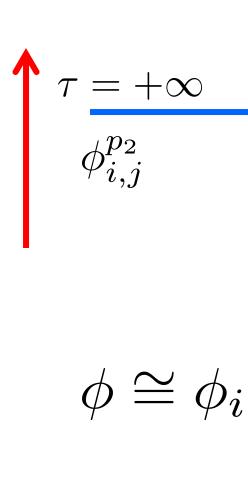
$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial \tau}\right)\phi^I = \zeta g^{I\bar{J}}\frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

$$\bar{\partial}\phi^I = \zeta g^{I\bar{J}} \frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

At short distance scales W is irrelevant and we have the usual holomorphic map equation.

At long distances the theory is almost trivial since it has a mass scale, and it is dominated by the vacua of W.





$$\phi \cong \phi_j$$

$$\phi_{i,j}^{p_1}$$

$$\tau = -\infty$$

 $\mathcal{J}$ 

### **BPS Solitons on half-line D:**

#### Semiclassically:

 $\mathbf{Q}_{\zeta}$  -preserving BPS states must be solutions of differential equation

$$\frac{\partial \phi^{I}}{\partial x} = \zeta g^{I\bar{J}} \frac{\partial \bar{W}}{\partial \bar{\phi}^{\bar{J}}}$$

$$\phi \to 0$$

$$|\phi|_{x_\ell} \in \mathcal{L}$$
  $\qquad \qquad \begin{array}{c} \phi o \phi_J \\ x o \infty \end{array}$ 

Classical solitons on the positive half-line are labeled by:

$$p \in \mathcal{L} \cap R_j^{\zeta}$$

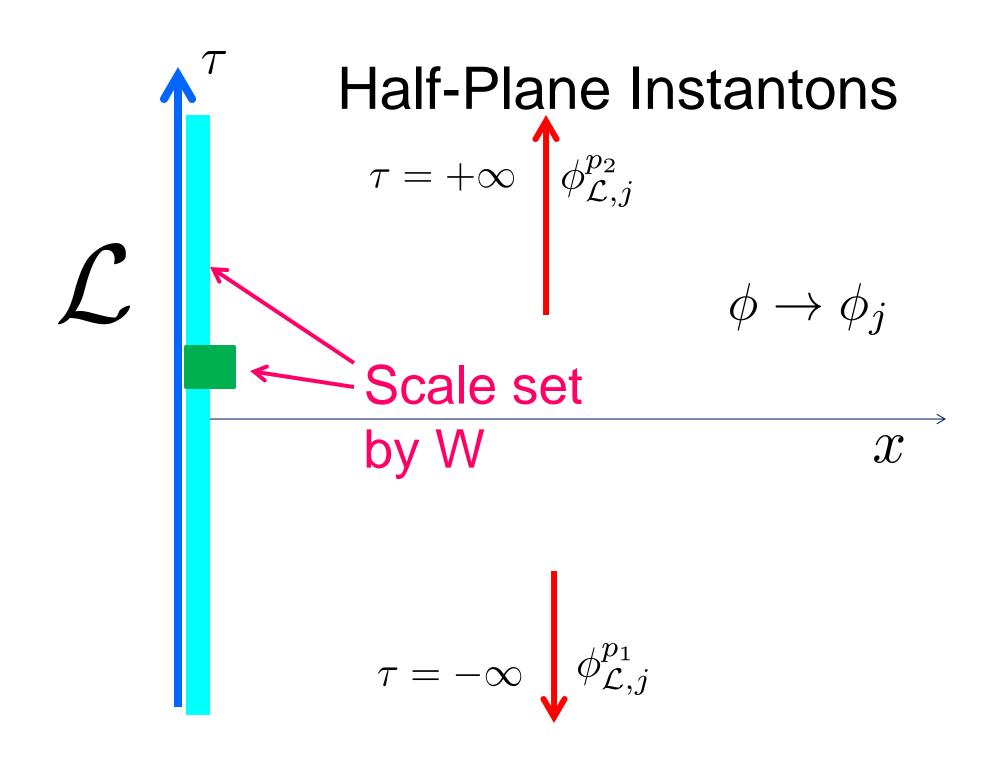
### Quantum Half-Line Solitons

MSW complex: 
$$\mathbb{M}_{\mathcal{L},j} = \oplus_p \mathbb{Z} \cdot \Psi_{\mathcal{L},j}(p)$$

Grading the complex: Assume X is CY and that we can find a logarithm:

$$w = \operatorname{Im} \log \frac{\iota^*(\Omega^{d,0})}{\operatorname{vol}(\mathcal{L})}$$

Then the grading is by  $f=\eta(D)-w$ 



### Solitons On The Interval

Now return to the puzzle about the finite interval  $[x_l, x_r]$  with boundary conditions  $\mathcal{L}_l$ ,  $\mathcal{L}_r$ 

When the interval is much longer than the scale set by W the MSW complex is

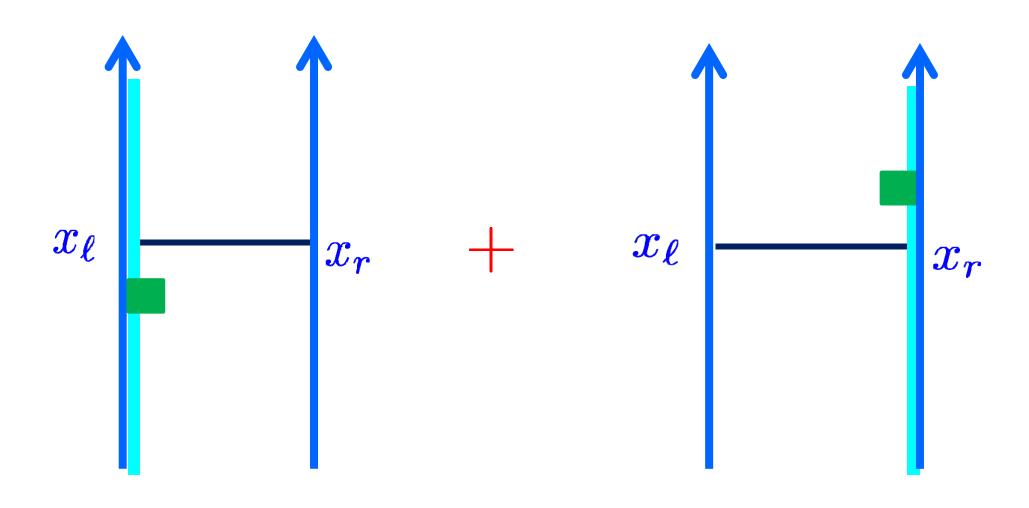
$$\mathbb{M}_{\mathcal{L}_{\ell},\mathcal{L}_{r}} = \bigoplus_{i \in \mathbb{V}} \mathbb{M}_{\mathcal{L}_{\ell},i} \otimes \mathbb{M}_{i,\mathcal{L}_{r}}$$

The Witten index factorizes nicely:  $\mu_{\mathcal{L}_\ell,\mathcal{L}_r} = \sum_i \mu_{\mathcal{L}_\ell,i} \mu_{i,\mathcal{L}_r}$ 

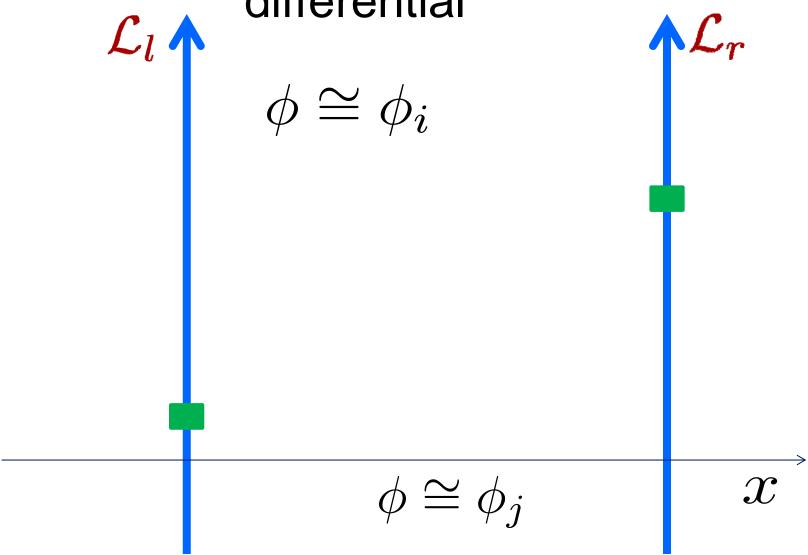
But the differential  $~d_{\mathcal{L}_{\ell},i}\otimes 1+1\otimes d_{i,\mathcal{L}_{r}}$ 

is too naïve!

# $\sum_{i} \left( d_{\mathcal{L}_{\ell},i} \otimes 1 + 1 \otimes d_{i,\mathcal{L}_{r}} \right)$



Instanton corrections to the naïve differential



### **Outline**

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

#### The Boosted Soliton - 1

We are interested in the  $\zeta$ -instanton equation for a fixed generic  $\zeta$ 

We can still use the soliton to produce a solution for phase  $\zeta$ 

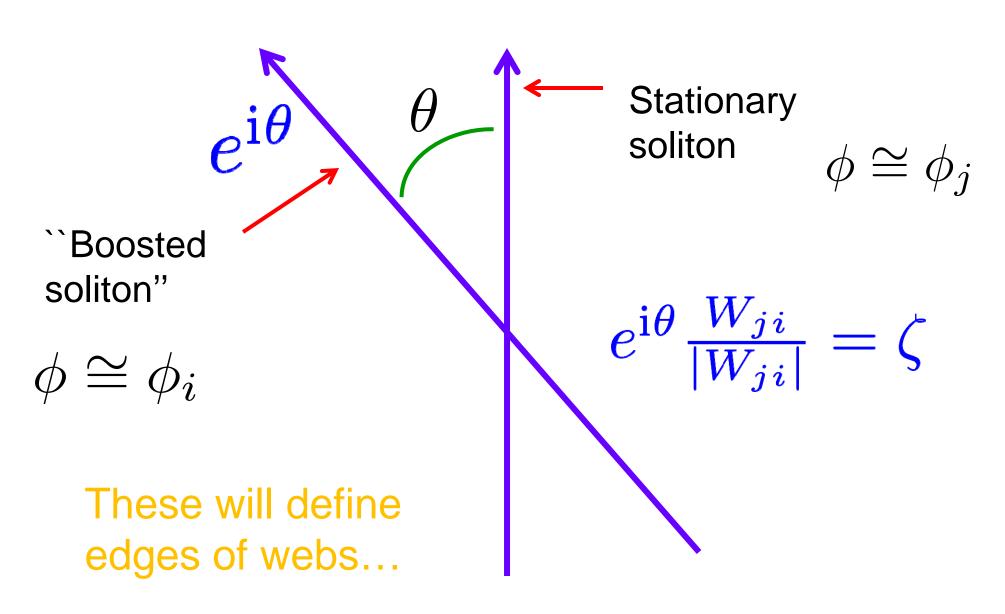
$$\phi_{ij}^{\text{inst}}(x,\tau) := \phi_{ij}^{\text{sol}}(\cos\theta x + \sin\theta\tau)$$

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial \tau}\right)\phi_{ij}^{inst} = e^{i\theta}\zeta_{ji}\frac{\partial W}{\partial \bar{\phi}}$$

Therefore we produce a solution of the instanton equation with phase  $\zeta$  if

$$\zeta = e^{i\theta} \zeta_{ji} \qquad \qquad \zeta_{ji} := \frac{W_j - W_i}{|W_j - W_i|}$$

### The Boosted Soliton -2



#### The Boosted Soliton - 3

Put differently, the stationary soliton in Minkowski space preserves the supersymmetry:  $Q_+ - \zeta_{ij}^{-1} \overline{Q}_-$ 

So a boosted soliton preserves supersymmetry:

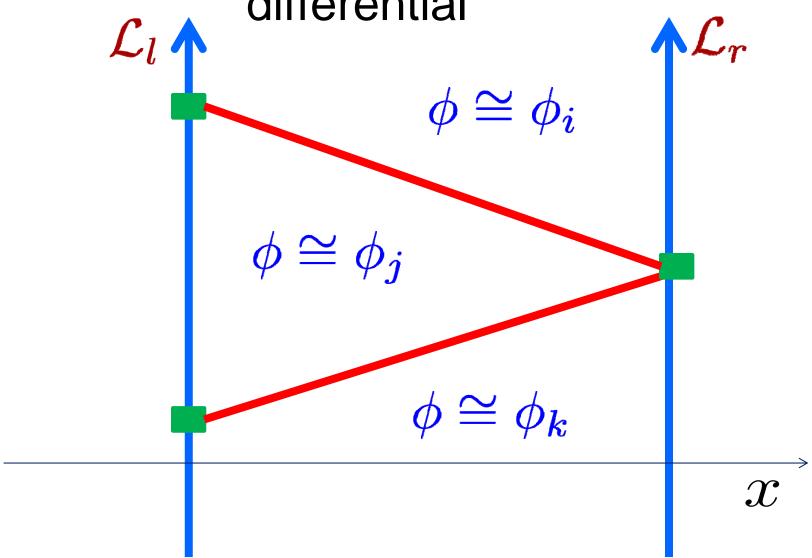
$$e^{\beta/2}Q_{+} - \zeta_{ij}^{-1}e^{-\beta/2}\overline{Q_{-}}$$

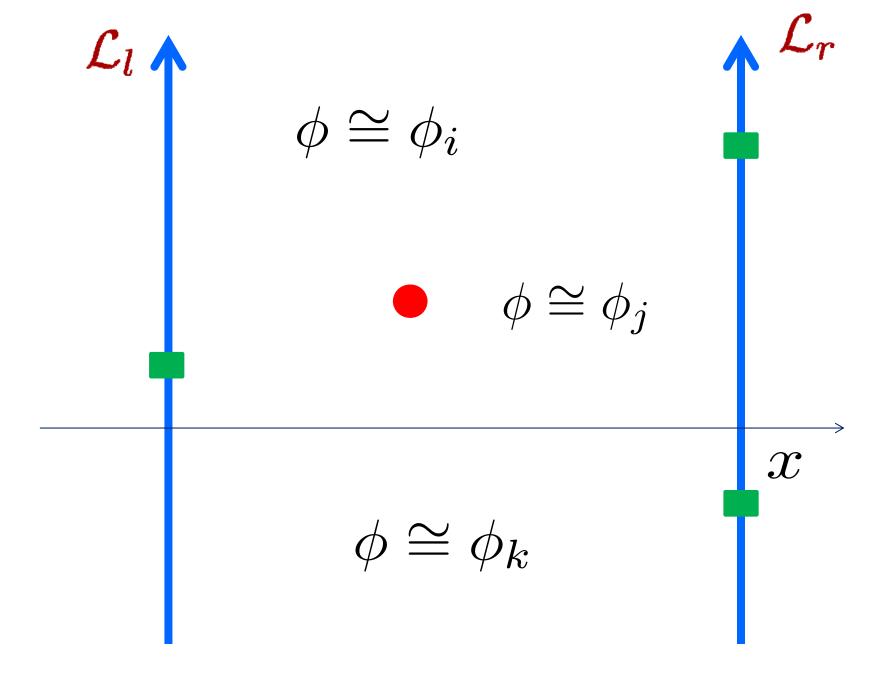
 $\beta$  is a real boost. In **Euclidean** space this becomes a rotation:

$$e^{\mathrm{i}\theta/2}Q_{+} - \zeta_{ij}^{-1}e^{-\mathrm{i}\theta/2}\overline{Q_{-}}$$

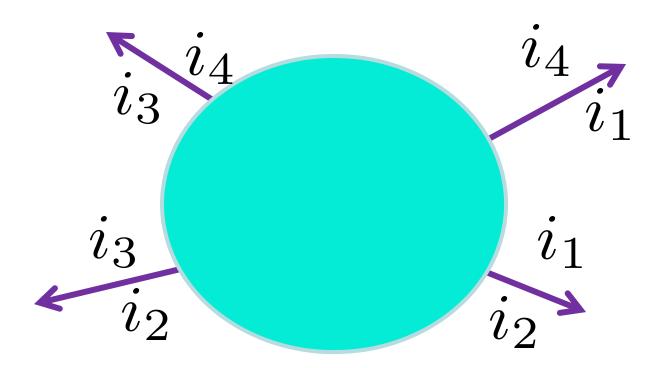
And for suitable  $\theta$  this will preserve  $\zeta$ -susy

More corrections to the naïve differential





# Path integral on a large disk



Choose boundary conditions preserving  $\zeta$ -supersymmetry:

Consider a cyclic `fan of solitons"

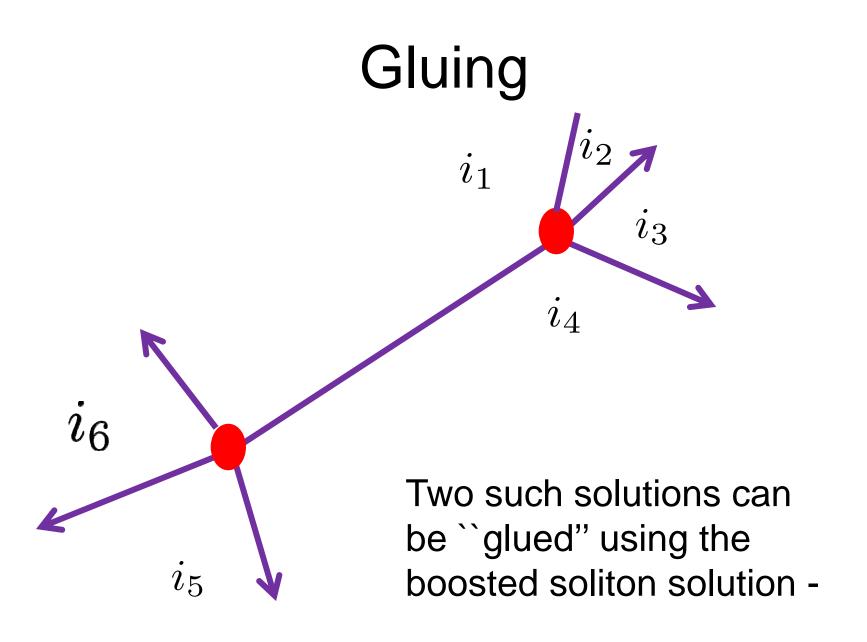
$$\mathcal{F} = \{\phi_{i_1 i_2}^{\text{inst}}, \cdots, \phi_{i_n i_1}^{\text{inst}}\}$$

#### Localization

The path integral of the LG model with these boundary conditions (with A-twist) localizes on moduli space of  $\zeta$ -instantons:

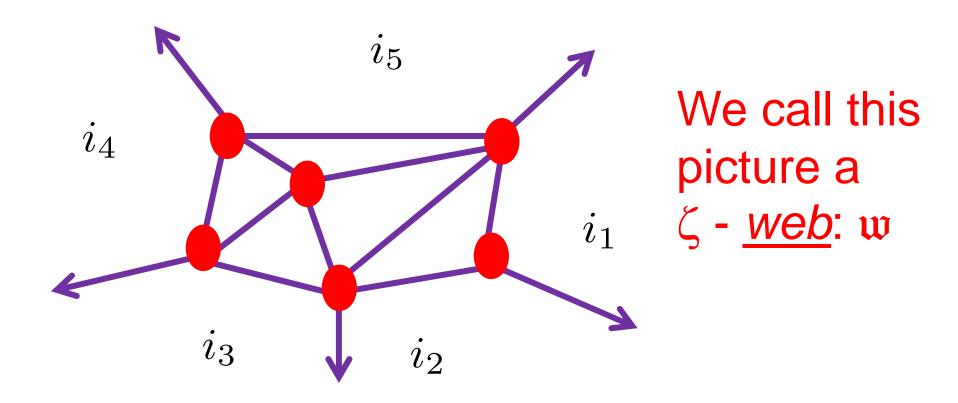
$$\mathcal{M}(\mathcal{F})$$

We assume the mathematically nontrivial statement that, when the index of the Dirac operator (linearization of the instanton equation) is positive then the moduli space is nonempty.



### Ends of moduli space

This moduli space has several "ends" where solutions of the  $\zeta$ -instanton equation look like



# ζ-Vertices

The red vertices represent solutions from the compact and connected components of

$$\mathcal{M}(\mathcal{F})$$

The contribution to the path integral from such components are called `interior amplitudes." In the A-model for the zero-dimensional moduli spaces they count (with signs) the solutions to the  $\zeta$ -instanton equation.

### Path Integral With Fan Boundary Conditions

Just as in the Morse theory proof of  $d^2=0$  using ends of moduli space corresponding to broken flows, here the broken flows correspond to webs w

Label the ends of  $\mathcal{M}(\mathcal{F})$  by webs w. Each end contributes  $\Psi(w)$  to the path integral:

The total wavefunction is Q-invariant

$$Q\sum_{\mathfrak{w}}\Psi(\mathfrak{w})=0$$

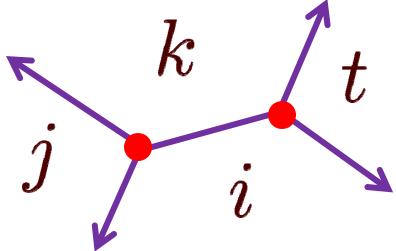
The wavefunctions  $\Psi(w)$  are themselves constructed by gluing together wavefunctions  $\Psi(r)$  associated with  $\zeta$ -vertices r



L<sub>∞</sub> identities on the interior amplitudes

### Example:

Consider a fan of vacua {i,j,k,t}. One end of the moduli space looks like:



The red vertices are path integrals with rigid webs. They have amplitudes  $\beta_{ikt}$  and  $\beta_{ijk}$ .

$$\mathcal{M} = \mathbb{R}^2_{transl} imes \mathbb{R}^+_{scale}$$
 ?

# Ends of Moduli Spaces in QFT

In LG theory (say, for  $X = \mathbb{C}^n$ ) the moduli space cannot have an end like the finite bdy of  $\mathbb{R}_+$ 

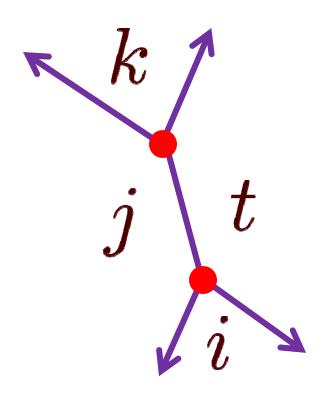
In QFT there can be three kinds of ends to moduli spaces of the relevant PDE's:

UV effect: Example: Instanton shrinks to zero size; bubbling in Gromov-Witten theory

Large field effect: Some field goes to ∞

Large distance effect: Something happens at large distances.

None of these three things can happen at the finite boundary of  $\mathbb{R}_+$ . So, there must be another end:



Amplitude:  $\beta_{jkt}\beta_{ijt}$ 

The boundaries where the internal distance shrinks to zero must cancel leading to identities on the amplitudes like:

$$\beta_{ijk}\beta_{ikt} - \beta_{jkt}\beta_{ijt} = 0$$

This set of identities turns out to be the Maurer-Cartan equation for an  $L\infty$  - algebra.

This is really a version of the argument for  $d^2 = 0$  in SQM.

### **Outline**

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

# Knot Homology -1/5

(Approach of E. Witten, 2011)

Study (2,0) superconformal theory based on Lie algebra g

$$\mathbb{R} \times M_3 \times D$$



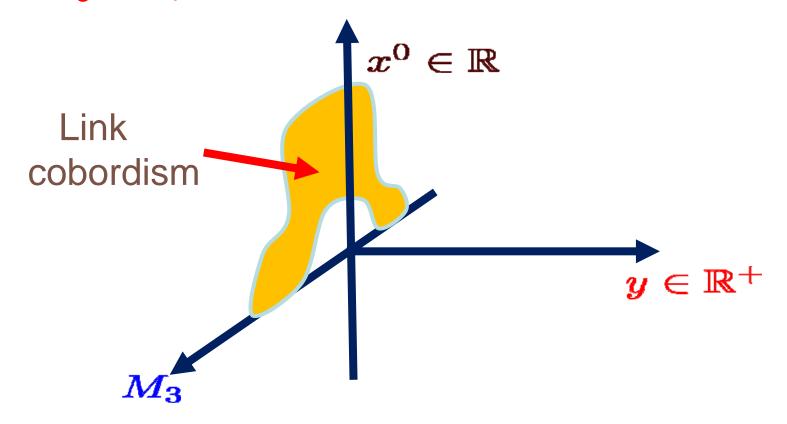


 $M_3$ : 3-manifold containing a surface defect at  $\mathbb{R}$  x L x {p}

More generally, the surface defect is supported on a link cobordism  $L_1 \rightarrow L_2$ :

# Knot Homology – 2/5

Now, KK reduce by U(1) isometry of the cigar D with fixed point p to obtain 5D SYM on  $\mathbb{R} \times \mathbb{M}_3 \times \mathbb{R}_+$ 



# Knot Homology – 3/5

Hilbert space of states depends on M<sub>3</sub> and L:

$$\mathcal{H}_{\mathrm{BPS}}(M_3,L)$$

is identified with the knot homology of L in M<sub>3</sub>.

This space is constructed from a chain complex using infinite-dimensional Morse theory on a space of gauge fields and adjoint-valued differential forms.

# Knot Homology 4/5

Equations for the semiclassical states generating the MSW complex are the Kapustin-Witten equations for gauge field with group G and adjoint-valued one-form  $\phi$  on the four-manifold  $M_4 = M_3 \times \mathbb{R}^+$ 

$$F - \phi^{2} + t(d_{A}\phi)^{+} - t^{-1}(d_{A}\phi)^{-} = 0$$
$$d_{A} * \phi = 0$$

Boundary conditions at y=0 include Nahm pole and extra singularities at the link L involving a representation R<sup>v</sup> of the dual group.

Differential on the complex comes from counting `instantons" – solutions to a PDE in 5d written by Witten and independently by Haydys.

# Knot Homology 5/5

In the case  $M_3 = C \times \mathbb{R}$  with coordinates  $(z, x^1)$  these are precisely the equations of a *gauged Landau-Ginzburg model* defined on 1+1 dimensional spactime  $(x^0, x^1)$  with target space

$$\mathcal{X}: \mathcal{A} = A + i\phi \ \tilde{M}_3 := C \times \mathbb{R}_+$$
 $\mathcal{G} = \operatorname{Map}(\tilde{M}_3, G^c)$ 
 $W(\mathcal{A}) = \int_{\tilde{M}_3} \operatorname{Tr}(\mathcal{A}d\mathcal{A} + \frac{2}{3}\mathcal{A}^3)$ 

Gaiotto-Witten showed that in some situations one can reduce this model to an ungauged LG model with finite-dimensional target space.

#### **Outline**

- Introduction & Motivations
- Some Review of LG Theory
- Overview of Results; Some Questions Old & New
- LG Theory as SQM
- Boosted Solitons & Soliton Fans
- More about motivation from knot homology
- More about motivation from spectral networks

#### Theories of Class S

(Slides 73-87 just a reminder for experts.)

Begin with the (2,0) superconformal theory based on Lie algebra g

Compactify (with partial topological twist) on a Riemann surface C with codimension two defects D inserted at punctures  $\mathfrak{s}_n \in C$ .

Get a four-dimensional QFT with d=4 N=2 supersymmetry S[g,C,D]

Coulomb branch of these theories described by a Hitchin system on C.

#### **UV** Curve

#### Seiberg-Witten Curve

$$\Sigma : \det(\lambda - \varphi(z, \bar{z})) = 0 \subset T^*C$$

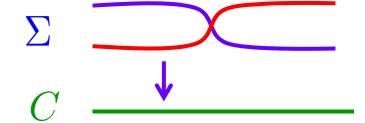
$$\lambda = pdq$$

$$\lambda|_{\Sigma}$$

 $\lambda = pdq$   $\lambda|_{\Sigma}$  SW differential

For 
$$g = su(K)$$

$$\pi:\Sigma o C$$



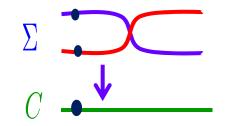
is a K-fold branched cover

$$\lambda^{K} + \lambda^{K-2}\phi_{2}(z) + \dots + \phi_{K}(z) = 0$$

# Canonical Surface Defect in S[g,C,D]

For  $z \in C$  we have a *canonical surface defect*  $S_z$ 

It can be obtained from an M2-brane ending at  $x^1=x^2=0$  in  $\mathbb{R}^4$  and z in C

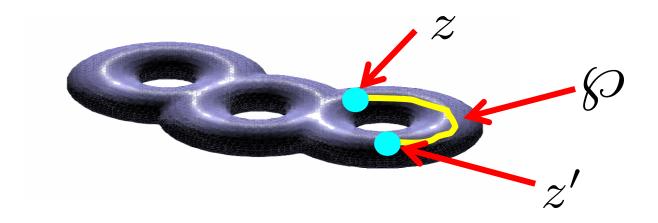


This is a 1+1 dimensional QFT localized at  $(x^1,x^2)=(0,0)$  coupled to the ambient four-dimensional theory. In some regimes of parameters it is well-described by a Landau-Ginzburg model.

In the IR the different vacua for this M2-brane are the different sheets in the fiber of the SW curve over z.

### Susy interfaces for S[g,C,D]

Interfaces between  $S_z$  and  $S_{z'}$  are labeled by **open paths**  $\wp$  on C

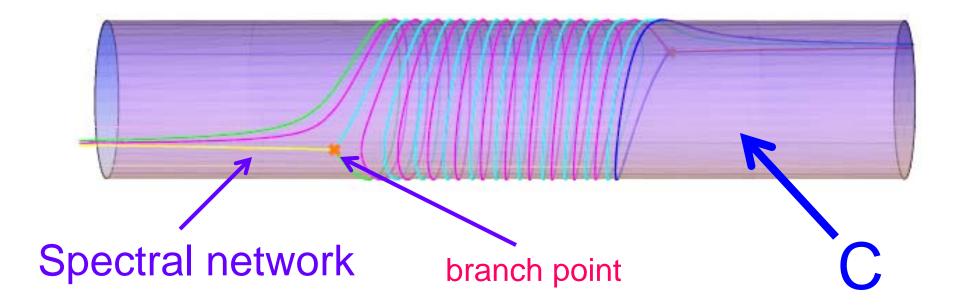


 $L_{\wp,\vartheta}$  only depends on the homotopy class of  $\wp$ 

#### Spectral networks

(D. Gaiotto, G. Moore, A. Neitzke)

Spectral networks are combinatorial objects associated to a branched covering of Riemann surfaces  $\Sigma \longrightarrow C$ 



#### S-Walls

Spectral network  $W_{\vartheta}$  of phase  $\vartheta$  is a graph in C.

Edges are made of WKB paths:

$$\langle \lambda_i - \lambda_j, \partial_t \rangle = e^{i\vartheta}$$

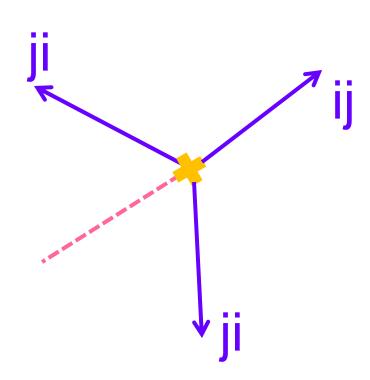
The path segments are ``S-walls of type ij"



But how do we choose which WKB paths to fit together?

#### Evolving the network -1/3

Near a (simple) branch point of type (ij):

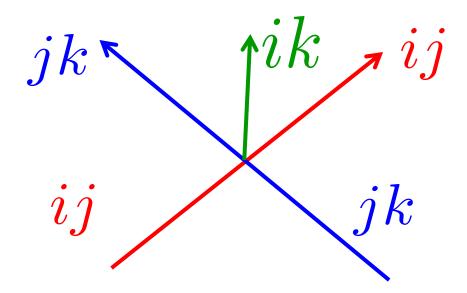


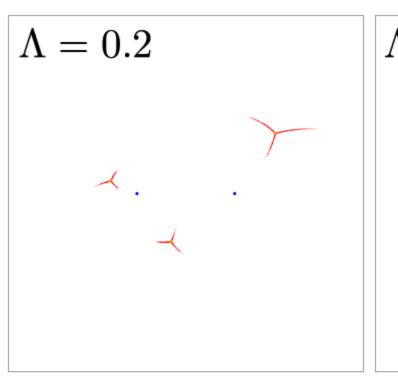
$$\int \lambda_i - \lambda_j \sim z^{3/2}$$

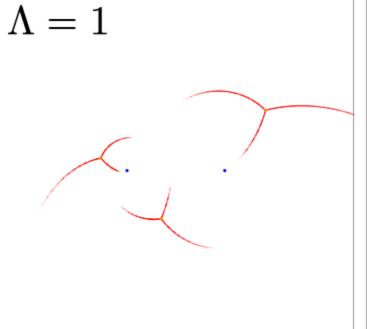
#### Evolving the network -2/3

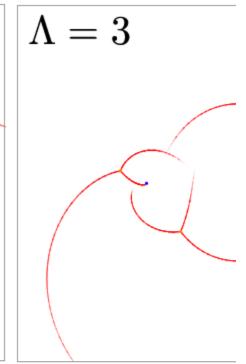
Evolve the differential equation.

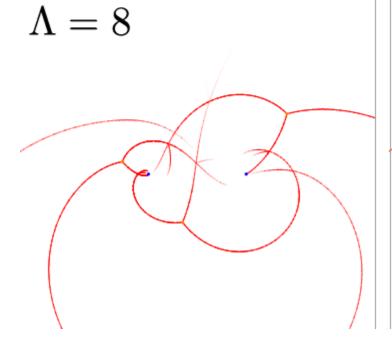
There are rules for how to continue when S-walls intersect. For example:

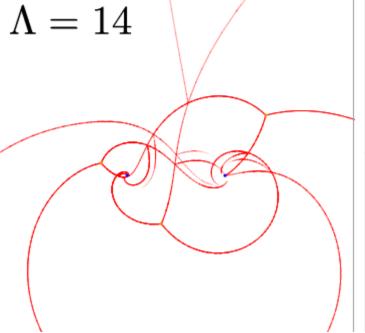


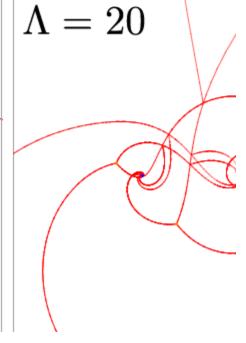












#### Formal Parallel Transport

Introduce the generating function of framed BPS degeneracies:

$$F(\wp,\vartheta) := \sum_{\Gamma_{ij'}} \overline{\Omega}(L_{\wp,\vartheta},\gamma_{ij'}) X_{\gamma_{ij'}}$$

$$\sum_{z(j')} z^{(i)}$$

$$C$$

#### Homology Path Algebra

To any relative homology class  $a \in H_1(\Sigma, \{x_i, x_{j'}\}; \mathbb{Z})$  assign  $X_a$ 

$$X_a X_b := \begin{cases} X_{a+b} & a, b \text{ composable} \\ 0 & \text{else} \end{cases}$$

 $X_a$  generate the "homology path algebra" of  $\Sigma$ 

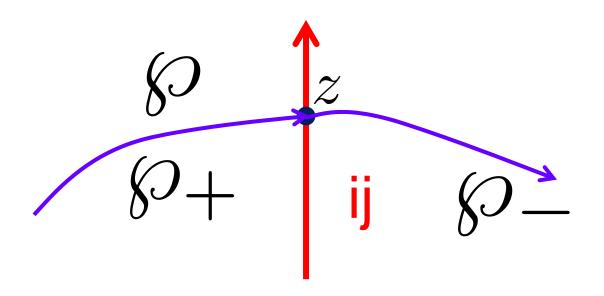
### Four Defining Properties of F

1 
$$F(\wp,\vartheta)F(\wp',\vartheta) = F(\wp\wp',\vartheta)$$

2 Homotopy 
$$F(\wp_1, \vartheta) = F(\wp_2, \vartheta)$$

- 3 If  $\varnothing$  does NOT  $F(\varnothing,\vartheta) = \sum_{i=1}^K X_{\varnothing^{(i)}}$
- 4 If  $\wp$  DOES intersect  $\mathscr{W}_{\wp}$ : "Wall crossing formula"

## Wall Crossing for $\overline{\Omega}(L_{\wp,\vartheta},a)$



$$F(\wp, \vartheta) = \sum_{s=1}^{K} X_{\wp^{(s)}}$$

$$+ \sum_{\gamma_{ij}} \mu(\gamma_{ij}) X_{\wp_+^{(i)}} X_{\gamma_{ij}} X_{\wp_-^{(j)}}$$

# Theorem: These four conditions completely determine both $F(\wp, \theta)$ and $\mu$

One can turn this formal transport into a rule for pushing forward a flat  $GL(1,\mathbb{C})$  connection on  $\Sigma$  to a flat  $GL(K,\mathbb{C})$  connection on C.

"Nonabelianization map"

We will want to categorify the parallel transport  $F(\wp,\vartheta)$  and the framed BPS degeneracies:  $\overline{\Omega}(L_{\wp,\vartheta},a)$ 

The next three lectures will be in a very different style:

On the blackboard.

Slower and more detailed.

The goal is to explain the mathematical "web-based formalism" for addressing the physical problems outlined above.

No physics voodoo.